Skip to main content

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

P2X receptors are ubiquitously expressed in all epithelial tissues, but their functional roles are less well studied. Here we review the current state of knowledge by focusing on functional effects of P2X receptor in secretory and in absorptive tissues. In glandular tissue like the parotid gland, basolateral P2X receptors stimulate ion secretion via an increase of [Ca2+]i. In absorptive epithelia like the renal tubule, P2X receptor stimulation mediates the inhibition of NaCl, Mg2+, and water transport in the thick ascending limb and the distal convoluted tubule, respectively. The underlying signaling pathways that inhibit epithelial absorption are currently not well understood. Epithelial P2X7 receptors show pronounced upregulation during various diseased states highlighting a role of purinergic signaling in epithelial pathophysiology. Importantly, functional effects of epithelial P2X receptors cover numerous other aspects ranging from modulation of sound transmission, activation of apoptosis, or production of oxygen radicals. Eventually, P2X receptors in epithelia are an understudied issue offering numerous novel and very attractive questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonio LS, Stewart AP, Varanda WA, Edwardson JM (2014) Identification of P2X2/P2X4/P2X6 heterotrimeric receptors using atomic force microscopy (AFM) imaging. FEBS Lett 588:2125–2128

    Article  CAS  PubMed  Google Scholar 

  • Belleannee C, Da SN, Shum WW, Brown D, Breton S (2010) Role of purinergic signaling pathways in V-ATPase recruitment to apical membrane of acidifying epididymal clear cells. Am J Physiol Cell Physiol 298:C817–C830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth JW, Tam FW, Unwin RJ (2012) P2 purinoceptors: renal pathophysiology and therapeutic potential. Clin Nephrol 78:154–163

    Article  CAS  PubMed  Google Scholar 

  • Boucher RC (2003) Regulation of airway surface liquid volume by human airway epithelia. Pflügers Arch 445:495–498

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  • Chang M-Y, Lu J-K, Tian Y-C, Chen Y-C, Hung C-C, Huang Y-H, Chen Y-H, Wu M-S, Yang C-W, Cheng Y-C (2014) Inhibition of the P2X7 receptor reduces cystogenesis in PKD. J Am Soc Nephrol 22:1696–1706

    Article  Google Scholar 

  • Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, He Y (2013) ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 45:932–943

    Article  CAS  PubMed  Google Scholar 

  • Dai LJ, Kang HS, Kerstan D, Ritchie G, Quamme GA (2001) ATP inhibits Mg2+ uptake in mouse distal convoluted tubule cells via P2X purinoceptors. Am J Physiol 281:F833–F840

    CAS  Google Scholar 

  • de Baaij JH, Blanchard MG, Lavrijsen M, Leipziger J, Bindels RJ, Hoenderop JG (2014) P2X4 receptor regulation of transient receptor potential melastatin type 6 (TRPM6) Mg channels. Pflugers Arch 466:1942–1952

    Article  Google Scholar 

  • Desfleurs E, Wittner M, Simeone S, Pajaud S, Moine G, Rajerison R, Di SA (1998) Calcium-sensing receptor: regulation of electrolyte transport in the thick ascending limb of Henle’s loop. Kidney Blood Press Res 21:401–412

    Article  CAS  PubMed  Google Scholar 

  • Ebeling G, Blasche R, Hofmann F, Augstein A, Kasper M, Barth K (2014) Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells. PLoS ONE 9, e100282

    Article  PubMed  PubMed Central  Google Scholar 

  • Filipovic DM, Adebanjo OA, Zaidi M, Reeves WB (1998) Functional and molecular evidence for P2X receptors in LLC-PK1 cells. Am J Physiol 274:F1070–F1077

    CAS  PubMed  Google Scholar 

  • Goncalves RG, Gabrich L, Rosario A Jr, Takiya CM, Ferreira ML, Chiarini LB, Persechini PM, Coutinho-Silva R, Leite M Jr (2006) The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int 70:1599–1606

    Article  CAS  PubMed  Google Scholar 

  • Gorodeski GI (2002) Expression, regulation, and function of P2X(4) purinergic receptor in human cervical epithelial cells. Am J Physiol Cell Physiol 282:C84–C93

    CAS  PubMed  Google Scholar 

  • Guha S, Baltazar GC, Coffey EE, Tu LA, Lim JC, Beckel JM, Patel S, Eysteinsson T, Lu W, O’Brien-Jenkins A, Laties AM, Mitchell CH (2013) Lysosomal alkalinization, lipid oxidation, and reduced phagosome clearance triggered by activation of the P2X7 receptor. FASEB J 27:4500–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Mishra A, Weng T, Chintagari NR, Wang Y, Zhao C, Huang C, Liu L (2014) Wnt3a mitigates acute lung injury by reducing P2X7 receptor-mediated alveolar epithelial type I cell death. Cell Death Dis 5, e1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hede SE, Amstrup J, Christoffersen BC, Novak I (1999) Purinoceptors evoke different electrophysiological responses in pancreatic ducts. P2Y inhibits K+ conductance, and P2X stimulates cation conductance. J Biol Chem 274:31784–31791

    Article  CAS  PubMed  Google Scholar 

  • Henriksen KL, Novak I (2003) Effect of ATP on intracellular pH in pancreatic ducts involves P2X7 receptors. Cell Physiol Biochem 13:93–102

    Article  CAS  PubMed  Google Scholar 

  • Hillman KA, Woolf AS, Johnson TM, Wade A, Unwin RJ, Winyard PJ (2004) The P2X7 ATP receptor modulates renal cyst development in vitro. Biochem Biophys Res Commun 322:434–439

    Article  CAS  PubMed  Google Scholar 

  • Hung SC, Choi CH, Said-Sadier N, Johnson L, Atanasova KR, Sellami H, Yilmaz O, Ojcius DM (2013) P2X4 assembles with P2X7 and pannexin-1 in gingival epithelial cells and modulates ATP-induced reactive oxygen species production and inflammasome activation. PLoS ONE 8, e70210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilatovskaya DV, Palygin O, Levchenko V, Staruschenko A (2013) characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am J Physiol Cell Physiol 305:C1050–C1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowski M, Szamocka E, Kowalski R, Angielski S, Szczepanska-Konkel M (2011) The effects of P2X receptor agonists on renal sodium and water excretion in anaesthetized rats. Acta Physiol (Oxf) 202:193–201

    Article  CAS  Google Scholar 

  • Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J (2007) Flow-induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron. J Am Soc Nephrol 18:2062–2070

    Article  CAS  PubMed  Google Scholar 

  • Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Turner CM, Hewitt R, Smith J, Bhangal G, Pusey CD, Unwin RJ, Tam FW (2014) Exaggerated renal fibrosis in P2X4 receptor-deficient mice following unilateral ureteric obstruction. Nephrol Dial Transplant 29:1350–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King M, Housley GD, Raybould NP, Greenwood D, Salih SG (1998) Expression of ATP-gated ion channels by Reissner’s membrane epithelial cells. Neuroreport 9:2467–2474

    Article  CAS  PubMed  Google Scholar 

  • Korngreen A, Priel Z (1996) Purinergic stimulation of rabbit ciliated airway epithelia: control by multiple calcium sources. J Physiol 497(Pt 1):53–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korngreen A, Ma W, Priel Z, Silberberg SD (1998) Extracellular ATP directly gates a cation-selective channel in rabbit airway ciliated epithelial cells. J Physiol 508(Pt 3):703–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen CK, Leipziger J (2013) P2Y receptors in the gastrointestinal epithelium. WIREs Membr Transp Signal 2:27–36

    Article  CAS  Google Scholar 

  • Lee JH, Chiba T, Marcus DC (2001) P2X2 receptor mediates stimulation of parasensory cation absorption by cochlear outer sulcus cells and vestibular transitional cells. J Neurosci 21:9168–9174

    CAS  PubMed  Google Scholar 

  • Leipziger J (2003) Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 284:F419–F432

    Article  CAS  PubMed  Google Scholar 

  • Leipziger J (2011) Luminal nucleotides are tonic inhibitors of renal tubular transport. Curr Opin Nephrol Hypertens 20:518–522

    Article  CAS  PubMed  Google Scholar 

  • Leipziger J, Kerstan D, Nitschke R, Greger R (1997) ATP increases [Ca2+]i and ion secretion via a basolateral P2Y receptor in rat distal colonic mucosa. Pflügers Arch 434:77–83

    CAS  PubMed  Google Scholar 

  • Luo X, Zheng W, Yan M, Lee MG, Muallem S (1999) Multiple functional P2X and P2Y receptors in the luminal and basolateral membranes of pancreatic duct cells. Am J Physiol 277:C205–C215

    CAS  PubMed  Google Scholar 

  • Ma W, Korngreen A, Uzlaner N, Priel Z, Silberberg SD (1999) Extracellular sodium regulates airway ciliary motility by inhibiting a P2X receptor. Nature 400:894–897

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Korngreen A, Weil S, Cohen EB, Priel A, Kuzin L, Silberberg SD (2006) Pore properties and pharmacological features of the P2X receptor channel in airway ciliated cells. J Physiol 571:503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mankus C, Rich C, Minns M, Trinkaus-Randall V (2011) Corneal epithelium expresses a variant of P2X(7) receptor in health and disease. PLoS ONE 6, e28541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques RD, de Bruijn PI, Sorensen MV, Bleich M, Praetorius HA, Leipziger J (2012) Basolateral P2X receptors mediate inhibition of NaCl transport in mouse medullary thick ascending limb (mTAL). Am J Physiol Renal Physiol 302:F487–F494

    Article  CAS  PubMed  Google Scholar 

  • McCoy DE, Taylor AL, Kudlow BA, Karlson K, Slattery MJ, Schwiebert LM, Schwiebert EM, Stanton BA (1999) Nucleotides regulate NaCl transport in mIMCD-K2 cells via P2X and P2Y purinergic receptors. Am J Physiol 277:F552–F559

    CAS  PubMed  Google Scholar 

  • McMillian MK, Soltoff SP, Lechleiter JD, Cantley LC, Talamo BR (1988) Extracellular ATP increases free cytosolic calcium in rat parotid acinar cells. Biochem J 255:291–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miklavc P, Thompson KE, Frick M (2013) A new role for P2X4 receptors as modulators of lung surfactant secretion. Front Cell Neurosci 7:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Chintagari NR, Guo Y, Weng T, Su L, Liu L (2011) Purinergic P2X7 receptor regulates lung surfactant secretion in a paracrine manner. J Cell Sci 124:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murgia M, Hanau S, Pizzo P, Rippa M, Di VF (1993) Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 268:8199–8203

    CAS  PubMed  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  PubMed  Google Scholar 

  • Novak I, Nitschke R, Amstrup J (2002) Purinergic receptors have different effects in rat exocrine pancreas. Calcium signals monitored by fura-2 using confocal microscopy. Cell Physiol Biochem 12:83–92

    Article  CAS  PubMed  Google Scholar 

  • Ortiz PA, Garvin JL (2002) Role of nitric oxide in the regulation of nephron transport. Am J Physiol Renal Physiol 282:F777–F784

    Article  CAS  PubMed  Google Scholar 

  • Palomino-Doza J, Rahman TJ, Avery PJ, Mayosi BM, Farrall M, Watkins H, Edwards CR, Keavney B (2008) Ambulatory blood pressure is associated with polymorphic variation in P2X receptor genes. Hypertension 52:980–985

    Article  CAS  PubMed  Google Scholar 

  • Pettengill MA, Marques-da-Silva C, Avila ML, d’Arc dos Santos OS, Lam VW, Ollawa I, Abdul Sater AA, Coutinho-Silva R, Hacker G, Ojcius DM (2012) Reversible inhibition of Chlamydia trachomatis infection in epithelial cells due to stimulation of P2X(4) receptors. Infect Immun 80:4232–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E, Vallon V, Stockand JD (2008) Paracrine regulation of the epithelial Na + channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J Biol Chem 283:36599–36607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praetorius HA, Leipziger J (2010) Intrarenal purinergic signaling in the control of renal tubular transport. Annu Rev Physiol 72:377–393

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Gallacher DV (1990) Extracellular ATP activates receptor-operated cation channels in mouse lacrimal acinar cells to promote calcium influx in the absence of phoshoinositide metabolism. FEBS Lett 264:130–134

    Article  CAS  PubMed  Google Scholar 

  • Schlingmann KP, Weber S, Peters M, Niemann NL, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Article  CAS  PubMed  Google Scholar 

  • Silberberg SD, Swartz KJ (2009) Structural biology: trimeric ion-channel design. Nature 460:580–581

    Article  CAS  PubMed  Google Scholar 

  • Silva G, Beierwaltes WH, Garvin JL (2006) Extracellular ATP stimulates NO production in rat thick ascending limb. Hypertension 47:563–567

    Article  CAS  PubMed  Google Scholar 

  • Souza CO, Santoro GF, Figliuolo VR, Nanini HF, de Souza HS, Castelo-Branco MT, Abalo AA, Paiva MM, Coutinho CM, Coutinho-Silva R (2012) Extracellular ATP induces cell death in human intestinal epithelial cells. Biochim Biophys Acta 1820:1867–1878

    Article  CAS  PubMed  Google Scholar 

  • Taylor AL, Schwiebert LM, Smith JJ, King C, Jones JR, Sorscher EJ, Schwiebert EM (1999) Epithelial P2X purinergic receptor channel expression and function. J Clin Invest 104:875–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner CM, Vonend O, Chan C, Burnstock G, Unwin RJ (2003) The pattern of distribution of selected ATP-sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study. Cells Tissues Organs 175:105–117

    Article  CAS  PubMed  Google Scholar 

  • Vallon V (2008) P2 receptors in the regulation of renal transport mechanisms. Am J Physiol Renal Physiol 294:F10–F27

    Article  CAS  PubMed  Google Scholar 

  • Vonend O, Turner CM, Chan CM, Loesch A, Dell’Anna GC, Srai KS, Burnstock G, Unwin RJ (2004) Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int 66:157–166

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang L, Feng YH, Li X, Zeng R, Gorodeski GI (2004) P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am J Physiol Cell Physiol 287:C1349–C1358

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Ohta M, Soma M, Aoi N, Ozawa Y, Ma Y (2010) The purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) gene associated with essential hypertension in Japanese men. J Hum Hypertens 24:327–335

    Article  PubMed  Google Scholar 

  • Wildman SS, Marks J, Turner CM, Yew-Booth L, Peppiatt-Wildman CM, King BF, Shirley DG, Wang W, Unwin RJ (2008) Sodium-dependent regulation of renal amiloride-sensitive currents by apical P2 receptors. J Am Soc Nephrol 19:731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods LT, Camden JM, Batek JM, Petris MJ, Erb L, Weisman GA (2012) P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am J Physiol Cell Physiol 303:C790–C801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sanchez D, Gorelik J, Klenerman D, Lab M, Edwards C, Korchev Y (2007) Basolateral P2X4-like receptors regulate the extracellular ATP-stimulated epithelial Na + channel activity in renal epithelia. Am J Physiol Renal Physiol 292:F1734–F1740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author greatly thanks a very lively laboratory team, which is always willing to challenge the current working hypotheses and provides me with endless joy to go to work every day. These wonderful people are currently Helle A. Praetorius, Mads Vaarby Sørensen, Casper K. Larsen, Pauline I.A. de Bruijn, Iben Skov Jensen, Jeppe Olsen, Samuel Svendsen, Marianne Skals, Helle Jakobsen, and Karen Sjødt Sørensen. And I further thank the Danish Medical Research Council and the Lundbeck Foundation for many years of financial support for our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Leipziger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Leipziger, J. (2016). P2X Receptors in Epithelia. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_9

Download citation

Publish with us

Policies and ethics