Skip to main content

Role of Immunohistochemistry and Molecular Genetics in Neuroendocrine Tumors

  • Chapter
  • First Online:
Neuroendocrine Tumors: Review of Pathology, Molecular and Therapeutic Advances

Abstract

Neuroendocrine tumor (NET) is a family of neoplasms that arises from nervous (neuro-) system and hormonal (endocrine) cells of multiple organs and functions. NET cells in the GI tract share common histological characteristics typically associated with neuroendocrine differentiation. Immunohistochemically, NET cells produce common polypeptide hormones and a variety of biogenic amines related to modulating the biological functions of the organs where these tumors arise. The immunophenotypical profiles of these neoplasms are relatively specific: they are positive for markers of neuroendocrine differentiation and may produce various polypeptides and hormones unique to their subtypes. Immunohistochemical examination of these neuroendocrine markers, such as synaptophysin, chromogranin, CD56, and other markers such as neuron-specific enolase (NSE), as well as proliferative markers (Ki-67 labeling index), should be carried out for the proper classification and grading of any NET. Additionally, in this era of molecular medicine and personalized precision medicine, the molecular background and the involved molecules are gaining more recognition. The current knowledge on the molecular genetics of neuroendocrine tumors will be introduced at the end of this chapter. In short, this chapter will focus on immunophenotypical profile and currently understood molecular genetics of gastrointestinal neuroendocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rindi G, Petrone G, Inzani F. 25 Years of neuroendocrine neoplasms of the gastrointestinal tract. Endocr Pathol. 2014;25(1):59–64.

    Article  CAS  Google Scholar 

  2. Hirabayashi K, Zamboni G, Nishi T, Tanaka A, Kajiwara H, Nakamura N. Histopathology of gastrointestinal neuroendocrine neoplasms. Front Oncol. 2013;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maillard MH, Hiroz P, Wagner D, Prior J, Boubaker A, Pralong F, et al. Gastrointestinal neuroendocrine tumors: pleomorphic and often ignored. Rev Med Suisse. 2012;8(352):1658–63.

    CAS  PubMed  Google Scholar 

  4. Williams GT. Endocrine tumours of the gastrointestinal tract-selected topics. Histopathology. 2007;50(1):30–41.

    Article  CAS  PubMed  Google Scholar 

  5. Kloppel G, Rindi G, Perren A, Komminoth P, Klimstra DS. The ENETS and UICC TNM classification of neuroendocrine tumors of the gastrointestinal tract and the pancreas: comment. Pathologe. 2010;31(5):353–4.

    Article  CAS  PubMed  Google Scholar 

  6. Anthony LB, Strosberg JR, Klimstra DS, Maples WJ, O’Dorisio TM, Warner RR, et al. The NANETS consensus guidelines for the diagnosis and management of gastrointestinal neuroendocrine tumors (nets): well-differentiated nets of the distal colon and rectum. Pancreas. 2010;39(6):767–74.

    Article  PubMed  Google Scholar 

  7. Amarapurkar DN, Juneja MP, Patel ND, Amarapurkar AD, Amarapurkar PD. A retrospective clinico-pathological analysis of neuroendocrine tumors of the gastrointestinal tract. Trop Gastroenterol. 2010;31(2):101–4.

    CAS  PubMed  Google Scholar 

  8. Oberg KE. Gastrointestinal neuroendocrine tumors. Ann Oncol. 2010;21 Suppl 7:vii72–80.

    PubMed  Google Scholar 

  9. Leja J, Essaghir A, Essand M, Wester K, Oberg K, Totterman TH, et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod Pathol. 2009;22(2):261–72.

    Article  CAS  PubMed  Google Scholar 

  10. Sudhof TC, Lottspeich F, Greengard P, Mehl E, Jahn R. The cDNA and derived amino acid sequences for rat and human synaptophysin. Nucleic Acids Res. 1987;15(22):9607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmitt U, Tanimoto N, Seeliger M, Schaeffel F, Leube RE. Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience. 2009;162(2):234–43.

    Article  CAS  PubMed  Google Scholar 

  12. Helman LJ, Ahn TG, Levine MA, Allison A, Cohen PS, Cooper MJ, et al. Molecular cloning and primary structure of human chromogranin A (secretory protein I) cDNA. J Biol Chem. 1988;263(23):11559–63.

    CAS  PubMed  Google Scholar 

  13. Gazdar AF, Helman LJ, Israel MA, Russell EK, Linnoila RI, Mulshine JL, et al. Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res. 1988;48(14):4078–82.

    CAS  PubMed  Google Scholar 

  14. Nikou GC, Lygidakis NJ, Toubanakis C, Pavlatos S, Tseleni-Balafouta S, Giannatou E, et al. Current diagnosis and treatment of gastrointestinal carcinoids in a series of 101 patients: the significance of serum chromogranin-A, somatostatin receptor scintigraphy and somatostatin analogues. Hepatogastroenterology. 2005;52(63):731–41.

