Skip to main content

Orai Channels

  • Chapter
  • First Online:
  • 1476 Accesses

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

The highly calcium-selective ion channels formed by the Orai proteins represent the principal route for the agonist-induced entry of extracellular calcium necessary for the generation of the calcium signals involved in the initiation and regulation of a multitude of diverse responses in non-excitable cells. In marked contrast to the voltage-gated calcium channels of excitable cells, the molecular components of these channels (the Orai proteins) and their activation and regulation were only identified less than 10 years ago. Consequently, we are just beginning to understand the details of their unique biophysical properties, modes of activation, and functional roles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amcheslavsky A, Safrina O, Cahalan MD (2013) Orai3 TM3 point mutation G158C alters kinetics of 2-APB-induced gating by disulfide bridge formation with TM2 C101. J Gen Physiol 142:405–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bahra P, Mesher J, Li S et al (2004) P2Y2-receptor-mediated activation of a contralateral, lanthanide-sensitive calcium entry pathway in the human airway epithelium. Br J Pharmacol 143:91–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berridge MJ (1990) Calcium oscillations. J Biol Chem 265:9583–9586

    CAS  PubMed  Google Scholar 

  • Bird GS, Hwang SY, Smyth JT et al (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bird GS, Putney JW Jr (2005) Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J Physiol 562:697–706

    Article  CAS  PubMed  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braun A, Varga-Szabo D, Kleinschnitz C et al (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113:2056–2063

    Article  CAS  PubMed  Google Scholar 

  • Broad LM, Cannon TR, Taylor CW (1999) A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol 517:121–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carey MA, Card JW, Voltz JW et al (2007) It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 18:308–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YF, Chiu WT, Chen YT et al (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 108:15225–15230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng KT, Alevizos I, Liu X et al (2012) STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, Sjogren’s syndrome. Proc Natl Acad Sci U S A 109:14544–14549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coakley RD, Sun H, Clunes LA et al (2008) 17beta-Estradiol inhibits Ca2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia. J Clin Invest 118:4025–4035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Criddle DN, McLaughlin E, Murphy JA et al (2007) The pancreas misled: signals to pancreatitis. Pancreatology 7:436–446

    Article  PubMed  Google Scholar 

  • DeHaven WI, Jones BF, Petranka JG et al (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeHaven WI, Smyth JT, Boyles RR et al (2008) Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J Biol Chem 283:19265–19273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demuro A, Penna A, Safrina O et al (2011) Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states. Proc Natl Acad Sci U S A 108:17832–17837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derler I, Schindl R, Fritsch R et al (2012) Gating and permeation of Orai channels. Front Biosci 17:1304–1322

    Article  CAS  Google Scholar 

  • Di Capite JL, Bates GJ, Parekh AB (2011) Mast cell CRAC channel as a novel therapeutic target in allergy. Curr Opin Allergy Clin Immunol 11:33–38

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  CAS  PubMed  Google Scholar 

  • Fierro L, Parekh AB (1999) Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells. J Membr Biol 168:9–17

    Article  CAS  PubMed  Google Scholar 

  • Fiorio Pla A, Munaron L (2001) Calcium influx, arachidonic acid, and control of endothelial cell proliferation. Cell Calcium 30:235–244

    Article  CAS  PubMed  Google Scholar 

  • Flourakis M, Lehen’kyi V, Beck B et al (2010) Orai1 contributes to the establishment of an apoptosis-resistant phenotype in prostate cancer cells. Cell Death Dis 1, e75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerasimenko JV, Gryshchenko O, Ferdek PE et al (2013) Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci U S A 110:13186–13191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Cobos JC, Zhang X, Zhang W et al (2013) Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circ Res 112:1013–1025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC, Raghu P, Moore S et al (2001) Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30:149–159

    Article  CAS  PubMed  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hou X, Pedi L, Diver MM et al (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y, Putney JW Jr (1998) Relationship between intracellular calcium store depletion and calcium release-activated calcium current in a mast cell line (RBL-1). J Biol Chem 273:19554–19559

    Article  CAS  PubMed  Google Scholar 

  • Hulot JS, Fauconnier J, Ramanujam D et al (2011) Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 124:796–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ji W, Xu P, Li Z et al (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci U S A 105:13668–13673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasai H, Li YX, Miyashita Y (1993) Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 74:669–677

    Article  CAS  PubMed  Google Scholar 

  • Ko WH, Chan HC, Wong PY (1996) Anion secretion induced by capacitative Ca2+ entry through apical and basolateral membranes of cultured equine sweat gland epithelium. J Physiol 497:19–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger B, Albrecht E, Lerch MM (2000) The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol 157:43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwan CY, Putney JW Jr (1990) Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem 265:678–684

    CAS  PubMed  Google Scholar 

  • Li YS, Wu P, Zhou XY et al (2008) Formyl-peptide receptor like 1: a potent mediator of the Ca2+ release-activated Ca2+ current ICRAC. Arch Biochem Biophys 478:110–118

    Article  CAS  PubMed  Google Scholar 

  • Liou J, Fivaz M, Inoue T et al (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104:9301–9306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lis A, Peinelt C, Beck A et al (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17:794–800

    Article  CAS  PubMed  Google Scholar 

  • Luik RM, Wang B, Prakriya M et al (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luik RM, Wu MM, Buchanan J et al (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madl J, Weghuber J, Fritsch R et al (2010) Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem 285:41135–41142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manji SS, Parker NJ, Williams RT et al (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481:147–155

    Article  CAS  PubMed  Google Scholar 

  • Martin SC, Shuttleworth TJ (1994) Ca2+ influx drives agonist-activated [Ca2+]i oscillations in an exocrine cell. FEBS Lett 352:32–36

    Article  CAS  PubMed  Google Scholar 

  • Maruyama Y, Ogura T, Mio K et al (2009) Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 284:13676–13685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNally BA, Prakriya M (2012) Permeation, selectivity and gating in store-operated CRAC channels. J Physiol 590:4179–4191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNally BA, Somasundaram A, Jairaman A et al (2013) The C- and N-terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels. J Physiol 591:2833–2850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mignen O, Shuttleworth TJ (2000) IARC, a novel arachidonate-regulated, noncapacitative Ca2+ entry channel. J Biol Chem 275:9114–9119

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2001) Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J Biol Chem 276:35676–35683

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2003) Ca2+ selectivity and fatty acid specificity of the noncapacitative, arachidonate-regulated Ca2+ (ARC) channels. J Biol Chem 278:10174–10181

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2007) STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol 579:703–715

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2008a) Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J Physiol 586:185–195

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2008b) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586:419–425

    Article  CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587:4181–4197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Yule DI et al (2005) Agonist activation of arachidonate-regulated Ca2+-selective (ARC) channels in murine parotid and pancreatic acinar cells. J Physiol 564:791–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan AJ, Jacob R (1996) Ca2+ influx does more than provide releasable Ca2+ to maintain repetitive spiking in human umbilical vein endothelial cells. Biochem J 320:505–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paradiso AM, Mason SJ, Lazarowski ER et al (1995) Membrane-restricted regulation of Ca2+ release and influx in polarized epithelia. Nature 377:643–646

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB, Fleig A, Penner R (1997) The store-operated calcium current I CRAC: nonlinear activation by InsP3 and dissociation from calcium release. Cell 89:973–980

    Article  CAS  PubMed  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parod RJ, Putney JW Jr (1978) The role of calcium in the receptor mediated control of potassium permeability in the rat lacrimal gland. J Physiol 281:371–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peinelt C, Lis A, Beck A et al (2008) 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J Physiol 586:3061–3073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Penna A, Demuro A, Yeromin AV et al (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen OH, Sutton R (2006) Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends Pharmacol Sci 27:113–120

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH, Tepikin AV (2008) Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol 70:273–299

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH, Tepikin AV, Gerasimenko JV et al (2009) Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+ signal generation and pancreatitis. Cell Calcium 45:634–642

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M (2009) The molecular physiology of CRAC channels. Immunol Rev 231:88–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prakriya M, Feske S, Gwack Y et al (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr, Huang Y, Bird GS (1998) Calcium signalling in lacrimal acinar cells. Adv Exp Med Biol 438:123–128

    Article  CAS  PubMed  Google Scholar 

  • Raraty M, Ward J, Erdemli G et al (2000) Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci U S A 97:13126–13131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ribeiro CM, Putney JW (1996) Differential effects of protein kinase C activation on calcium storage and capacitative calcium entry in NIH 3T3 cells. J Biol Chem 271:21522–21528

    Article  CAS  PubMed  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenfeld M, Davis R, FitzSimmons S et al (1997) Gender gap in cystic fibrosis mortality. Am J Epidemiol 145:794–803

    Article  CAS  PubMed  Google Scholar 

  • Schindl R, Bergsmann J, Frischauf I et al (2008) 2-Aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J Biol Chem 283:20261–20267

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ, Feske S (2012) Physiological and pathophysiological functions of SOCE in the immune system. Front Biosci 4:2253–2268

    Article  Google Scholar 

  • Shuttleworth TJ (1990) Fluoroaluminate activation of different components of the calcium signal in an exocrine cell. Biochem J 269:417–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shuttleworth TJ (1996) Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations. J Biol Chem 271:21720–21725

    CAS  PubMed  Google Scholar 

  • Shuttleworth TJ (1999) What drives calcium entry during [Ca2+]i oscillations?–challenging the capacitative model. Cell Calcium 25:237–246

    Article  CAS  PubMed  Google Scholar 

  • Shuttleworth TJ, Mignen O (2003) Calcium entry and the control of calcium oscillations. Biochem Soc Trans 31:916–919

    Article  CAS  PubMed  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1996a) Ca2+ entry modulates oscillation frequency by triggering Ca2+ release. Biochem J 313:815–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1996b) Evidence for a non-capacitative Ca2+ entry during [Ca2+] oscillations. Biochem J 316:819–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1998) Muscarinic receptor activation of arachidonate-mediated Ca2+ entry in HEK293 cells is independent of phospholipase C. J Biol Chem 273:32636–32643

    Article  CAS  PubMed  Google Scholar 

  • Stathopulos PB, Li GY, Plevin MJ et al (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281:35855–35862

    Article  CAS  PubMed  Google Scholar 

  • Thomas AP, Bird GS, Hajnoczky G et al (1996) Spatial and temporal aspects of cellular calcium signaling. FASEB J 10:1505–1517

    CAS  PubMed  Google Scholar 

  • Thompson JL, Mignen O, Shuttleworth TJ (2010) The N-terminal domain of Orai3 determines selectivity for activation of the store-independent ARC channel by arachidonic acid. Channels 4:398–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2011) Orai channel-dependent activation of phospholipase C-δ: a novel mechanism for the effects of calcium entry on calcium oscillations. J Physiol 589:5057–5069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2013a) How many Orai’s does it take to make a CRAC channel? Sci Rep 3:1961

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2013b) Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1. J Physiol 591:3507–3523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thorn P, Lawrie AM, Smith PM et al (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74:661–668

    Article  CAS  PubMed  Google Scholar 

  • Trebak M (2012) STIM/Orai signalling complexes in vascular smooth muscle. J Physiol 590:4201–4208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vig M, Beck A, Billingsley JM et al (2006a) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079

    Article  CAS  PubMed  Google Scholar 

  • Vig M, Peinelt C, Beck A et al (2006b) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Wu MM, Buchanan J, Luik RM et al (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu P, Lu J, Li Z et al (2006) Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem Biophys Res Commun 350:969–976

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Prakriya M (2014) Divergence of Ca2+ selectivity and equilibrium Ca2+ blockade in a Ca2+ release-activated Ca2+ channel. J Gen Physiol 143:325–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita M, Somasundaram A, Prakriya M (2011) Competitive modulation of Ca2+ release-activated Ca2+ channel gating by STIM1 and 2-aminoethyldiphenyl borate. J Biol Chem 286:9429–9442

    Article  CAS  PubMed  Google Scholar 

  • Yang KT, Chen WP, Chang WL et al (2005) Arachidonic acid inhibits capacitative Ca2+ entry and activates non-capacitative Ca2+ entry in cultured astrocytes. Biochem Biophys Res Commun 331:603–613

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15:124–134

    Article  CAS  PubMed  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W et al (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeung-Yam-Wah V, Lee AK, Tse FW et al (2010) Arachidonic acid stimulates extracellular Ca2+ entry in rat pancreatic β cells via activation of the noncapacitative arachidonate-regulated Ca2+ (ARC) channels. Cell Calcium 47:77–83

    Article  CAS  PubMed  Google Scholar 

  • Yoo AS, Cheng I, Chung S et al (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572

    Article  CAS  PubMed  Google Scholar 

  • Yule DI, Gallacher DV (1988) Oscillations of cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine. FEBS Lett 239:358–362

    Article  CAS  PubMed  Google Scholar 

  • Zhang SL, Kozak JA, Jiang W et al (2008) Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3. J Biol Chem 283:17662–17671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH et al (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103:9357–9362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Gonzalez-Cobos JC, Schindl R et al (2013) Mechanisms of STIM1 activation of store-independent leukotriene C4-regulated Ca2+ channels. Mol Cell Biol 33:3715–3723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Zhang W, Gonzalez-Cobos JC et al (2014) Complex role of STIM1 in the activation of store-independent Orai1/3 channels. J Gen Physiol 143:345–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90:6295–6299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (I CRAC ) due to local calcium feedback. J Gen Physiol 105:209–226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The studies reported here from the author’s laboratory were supported by NIH grant GM040557 to TJS. The excellent technical assistance of Ms. Jill Thompson is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor J. Shuttleworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Shuttleworth, T.J. (2016). Orai Channels. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_22

Download citation

Publish with us

Policies and ethics