Abstract
This chapter presents an overview of the published research focused on the application of visual attention and saliency models to the problem of image and video quality assessment. Determining the perceptual quality of multimedia content is crucial for achieving quality-of-experience-driven multimedia services. The problem has been gaining significance in the wake of the recent explosion of visual and multimedia applications.Attention and saliency models have the potential to improve the performance of state-of-the-art quality assessment algorithms significantly and are generating increased interest within the research community.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This work supported in part by FP7 QoSTREAM (no. 295220) and COST SoftStat IC0702 projects.
References
Brooke, R. (1951). The variation of critical fusion frequency with brightness at various retinal locations. JOSA, 41(12), 1010–1016.
Cisco. (2015). Cisco visual networking index: Global – 2019 forecast, San Jose.
Connor, C., Egeth, H., & Yantis, S. (2004). Visual attention: Bottom-up versus top-down. Current Biology, 14(19), R850–R852.
Culibrk, D., Crnojevic, V., & Antic, B. (2009). Multiscale background modelling and segmentation. In Proceedings of the 16th International Conference on Digital Signal Processing, Chicago, Santorini, Greece (pp. 922–927).
Culibrk, D., Kukolj, D., Vasiljevic, P., Pokric, M., & Zlokolica, V. (2009). Feature selection for neural-network based no-reference video quality assessment. In ICANN (2). (pp. 633–642).
Culibrk, D., Mirkovic, M., Lugonja, P., & Crnojevic, V. (2010). Mining web videos for video quality assessment. In 2010 International Conference of Soft Computing and Pattern Recognition (SoCPaR), Paris (pp. 75–80). doi: 10.1109/SOCPAR.2010.5686400, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5686400&isnumber=5685841
Culibrk, D., Mirkovic, M., Zlokolica, V., Pokric, M., Crnojevic, V., & Kukolj, D. (2010). Salient motion features for video quality assessment. IEEE Transactions on Image Processing, 20, 948–958.
Engelke, U., Kaprykowsky, H., Zepernick, H. J., & Ndjiki-Nya, P. (2011). Visual attention in quality assessment. IEEE Signal Processing Magazine, 28(6), 50–59.
Ferzli, R., & Karam, L. A no-reference objective image sharpness metric based on just-noticeable blur and probability summation. Proceedings of IEEE 2007 International Conference on Image Processing 3, III –445–III –448 (16 2007-Oct 19 2007)
Idrissi, N., Martinez, J., & Aboutajdine, D. (2005). Selecting a discriminant subset of co-occurrence matrix features for texture-based image retrieval. (pp. 696–703). Advances in visual computing. Berlin/Heidelberg: Springer.
Itti, L. (2004). Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing, 13(10), 1304–1318.
Itti, L., & Baldi, P. F. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10), 1295–1306.
Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.
Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.
ITU-R BT.500. (2002). Methodology for the Subjective Assessment of the Quality of Television Pictures. Video Quality Experts Group.
James, W. (1950). The principles of psychology (Vol. 1). Dover Publications. http://www.worldcat.org/isbn/0486203816
Kim, K., & Davis, L. (2004). A fine-structure image/video quality measure using local statistics. In Proceedings of IEEE 2004 International Conference on Image Processing, Singapore (Vol. V, pp. 3535–3538).
Kirenko, I. (2006). Reduction of coding artifacts using chrominance and luminance spatial analysis. In International Conference on Consumer Electronics, 2006. ICCE ’06. 2006 Digest of Technical Papers, St. Petersburg, Las Vegas (pp. 209–210).
Kusuma, T., Caldera, M., & Zepernick, H. (2004). Utilising objective perceptual image quality metrics for implicit link adaptation. In Proceedings of IEEE 2004 International Conference on Image Processing, Singapore (Vol. IV, pp. 2319–2322).
Le Meur, O., Le Callet, P., Barba, D., & Thoreau, D. (2006). A coherent computational approach to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 802–817
Liu, T., Feng, X., Reibman, A., & Wang, Y. (2009). Saliency inspired modeling of packet-loss visibility in decoded videos. In International Workshop VPQM, Scottsdale (pp. 1–4).
Liu, Z., Yan, H., Shen, L., Wang, Y., & Zhang, Z. (2009). A motion attention model based rate control algorithm for h.264/avc. In Eighth IEEE/ACIS International Conference on Computer and Information Science, Shanghai (pp. 568–573).
Longfei, Z., Yuanda, C., Gangyi, D., & Yong, W. (2008). A computable visual attention model for video skimming. In ISM ’08: Proceedings of the 2008 Tenth IEEE International Symposium on Multimedia (pp. 667–672). Washington, DC: IEEE Computer Society.
Ma, Y. F., Hua, X. S., Lu, L., & Zhang, H. J. (2005). A generic framework of user attention model and its application in video summarization. IEEE Transactions on Multimedia, 7(5), 907–919.
Marques, O., Mayron, L. M., Borba, G. B., & Gamba, H. R. (2007). An attention-driven model for grouping similar images with image retrieval applications. EURASIP Journal on Advances in Signal Processing, 2007, 116
Olveczky, B. P., Baccus, S. A., & Meister, M. (2003). Segregation of object and background motion in the retina. Nature, 423, 401–408.
Seshadrinathan, K., & Bovik, A. (2011). Automatic prediction of perceptual quality of multimedia signals – a survey. Multimedia Tools and Applications, 51, 163–186.
Siagian, C., & Itti, L. (2007). Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 300–312.
Siagian, C., & Itti, L. (2009). Biologically inspired mobile robot vision localization. IEEE Transactions on Robotics, 25(4), 861–873.
Solomon, J., & Sperling, G. (1995). 1st-and 2nd-order motion and texture resolution in central and peripheral vision. Vision Research, 35(1), 59–64.
Stentiford, F. W. (2003). An attention based similarity measure with application to content-based information retrieval. In Proceedings of the Storage and Retrieval for Media Databases Conference, SPIE Electronic Imaging, Santa Clara
Styles, E. A. (2005). Attention, perception, and memory: An integrated introduction. New York: Taylor & Francis/Routledge.
Tsotsos, J. K., Culhane, S. M., Winky, W. Y. K., Lai, Y., Davis, N., & Nuflo, F. (1995). Modeling visual attention via selective tuning. Artificial Intelligence, 78(1–2), 507–545. http://dx.doi.org/10.1016/0004-3702(95)00025-9
Venkatesh Babu, R., Perkis, A., & Hillestad, O. (2008). Evaluation and monitoring of video quality for UMA enabled video streaming systems. Multimedia Tools and Applications, 37(2), 211–231.
Video Quality Experts Group (VQEG). (2000). Final report from the Video Quality Experts Group on the validation of objective quality metrics for video quality assessment. Available: http://www.its.bldrdoc.gov/vqeg/projects/frtv-phase-i/frtv-phase-i.aspx (online).
Wang, Z., & Li, Q. (2007). Video quality assessment using a statistical model of human visual speed perception. JOSA A, 24(12), B61–B69.
Wang, Z., Sheikh, H. R., & Bovik, A. C. (2002). No-reference perceptual quality assessment of jpeg compressed images. In Proceedings of IEEE 2002 International Conferencing on Image Processing, Rochester (pp. 477–480).
Warwick, G., & Thong, N. (2004). Classification of video sequences in MPEG domain. In Signal Processing for Telecommunications and Multimedia (Chapter 6). New York: Springer. http://link.springer.com/book/10.1007%2Fb99846
Winkler, S. (2012). Analysis of public image and video databases for quality assessment. IEEE Journal of Selected Topics in Signal Processing, 6(6), 616–625.
Wolf, S., & Pinson, M. (2002). Ntia report 02-392: Video quality measurement techniques. Technical report, Institute for Telecommunication Sciences. http://www.its.bldrdoc.gov/pub/ntia-rpt/02-392/
Wolfe, J. M. (2000). Visual attention. In Seeing (pp. 335–386). San Diego, CA: Academic Press.
YouTube. (2015). Youtube: Press statistics. http://www.youtube.com/t/press_statistics
Zhou Wang, L. L., & Bovik, A. C. (2004). Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication, 19(2), 121–132.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this chapter
Cite this chapter
Culibrk, D. (2016). Saliency and Attention for Video Quality Assessment. In: Mancas, M., Ferrera, V., Riche, N., Taylor, J. (eds) From Human Attention to Computational Attention. Springer Series in Cognitive and Neural Systems, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3435-5_20
Download citation
DOI: https://doi.org/10.1007/978-1-4939-3435-5_20
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-3433-1
Online ISBN: 978-1-4939-3435-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