    PubMed  Google Scholar 

  15. Cetin Y, Aunis D, Bader MF, Galindo E, Jorns A, Bargsten G, et al. Chromostatin, a chromogranin A-derived bioactive peptide, is present in human pancreatic insulin (beta) cells. Proc Natl Acad Sci U S A. 1993;90(6):2360–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schott M, Kloppel G, Raffel A, Saleh A, Knoefel WT, Scherbaum WA. Neuroendocrine neoplasms of the gastrointestinal tract. Dtsch Arztebl Int. 2011;108(18):305–12.

    PubMed  PubMed Central  Google Scholar 

  17. Modlin IM, Moss SF, Oberg K, Padbury R, Hicks RJ, Gustafsson BI, et al. Gastrointestinal neuroendocrine (carcinoid) tumours: current diagnosis and management. Med J Aust. 2010;193(1):46–52.

    PubMed  Google Scholar 

  18. Burke AP, Thomas RM, Elsayed AM, Sobin LH. Carcinoids of the jejunum and ileum: an immunohistochemical and clinicopathologic study of 167 cases. Cancer. 1997;79(6):1086–93.

    Article  CAS  PubMed  Google Scholar 

  19. Nasir A, Stridsberg M, Strosberg J, Su PH, Livingston S, Malik HA, et al. Somatostatin receptor profiling in hepatic metastases from small intestinal and pancreatic neuroendocrine neoplasms: immunohistochemical approach with potential clinical utility. Cancer Control. 2006;13(1):52–60.

    PubMed  Google Scholar 

  20. Rothenstein J, Cleary SP, Pond GR, Dale D, Gallinger S, Moore MJ, et al. Neuroendocrine tumors of the gastrointestinal tract: a decade of experience at the Princess Margaret Hospital. Am J Clin Oncol. 2008;31(1):64–70.

    Article  PubMed  Google Scholar 

  21. Erickson LA, Papouchado B, Dimashkieh H, Zhang S, Nakamura N, Lloyd RV. Cdx2 as a marker for neuroendocrine tumors of unknown primary sites. Endocr Pathol. 2004;15(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava A, Hornick JL. Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol. 2009;33(4):626–32.

    Article  PubMed  Google Scholar 

  23. Sangoi AR, Ohgami RS, Pai RK, Beck AH, McKenney JK, Pai RK. PAX8 expression reliably distinguishes pancreatic well-differentiated neuroendocrine tumors from ileal and pulmonary well-differentiated neuroendocrine tumors and pancreatic acinar cell carcinoma. Mod Pathol. 2011;24(3):412–24.

    Article  CAS  PubMed  Google Scholar 

  24. Du EZ, Goldstraw P, Zacharias J, Tiffet O, Craig PJ, Nicholson AG, et al. TTF-1 expression is specific for lung primary in typical and atypical carcinoids: TTF-1-positive carcinoids are predominantly in peripheral location. Hum Pathol. 2004;35(7):825–31.

    Article  CAS  PubMed  Google Scholar 

  25. Verset L, Arvanitakis M, Loi P, Closset J, Delhaye M, Remmelink M, et al. TTF-1 positive small cell cancers: don’t think they’re always primary pulmonary! World J Gastrointest Oncol. 2011;3(10):144–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agoff SN, Lamps LW, Philip AT, Amin MB, Schmidt RA, True LD, et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000;13(3):238–42.

    Article  CAS  PubMed  Google Scholar 

  27. Carling T. Multiple endocrine neoplasia syndrome: genetic basis for clinical management. Curr Opin Oncol. 2005;17(1):7–12.

    Article  PubMed  Google Scholar 

  28. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276(5311):404–7.

    Article  CAS  PubMed  Google Scholar 

  29. Agarwal SK, Lee Burns A, Sukhodolets KE, Kennedy PA, Obungu VH, Hickman AB, et al. Molecular pathology of the MEN1 gene. Ann N Y Acad Sci. 2004;1014:189–98.

    Article  CAS  PubMed  Google Scholar 

  30. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001;86(12):5658–71.

    Article  CAS  PubMed  Google Scholar 

  31. Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell. 1999;96(1):143–52.

    Article  CAS  PubMed  Google Scholar 

  32. Rindi G, Wiedenmann B. Neuroendocrine neoplasms of the gut and pancreas: new insights. Nat Rev Endocrinol. 2012;8(1):54–64.

    Article  Google Scholar 

  33. Frankel WL. Update on pancreatic endocrine tumors. Arch Pathol Lab Med. 2006;130(7):963–6.

    PubMed  Google Scholar 

  34. Kim JJ, Rini BI, Hansel DE. Von Hippel Lindau syndrome. Adv Exp Med Biol. 2010;685:228–49.

    Article  CAS  PubMed  Google Scholar 

  35. Ehehalt F, Saeger HD, Schmidt CM, Grutzmann R. Neuroendocrine tumors of the pancreas. Oncologist. 2009;14(5):456–67.

    Article  CAS  PubMed  Google Scholar 

  36. Wiedenmann B, Pavel M, Kos-Kudla B. From targets to treatments: a review of molecular targets in pancreatic neuroendocrine tumors. Neuroendocrinology. 2011;94(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  37. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oberg K. Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). Curr Opin Endocrinol Diabetes Obes. 2009;16(1):72–8.

    Article  PubMed  Google Scholar 

  39. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707–12.

    Article  PubMed  Google Scholar 

  40. Lubensky IA, Zhuang Z. Molecular genetic events in gastrointestinal and pancreatic neuroendocrine tumors. Endocr Pathol. 2007;18(3):156–62.

    Article  CAS  PubMed  Google Scholar 

  41. Bloomston M, Durkin A, Yang I, Rojiani M, Rosemurgy AS, Enkmann S, et al. Identification of molecular markers specific for pancreatic neuroendocrine tumors by genetic profiling of core biopsies. Ann Surg Oncol. 2004;11(4):413–9.

    Article  PubMed  Google Scholar 

  42. Arnold C. Neuroendocrine tumors of the gastrointestinal tract. Praxis (Bern 1994). 2007;96(1-2):19–28.

    Article  CAS  Google Scholar 

  43. Kimdo H, Nagano Y, Choi IS, White JA, Yao JC, Rashid A. Allelic alterations in well-differentiated neuroendocrine tumors (carcinoid tumors) identified by genome-wide single nucleotide polymorphism analysis and comparison with pancreatic endocrine tumors. Genes Chromosomes Cancer. 2008;47(1):84–92.

    Article  Google Scholar 

  44. Chung DC, Brown SB, Graeme-Cook F, Seto M, Warshaw AL, Jensen RT, et al. Overexpression of cyclin D1 occurs frequently in human pancreatic endocrine tumors. J Clin Endocrinol Metab. 2000;85(11):4373–8.

    CAS  PubMed  Google Scholar 

  45. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hessman O, Lindberg D, Einarsson A, Lillhager P, Carling T, Grimelius L, et al. Genetic alterations on 3p, 11q13, and 18q in nonfamilial and MEN 1-associated pancreatic endocrine tumors. Genes Chromosomes Cancer. 1999;26(3):258–64.

    Article  CAS  PubMed  Google Scholar 

  47. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Wilde RF, Heaphy CM, Maitra A, Meeker AK, Edil BH, Wolfgang CL, et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol. 2012;25(7):1033–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Speisky D, Duces A, Bieche I, Rebours V, Hammel P, Sauvanet A, et al. Molecular profiling of pancreatic neuroendocrine tumors in sporadic and Von Hippel-Lindau patients. Clin Cancer Res. 2012;18(10):2838–49.

    Article  CAS  PubMed  Google Scholar 

  50. Schmitt AM, Schmid S, Rudolph T, Anlauf M, Prinz C, Kloppel G, et al. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr Relat Cancer. 2009;16(4):1219–27.

    Article  CAS  PubMed  Google Scholar 

  51. Nasir A, Helm J, Turner L, Chen DT, Strosberg J, Hafez N, et al. RUNX1T1: a novel predictor of liver metastasis in primary pancreatic endocrine neoplasms. Pancreas. 2011;40(4):627–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Henderson-Jackson EB, Helm J, Strosberg J, Nasir NA, Yeatman TJ, Kvols LK, et al. Palladin is a marker of liver metastasis in primary pancreatic endocrine carcinomas. Anticancer Res. 2011;31(9):2957–62.

    CAS  PubMed  Google Scholar 

Download references

Abbreviations

ATRX α Thalassemia/mental retardation syndrome X-linked

DAXX Death-domain-associated protein

NET Neuroendocrine tumor

NSE Neuron-specific enolase

GI Gastrointestinal

SCC Small cell carcinoma

LCNEC Large cell neuroendocrine carcinoma

MANEC Mixed adenoneuroendocrine carcinoma

VHL Von Hippel-Lindau

MEN Multiple endocrine neoplasms

SSTRs Somatostatin receptors (1-5)

mTOR Mammalian target of rapamycin

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aejaz Nasir MD, MPhil, FCAP or Domenico Coppola MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jiang, K., Sheikh, U., Nasir, A., Coppola, D. (2016). Role of Immunohistochemistry and Molecular Genetics in Neuroendocrine Tumors. In: Nasir, A., Coppola, D. (eds) Neuroendocrine Tumors: Review of Pathology, Molecular and Therapeutic Advances. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3426-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3426-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3424-9

  • Online ISBN: 978-1-4939-3426-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics