Skip to main content

Adrenal Neuroendocrine Tumors: Pheochromocytoma and Neuroblastic Tumors

  • Chapter
  • First Online:
Neuroendocrine Tumors: Review of Pathology, Molecular and Therapeutic Advances

Abstract

The adrenal medulla forms from sympathetic ganglion arising from the neural crest. Primitive sympathecoblasts mature into chromaffin cells which produce catecholamines. Pheochromocytomas are tumors arising from the chromaffin cells within the adrenal gland. These tumors are termed paraganglioma if arising from chromaffin cells outside of the adrenal. In embryonic development, sympathecoblasts form clusters which during embryogenesis can remain in or nearby the adrenal. These primitive clusters are hypothesized to be the source of neuroblastic tumors, such as neuroblastoma, and can arise throughout the sympathoadrenal neuroendocrine system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, Chamontin B, Delemer B, Giraud S, Murat A, Niccoli-Sire P, Richard S, Rohmer V, Sadoul JL, Strompf L, Schlumberger M, Bertagna X, Plouin PF, Jeunemaitre X, Gimenez-Roqueplo AP. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23(34):8812–8.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang S, Dahia PL. Minireview: the busy road to pheochromocytomas and paragangliomas has a new member, TMEM127. Endocrinology. 2011;152(6):2133–40.

    Article  CAS  PubMed  Google Scholar 

  3. Patócs A, Karádi E, Tóth M, Varga I, Szücs N, Balogh K, Majnik J, Gláz E, Rácz K. Clinical and biochemical features of sporadic and hereditary phaeochromocytomas: an analysis of 41 cases investigated in a single endocrine centre. Eur J Cancer Prev. 2004;13(5):403–9.

    Article  PubMed  Google Scholar 

  4. Kulis T, Knezevic N, Pekez M, Kastelan D, Grkovic M, Kastelan Z. Laparoscopic adrenalectomy: lessons learned from 306 cases. J Laparoendosc Adv Surg Tech A. 2012;22(1):22–6.

    Article  PubMed  Google Scholar 

  5. Beard CM, Sheps SG, Kurland LT, et al. Occurrence of pheochromocytoma in Rochester, Minnesota, 1950 through 1979. Mayo Clin Proc. 1983;58:802.

    CAS  PubMed  Google Scholar 

  6. Guerrero MA, Schreinemakers JM, Vriens MR, et al. Clinical spectrum of pheochromocytoma. J Am Coll Surg. 2009;209:727.

    Article  PubMed  Google Scholar 

  7. Lloyd RV. Adrenal cortical tumors, pheochromocytomas and paragangliomas. Mod Pathol. 2011;24 Suppl 2:S58–65.

    Article  CAS  PubMed  Google Scholar 

  8. Goffredo P, Sosa JA, Roman SA. Malignant pheochromocytoma and paraganglioma: a population level analysis of long-term survival over two decades. J Surg Oncol. 2013;107(6):659–64.

    Article  PubMed  Google Scholar 

  9. Bravo EL. Pheochromocytoma: new concepts and future trends. Kidney Int. 1991;40:544.

    Article  CAS  PubMed  Google Scholar 

  10. Baguet JP, Hammer L, Mazzuco TL, et al. Circumstances of discovery of phaeochromocytoma: a retrospective study of 41 consecutive patients. Eur J Endocrinol. 2004;150:681.

    Article  CAS  PubMed  Google Scholar 

  11. Young Jr WF, Maddox DE. Spells: in search of a cause. Mayo Clin Proc. 1995;70:757.

    Article  PubMed  Google Scholar 

  12. Manger WM, Gifford RW. Pheochromocytoma. J Clin Hypertens (Greenwich). 2002;4:62.

    Article  Google Scholar 

  13. van Berkel A, Lenders JW, Timmers HJ. Diagnosis of endocrine disease: biochemical diagnosis of phaeochromocytoma and paraganglioma. Eur J Endocrinol. 2014;170(3):R109–19.

    Article  PubMed  CAS  Google Scholar 

  14. Taylor RL, Singh RJ. Validation of liquid chromatography-tandem mass spectrometry method for analysis of urinary conjugated metanephrine and normetanephrine for screening of pheochromocytoma. Clin Chem. 2002;48:533.

    CAS  PubMed  Google Scholar 

  15. Fogarty J, Engel C, Russo J, et al. Hypertension and pheochromocytoma testing: the association with anxiety disorders. Arch Fam Med. 1994;3:55.

    Google Scholar 

  16. Alsabeh R, Mazoujian G, Goates J, Mederios LJ, Weiss LM. Adrenal cortical tumors clinically mimicking pheochromocytoma. Am J Clin Pathol. 1995;104(4):382–90.

    Article  CAS  PubMed  Google Scholar 

  17. Ivsic T, Komorowski RA, Sudakoff GS, Wilson SD, Datta MW. Adrenal cortical adenoma with adrenalin-type neurosecretory granules clinically mimicking a pheochromocytoma. Arch Pathol Lab Med. 2002;126(12):1530–3.

    PubMed  Google Scholar 

  18. Kiriakopoulos A, Papaioannou D, Linos D. Adrenal cortical oncocytoma mimicking pheochromocytoma. Hormones (Athens). 2011;10(1):76–9.

    Article  Google Scholar 

  19. Lee JA, Zarnegar R, Shen WT, Kebebew E, Clark OH, Duh QY. Adrenal incidentaloma, borderline elevations of urine or plasma metanephrine levels, and the “subclinical” pheochromocytoma. Arch Surg. 2007;142(9):870–3. p6.

    Article  CAS  PubMed  Google Scholar 

  20. Simon S, Tötsch M, Schmidlin F, Iselin CE, Meier CA. Adrenal cortical phaeochromocytoma: a case report of a rare entity. Exp Clin Endocrinol Diabetes. 2003;111(2):111–4.

    Article  CAS  PubMed  Google Scholar 

  21. Walters G, Wyatt GB, Kelleher J. Carcinoma of the adrenal cortex presenting as a pheochromocytoma: report of a case. J Clin Endocrinol Metab. 1962;22:575–80.

    Article  CAS  PubMed  Google Scholar 

  22. Perrino CM, Prall DN, Calomeni EP, Nadasdy T, Zynger DL. Ultrastructural findings in adrenal cortical adenomas clinically mimicking pheochromocytoma: a comparison with other adrenal tumors and tissue preparation techniques. Ultrastruct Pathol. 2012;36(5):287–93.

    Article  PubMed  Google Scholar 

  23. Morse MO, Schwartz FL, Zynger DL. First report of adrenal cortical endothelial (vascular) cyst mimicking phaeochromocytoma (pseudophaeochromocytoma). Pathology. 2014;46(4):364–5.

    Article  PubMed  Google Scholar 

  24. Horchani A, Nouira Y, Nouira K, et al. Hydatid cyst of the adrenal gland: a clinical study of six cases. Scientific World Journal. 2006;6:2420–5.

    Article  PubMed  Google Scholar 

  25. Sharma KV, Venkatesan AM, Swerdlow D, DaSilva D, Beck A, Jain N, Wood BJ. Image-guided adrenal and renal biopsy. Tech Vasc Interv Radiol. 2010;13(2):100–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Musella M, Conzo G, Milone M, Corcione F, Belli G, De Palma M, Tricarico A, Santini L, Palazzo A, Bianco P, Biondi B, Pivonello R, Colao A. Preoperative workup in the assessment of adrenal incidentalomas: outcome from 282 consecutive laparoscopic adrenalectomies. BMC Surg. 2013;13:57.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Villelli NW, Jayanti MK, Zynger DL. Use and usefulness of adrenal core biopsies without FNA or on-site evaluation of adequacy: a study of 204 cases for a 12-year period. Am J Clin Pathol. 2012;137(1):124–31.

    Article  PubMed  Google Scholar 

  28. Quayle FJ, Spitler JA, Pierce RA, Lairmore TC, Moley JF, Brunt LM. Needle biopsy of incidentally discovered adrenal masses is rarely informative and potentially hazardous. Surgery. 2007;142(4):497–502.

    Article  PubMed  Google Scholar 

  29. Paulsen SD, Nghiem HV, Korobkin M, et al. Changing role of imaging-guided percutaneous biopsy of adrenal masses: evaluation of 50 adrenal biopsies. Am J Roentgenol. 2004;182:1033–7.

    Article  Google Scholar 

  30. Mazzaglia PJ, Monchik JM. Limited value of adrenal biopsy in the evaluation of adrenal neoplasm: a decade of experience. Arch Surg. 2009;144:465–70.

    Article  PubMed  Google Scholar 

  31. Harisinghani MG, Maher MM, Hahn PF, et al. Predictive value of benign percutaneous adrenal biopsies in oncology patients. Clin Radiol. 2002;57:898–901.

    Article  CAS  PubMed  Google Scholar 

  32. Lumachi F, Borsato S, Tregnaghi A, et al. CT-scan, MRI and image-guided FNA cytology of incidental adrenal masses. Eur J Surg Oncol. 2003;29:689–92.

    Article  CAS  PubMed  Google Scholar 

  33. Bernardino ME, Walther MM, Phillips VM, Graham Jr SD, Sewell CW, Gedgaudas-McClees K, Baumgartner BR, Torres WE, Erwin BC. CT-guided adrenal biopsy: accuracy, safety, and indications. AJR Am J Roentgenol. 1985;144(1):67–9.

    Article  CAS  PubMed  Google Scholar 

  34. DeWitt J, Alsatie M, LeBlanc J, McHenry L, Sherman S. Endoscopic ultrasound-guided fine-needle aspiration of left adrenal gland masses. Endoscopy. 2007;39(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  35. de Agustín P, López-Ríos F, Alberti N, Pérez-Barrios A. Fine-needle aspiration biopsy of the adrenal glands: a ten-year experience. Diagn Cytopathol. 1999;21(2):92–7.

    Article  PubMed  Google Scholar 

  36. Thompson LD. Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol. 2002;26(5):551–66.

    Article  PubMed  Google Scholar 

  37. Montresor E, Iacono C, Nifosi F, Zanza A, Modena S, Zamboni G, Bernardello F, Serio G. Retroperitoneal paragangliomas: role of immunohistochemistry in the diagnosis of malignancy and in assessment of prognosis. Eur J Surg. 1994;160(10):547–52.

    CAS  PubMed  Google Scholar 

  38. Fassina AS, Borsato S, Fedeli U. Fine needle aspiration cytology (FNAC) of adrenal masses. Cytopathology. 2000;11:302–11.

    Article  CAS  PubMed  Google Scholar 

  39. Sangoi AR, McKenney JK. A tissue microarray-based comparative analysis of novel and traditional immunohistochemical markers in the distinction between adrenal cortical lesions and pheochromocytoma. Am J Surg Pathol. 2010;34(3):423–32.

    Article  PubMed  Google Scholar 

  40. Fraga M, García-Caballero T, Antúnez J, Couce M, Beiras A, Forteza J. A comparative immunohistochemical study of phaeochromocytomas and paragangliomas. Histol Histopathol. 1993;8(3):429–36.

    CAS  PubMed  Google Scholar 

  41. Lam KY, Chan AC, Wong WM, Lam KS. A review of clinicopathologic features of pheochromocytomas in Hong Kong Chinese. Eur J Surg Oncol. 1993;19(5):421–7.

    CAS  PubMed  Google Scholar 

  42. Kimura N, Sasano N, Yamada R, Satoh J. Immunohistochemical study of chromogranin in 100 cases of pheochromocytoma, carotid body tumour, medullary thyroid carcinoma and carcinoid tumour. Virchows Arch A Pathol Anat Histopathol. 1988;413(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  43. Weiler R, Fischer-Colbrie R, Schmid KW, Feichtinger H, Bussolati G, Grimelius L, Krisch K, Kerl H, O’Connor D, Winkler H. Immunological studies on the occurrence and properties of chromogranin A and B and secretogranin II in endocrine tumors. Am J Surg Pathol. 1988;12(11):877–84.

    Article  CAS  PubMed  Google Scholar 

  44. Busam KJ, Iversen K, Coplan KA, Old LJ, Stockert E, Chen YT, McGregor D, Jungbluth A. Immunoreactivity for A103, an antibody to melan-A (Mart-1), in adrenocortical and other steroid tumors. Am J Surg Pathol. 1998;22(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  45. Schröder S, Padberg BC, Achilles E, Holl K, Dralle H, Klöppel G. Immunocytochemistry in adrenocortical tumours: a clinicomorphological study of 72 neoplasms. Virchows Arch A Pathol Anat Histopathol. 1992;420(1):65–70.

    Article  PubMed  Google Scholar 

  46. Loeffel SC, Gillespie GY, Mirmiran SA, Miller EW, Golden P, Askin FB, Siegal GP. Cellular immunolocalization of S100 protein within fixed tissue sections by monoclonal antibodies. Arch Pathol Lab Med. 1985;109(2):117–22.

    CAS  PubMed  Google Scholar 

  47. Tannenbaum M. Ultrastructural pathology of adrenal medullary tumors. Pathol Annu. 1970;5:145–71.

    CAS  PubMed  Google Scholar 

  48. Gómez RR, Osborne BM, Ordoñez NG, Mackay B. Pheochromocytoma. Ultrastruct Pathol. 1991;15(4–5):557–62.

    Article  PubMed  Google Scholar 

  49. Mihai R, Wong NA, Luckett M, Sheffield E, Farndon JR. No correlation between phaeochromocytoma catecholamine secretion and granule ultrastructure. Br J Surg. 1998;85(12):1681–5.

    Article  CAS  PubMed  Google Scholar 

  50. Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet. 2012;205(1–2):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gimenez-Roqueplo AP, Burnichon N, Amar L, Favier J, Jeunemaitre X, Plouin PF. Recent advances in the genetics of phaeochromocytoma and functional paraganglioma. Clin Exp Pharmacol Physiol. 2008;35(4):376–9.

    Article  CAS  PubMed  Google Scholar 

  52. Crona J, Nordling M, Maharjan R, Granberg D, Stålberg P, Hellman P, Björklund P. Integrative genetic characterization and phenotype correlations in pheochromocytoma and paraganglioma tumours. PLoS One. 2014;9(1):e86756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fishbein L, Merrill S, Fraker DL, Cohen DL, Nathanson KL. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol. 2013;20(5):1444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  54. King KS, Pacak K. Familial pheochromocytomas and paragangliomas. Mol Cell Endocrinol. 2014;386(1–2):92–100.

    Article  CAS  PubMed  Google Scholar 

  55. Shuch B, Ricketts CJ, Metwalli AR, Pacak K, Linehan WM. The genetic basis of pheochromocytoma and paraganglioma: implications for management. Urology. 2014;83(6):1225–32.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Sköldberg F, Husebye ES, Eng C, Maher ER. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69(1):49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, Cole TR, Armstrong R, Kumar VK, Morrison PJ, Atkinson AB, Douglas F, Ball SG, Cook J, Srirangalingam U, Killick P, Kirby G, Aylwin S, Woodward ER, Evans DG, Hodgson SV, Murday V, Chew SL, Connell JM, Blundell TL, Macdonald F, Maher ER. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  58. Hensen EF, Jordanova ES, van Minderhout IJ, Hogendoorn PC, Taschner PE, van der Mey AG, Devilee P, Cornelisse CJ. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene. 2004;23(23):4076–83.

    Article  CAS  PubMed  Google Scholar 

  59. Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, Lechleiter JD, Sass M, Aronin N, Schiavi F, Boaretto F, Opocher G, Toledo RA, Toledo SP, Stiles C, Aguiar RC, Dahia PL. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet. 2010;42(3):229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, Landa I, Leandro-García LJ, Letón R, Honrado E, Ramos-Medina R, Caronia D, Pita G, Gómez-Graña A, de Cubas AA, Inglada-Pérez L, Maliszewska A, Taschin E, Bobisse S, Pica G, Loli P, Hernández-Lavado R, Díaz JA, Gómez-Morales M, González-Neira A, Roncador G, Rodríguez-Antona C, Benítez J, Mannelli M, Opocher G, Robledo M, Cascón A. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43(7):663–7.

    Article  PubMed  CAS  Google Scholar 

  61. Crona J, Maharjan R, Delgado Verdugo A, Stålberg P, Granberg D, Hellman P, Björklund P. MAX mutations status in Swedish patients with pheochromocytoma and paraganglioma tumours. Fam Cancer. 2014;13(1):121–5.

    Article  CAS  PubMed  Google Scholar 

  62. Rana HQ, Rainville IR, Vaidya A. Genetic testing in the clinical care of patients with pheochromocytoma and paraganglioma. Curr Opin Endocrinol Diabetes Obes. 2014;21(3):166–76.

    Article  PubMed  Google Scholar 

  63. McInerney-Leo AM, Marshall MS, Gardiner B, Benn DE, McFarlane J, Robinson BG, Brown MA, Leo PJ, Clifton-Bligh RJ, Duncan EL. Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas. Clin Endocrinol (Oxf). 2014;80(1):25–33.

    Article  CAS  Google Scholar 

  64. Welander J, Andreasson A, Juhlin CC, Wiseman RW, Bäckdahl M, Höög A, Larsson C, Gimm O, Söderkvist P. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2014;99(7):E1352–60.

    Article  CAS  PubMed  Google Scholar 

  65. Rattenberry E, Vialard L, Yeung A, Bair H, McKay K, Jafri M, Canham N, Cole TR, Denes J, Hodgson SV, Irving R, Izatt L, Korbonits M, Kumar AV, Lalloo F, Morrison PJ, Woodward ER, Macdonald F, Wallis Y, Maher ER. A comprehensive next generation sequencing-based genetic testing strategy to improve diagnosis of inherited pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2013;98(7):E1248–56.

    Article  CAS  PubMed  Google Scholar 

  66. Grubbs EG, Rich TA, Ng C, Bhosale PR, Jimenez C, Evans DB, Lee JE, Perrier ND. Long-term outcomes of surgical treatment for hereditary pheochromocytoma. J Am Coll Surg. 2013;216(2):280–9.

    Article  PubMed  Google Scholar 

  67. Press D, Akyuz M, Dural C, Aliyev S, Monteiro R, Mino J, Mitchell J, Hamrahian A, Siperstein A, Berber E. Predictors of recurrence in pheochromocytoma. Surgery. 2014;156(6):1523–7.

    Article  PubMed  Google Scholar 

  68. Pommier RF, Vetto JT, Billingsly K, Woltering EA, Brennan MF. Comparison of adrenal and extraadrenal pheochromocytomas. Surgery. 1993;114(6):1160–5.

    CAS  PubMed  Google Scholar 

  69. Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, Busaidy N, Cote GJ, Perrier N, Phan A, Patel S, Waguespack S, Jimenez C. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab. 2011;96(3):717–25.

    Article  CAS  PubMed  Google Scholar 

  70. Deutschbein T, Fassnacht M, Weismann D, Reincke M, Mann K, Petersenn S. Treatment of malignant phaeochromocytoma with a combination of cyclophosphamide, vincristine and dacarbazine: own experience and overview of the contemporary literature. Clin Endocrinol (Oxf). 2015;82(1):84–90.

    Article  CAS  Google Scholar 

  71. Ellis RJ, Patel D, Prodanov T, Sadowski S, Nilubol N, Adams K, Steinberg SM, Pacak K, Kebebew E. Response after surgical resection of metastatic pheochromocytoma and paraganglioma: can postoperative biochemical remission be predicted? J Am Coll Surg. 2013;217(3):489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hadoux J, Favier J, Scoazec JY, Leboulleux S, Al Ghuzlan A, Caramella C, Déandreis D, Borget I, Loriot C, Chougnet C, Letouzé E, Young J, Amar L, Bertherat J, Libé R, Dumont F, Deschamps F, Schlumberger M, Gimenez-Roqueplo AP, Baudin E. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int J Cancer. 2014;135(11):2711–20.

    Article  CAS  PubMed  Google Scholar 

  73. Schovanek J, Martucci V, Wesley R, Fojo T, Del Rivero J, Huynh T, Adams K, Kebebew E, Frysak Z, Stratakis CA, Pacak K. The size of the primary tumor and age at initial diagnosis are independent predictors of the metastatic behavior and survival of patients with SDHB-related pheochromocytoma and paraganglioma: a retrospective cohort study. BMC Cancer. 2014;14:523.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Korevaar TI, Grossman AB. Pheochromocytomas and paragangliomas: assessment of malignant potential. Endocrine. 2011;40(3):354–65.

    Article  CAS  PubMed  Google Scholar 

  75. Strong VE, Kennedy T, Al-Ahmadie H, Tang L, Coleman J, Fong Y, Brennan M, Ghossein RA. Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery. 2008;143(6):759–68.

    Article  PubMed  Google Scholar 

  76. Kimura N, Watanabe T, Noshiro T, Shizawa S, Miura Y. Histological grading of adrenal and extra-adrenal pheochromocytomas and relationship to prognosis: a clinicopathological analysis of 116 adrenal pheochromocytomas and 30 extra-adrenal sympathetic paragangliomas including 38 malignant tumors. Endocr Pathol. 2005;16(1):23–32.

    Article  PubMed  Google Scholar 

  77. Kimura N, Takayanagi R, Takizawa N, Itagaki E, Katabami T, Kakoi N, Rakugi H, Ikeda Y, Tanabe A, Nigawara T, Ito S, Kimura I, Naruse M, Phaeochromocytoma Study Group in Japan. Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr Relat Cancer. 2014;21(3):405–14.

    Article  PubMed  CAS  Google Scholar 

  78. Kumaki N, Kajiwara H, Kameyama K, DeLellis RA, Asa SL, Osamura RY, Takami H. Prediction of malignant behavior of pheochromocytomas and paragangliomas using immunohistochemical techniques. Endocr Pathol. 2002;13(2):149–56.

    Article  PubMed  Google Scholar 

  79. Elder EE, Xu D, Höög A, Enberg U, Hou M, Pisa P, Gruber A, Larsson C, Bäckdahl M. KI-67 AND hTERT expression can aid in the distinction between malignant and benign pheochromocytoma and paraganglioma. Mod Pathol. 2003;16(3):246–55.

    Article  PubMed  Google Scholar 

  80. Lack EE. Tumors of the adrenal glands and extraadrenal paraganglia. 4th ed. Silver Spring: ARP Press; 2007, Print.

    Google Scholar 

  81. Ries LAG, Smith MA, Gurney JG, Linet M, Tamra T, Young JL, Bunin GR, editors. Cancer incidence and survival among children and adolescents: United States SEER program 1975–1995. Bethesda: National Cancer Institute, SEER Program; 1999. NIH Pub. No. 99-4649.

    Google Scholar 

  82. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466–77.

    CAS  PubMed  Google Scholar 

  83. Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine. Pediatr Clin North Am. 2015;62(1):225–56.

    Article  PubMed  Google Scholar 

  84. Joshi VV. Peripheral neuroblastic tumors: pathologic classification based on recommendations of international neuroblastoma pathology committee (Modification of shimada classification). Pediatr Dev Pathol. 2000;3(2):184–99.

    Article  CAS  PubMed  Google Scholar 

  85. Shimada H, Chatten J, Newton Jr WA, Sachs N, Hamoudi AB, Chiba T, Marsden HB, Misugi K. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst. 1984;73(2):405–16.

    CAS  PubMed  Google Scholar 

  86. Castleberry RP. Neuroblastoma. Eur J Cancer. 1997;33(9):1430–7; discussion 1437–8.

    Article  CAS  PubMed  Google Scholar 

  87. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer. 1999;86(2):349–63.

    Article  CAS  PubMed  Google Scholar 

  88. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer. 1999;86(2):364–72.

    Article  CAS  PubMed  Google Scholar 

  89. Peuchmaur M, d’Amore ES, Joshi VV, Hata J, Roald B, Dehner LP, Gerbing RB, Stram DO, Lukens JN, Matthay KK, Shimada H. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer. 2003;98(10):2274–81.

    Article  PubMed  Google Scholar 

  90. Bielle F, Fréneaux P, Jeanne-Pasquier C, Maran-Gonzalez A, Rousseau A, Lamant L, Paris R, Pierron G, Nicolas AV, Sastre-Garau X, Delattre O, Bourdeaut F, Peuchmaur M. PHOX2B immunolabeling: a novel tool for the diagnosis of undifferentiated neuroblastomas among childhood small round blue-cell tumors. Am J Surg Pathol. 2012;36(8):1141–9.

    Article  PubMed  Google Scholar 

  91. Duijkers FA, Gaal J, Meijerink JP, Admiraal P, Pieters R, de Krijger RR, van Noesel MM. High anaplastic lymphoma kinase immunohistochemical staining in neuroblastoma and ganglioneuroblastoma is an independent predictor of poor outcome. Am J Pathol. 2012;180(3):1223–31.

    Article  PubMed  Google Scholar 

  92. Dabbs DJ, Thompson L. Diagnostic immunohistochemistry: theranostic and genomic applications. 4th ed. Philadelphia: Elsevier Saunders; 2013 Print.

    Google Scholar 

  93. Magro G, Longo FR, Angelico G, Spadola S, Amore FF, Salvatorelli L. Immunohistochemistry as potential diagnostic pitfall in the most common solid tumors of children and adolescents. Acta Histochem. 2015;117(4–5):397–414.

    Article  CAS  PubMed  Google Scholar 

  94. Davis JL, Matsumura L, Weeks DA, Troxell ML. PAX2 expression in Wilms tumors and other childhood neoplasms. Am J Surg Pathol. 2011;35(8):1186–94.

    Article  PubMed  Google Scholar 

  95. Chan ES, Pawel BR, Corao DA, Venneti S, Russo P, Santi M, Sullivan LM. Immunohistochemical expression of glypican-3 in pediatric tumors: an analysis of 414 cases. Pediatr Dev Pathol. 2013;16(4):272–7.

    Article  PubMed  Google Scholar 

  96. Erlandson RA, Nesland JM. Tumors of the endocrine/neuroendocrine system: an overview. Ultrastruct Pathol. 1994;18(1–2):149–70.

    Article  CAS  PubMed  Google Scholar 

  97. Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, Schleiermacher G, Speleman F, Spitz R, London WB, Cohn SL, Pearson AD, Maris JM. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer. 2009;100(9):1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KK, Hogarty M, COG Neuroblastoma Committee. Children’s Oncology Group’s 2013 blueprint for research: neuroblastoma. Pediatr Blood Cancer. 2013;60(6):985–93.

    Article  PubMed  Google Scholar 

  99. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK, INRG Task Force. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27(2):289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Schmidt ML, Salwen HR, Chagnovich D, Bauer KD, Crawford SE, Cohn SL. Evidence for molecular heterogeneity in human ganglioneuroblastoma. Pediatr Pathol. 1993;13(6):787–96.

    Article  CAS  PubMed  Google Scholar 

  101. Umehara S, Nakagawa A, Matthay KK, Lukens JN, Seeger RC, Stram DO, Gerbing RB, Shimada H. Histopathology defines prognostic subsets of ganglioneuroblastoma, nodular. Cancer. 2000;89(5):1150–61.

    Article  CAS  PubMed  Google Scholar 

  102. Shawa H, Elsayes KM, Javadi S, Morani A, Williams MD, Lee JE, Waguespack SG, Busaidy NL, Vassilopoulou-Sellin R, Jimenez C, Habra MA. Adrenal ganglioneuroma: features and outcomes of 27 cases at a referral cancer centre. Clin Endocrinol (Oxf). 2014;80(3):342–7.

    Article  CAS  Google Scholar 

  103. Takaya K, Yoshimasa T, Arai H, Tamura N, Miyamoto Y, Itoh H, Nakao K. Expression of the RET proto-oncogene in normal human tissues, pheochromocytomas, and other tumors of neural crest origin. J Mol Med (Berl). 1996;74(10):617–21.

    Article  CAS  Google Scholar 

  104. Rondeau G, Nolet S, Latour M, Braschi S, Gaboury L, Lacroix A, Panzini B, Arjane P, Cohade C, Bourdeau I. Clinical and biochemical features of seven adult adrenal ganglioneuromas. J Clin Endocrinol Metab. 2010;95(7):3118–25.

    Article  CAS  PubMed  Google Scholar 

  105. Lora MS, Waguespack SG, Moley JF, Walvoord EC. Adrenal ganglioneuromas in children with multiple endocrine neoplasia type 2: a report of two cases. J Clin Endocrinol Metab. 2005;90(7):4383–7.

    Article  CAS  PubMed  Google Scholar 

  106. Koch CA, Brouwers FM, Rosenblatt K, Burman KD, Davis MM, Vortmeyer AO, Pacak K. Adrenal ganglioneuroma in a patient presenting with severe hypertension and diarrhea. Endocr Relat Cancer. 2003;10(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  107. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, Kaneko M, London WB, Matthay KK, Nuchtern JG, von Schweinitz D, Simon T, Cohn SL, Pearson AD, INRG Task Force. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27(2):298–303.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Murphy JM, La Quaglia MP. Advances in the surgical treatment of neuroblastoma: a review. Eur J Pediatr Surg. 2014;24(6):450–6.

    Article  PubMed  Google Scholar 

  109. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224(4653):1121–4.

    Article  CAS  PubMed  Google Scholar 

  110. Fischer M, Spitz R, Oberthür A, Westermann F, Berthold F. Risk estimation of neuroblastoma patients using molecular markers. Klin Padiatr. 2008;220(3):137–46.

    Article  CAS  PubMed  Google Scholar 

  111. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3(3):203–16.

    Article  CAS  PubMed  Google Scholar 

  112. Atikankul T, Atikankul Y, Santisukwongchote S, Marrano P, Shuangshoti S, Thorner PS. MIB-1 Index as a Surrogate for Mitosis-Karyorrhexis Index in Neuroblastoma. Am J Surg Pathol. 2015;39(8):1054–60.

    Article  PubMed  Google Scholar 

Download references

Abbreviations

131I-MIBG 131-iodine-labeled metaiodobenzylguanidine

HIF alpha Hypoxia-inducible factor alpha

IDRF Image-defined risk factors

INPC International Neuroblastoma Pathology Committee

INRG International Neuroblastoma Risk Group

INSS International Neuroblastoma Staging System

MAX MYC-associated factor X

MEN2 Multiple endocrine neoplasia type 2

MKI Mitosis-karyorrhexis

NF1 Neurofibromatosis type 1

PASS Pheochromocytoma of the Adrenal Gland Scaled Score

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen M. Perrino MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Perrino, C.M., Zynger, D.L. (2016). Adrenal Neuroendocrine Tumors: Pheochromocytoma and Neuroblastic Tumors. In: Nasir, A., Coppola, D. (eds) Neuroendocrine Tumors: Review of Pathology, Molecular and Therapeutic Advances. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3426-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3426-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3424-9

  • Online ISBN: 978-1-4939-3426-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics