Skip to main content

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

The renal outer medullary potassium (K) channel, ROMK (aka Kir1.1, encoded by the KCNJ1 gene), is the founding member of the inwardly rectifying potassium channel family. It is primarily expressed in the kidney where it transports potassium into the pro-urine, important for maintaining salt reabsorption in the thick ascending limb, and potassium-homeostasis. Loss-of-function mutations in ROMK cause Bartter syndrome (type 2), a familial salt-losing nephropathy. This review provides a bedside-to-bench understanding of the disease, tracking the clinical phenotype to defects in tubule transport to the mutations in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuna R, Martinez-De-La-Maza L, Ponce-Coria J, Vazquez N, Ortal-Vite P, Pacheco-Alvarez D, Bobadilla NA, Gamba G (2011) Rare mutations in SLC12A1 and SLC12A3 protect against hypertension by reducing the activity of renal salt cotransporters. J Hypertens 29:475–483

    Article  CAS  PubMed  Google Scholar 

  • Bailey MA, Cantone A, Yan Q, Macgregor GG, Leng Q, Amorim JB, Wang T, Hebert SC, Giebisch G, Malnic G (2006) Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int 70:51–59

    Article  CAS  PubMed  Google Scholar 

  • Bartter FC, Pronove P, Gill JR Jr, Maccardle RC (1962) Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis: a new syndrome. Am J Med 33:811–828

    Article  CAS  PubMed  Google Scholar 

  • Bhave G, Chauder BA, Liu W, Dawson ES, Kadakia R, Nguyen TT, Lewis LM, Meiler J, Weaver CD, Satlin LM, Lindsley CW, Denton JS (2011) Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel. Mol Pharmacol 79:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    Article  CAS  PubMed  Google Scholar 

  • Bleich M, Schlatter E, Greger R (1990) The luminal K+ channel of the thick ascending limb of Henle’s loop. Pflugers Arch 415:449–460

    Article  CAS  PubMed  Google Scholar 

  • Bollepalli MK, Fowler PW, Rapedius M, Shang L, Sansom MS, Tucker SJ, Baukrowitz T (2014) State-dependent network connectivity determines gating in a K+ channel. Structure 22:1037–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, Deschenes G, Bensman A, Decramer S, Cochat P, Morin D, Broux F, Caillez M, Guyot C, Novo R, Jeunemaitre X, Vargas-Poussou R (2009) Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome. Nephrol Dial Transplant 24:1455–1464

    Article  CAS  PubMed  Google Scholar 

  • Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Akerstrom G, Wang W, Carling T, Lifton RP (2011) K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331:768–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Li D, Welling PA (2010) Hypertension resistance polymorphisms in ROMK (Kir1.1) alter channel function by different mechanisms. Am J Physiol Renal Physiol 299:F1359–F1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finer G, Shalev H, Birk O, Galron D, Jeck N, Sinai-Treiman L, Landau D (2003) Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr 142:318–323

    Article  CAS  PubMed  Google Scholar 

  • Flagg TP, Tate M, Merot J, Welling PA (1999) A mutation linked with Bartter’s syndrome locks Kir 1.1a (ROMK1) channels in a closed state. J Gen Physiol 114:685–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flagg TP, Yoo D, Sciortino CM, Tate M, Romero MF, Welling PA (2002) Molecular mechanism of a COOH-terminal gating determinant in the ROMK channel revealed by a Bartter’s disease mutation. J Physiol 544:351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia ML, Priest BT, Alonso-Galicia M, Zhou X, Felix JP, Brochu RM, Bailey T, Thomas-Fowlkes B, Liu J, Swensen A, Pai LY, Xiao J, Hernandez M, Hoagland K, Owens K, Tang H, De Jesus RK, Roy S, Kaczorowski GJ, Pasternak A (2014) Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis. J Pharmacol Exp Ther 348:153–164

    Article  PubMed  Google Scholar 

  • Greger R, Schlatter E (1981) Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch 392:92–94

    Article  CAS  PubMed  Google Scholar 

  • Hansen SB, Tao X, Mackinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattersley AT, Ashcroft FM (2005) Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 54:2503–2513

    Article  CAS  PubMed  Google Scholar 

  • Hebert SC (2003) Bartter syndrome. Curr Opin Nephrol Hypertens 12:527–532

    Article  PubMed  Google Scholar 

  • Hebert SC, Andreoli TE (1984) Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. Determinants of the ADH-mediated increases in transepithelial voltage and in net Cl-absorption. J Membr Biol 80:221–233

    Article  CAS  PubMed  Google Scholar 

  • Hebert SC, Friedman PA, Andreoli TE (1984) Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: I. ADH increases transcellular conductance pathways. J Membr Biol 80:201–219

    Article  CAS  PubMed  Google Scholar 

  • Hebert SC, Desir G, Giebisch G, Wang W (2005) Molecular diversity and regulation of renal potassium channels. Physiol Rev 85:319–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heginbotham L, Lu Z, Abramson T, Mackinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66:1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    Article  CAS  PubMed  Google Scholar 

  • Huang CL (2007) Complex roles of PIP2 in the regulation of ion channels and transporters. Am J Physiol Renal Physiol 293:F1761–F1765

    Article  CAS  PubMed  Google Scholar 

  • Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Foo JN, O’roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP (2008) Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40:592–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karolyi L, Konrad M, Köckerling A, Ziegler A, Zimmermann DK, Roth B, Wieg C, Grzeschik K-H, Koch MC, Seyberth HW, Vargas R, Forestier L, Jean G, Deschaux M, Rizzoni GF, Niaudet P, Antignac C, Feldmann D, Lorridon F, Cougoureux E, Laroze F, Alessandri J-L, David L, Saunier P, Deschenes G, Hildebrandt F, Vollmer M, Proesmans W, Brandis M, van den Heuvel LPWJ, Lemmink HH, Nillesen N, Monnens LAH, Knoers NVAM, Guay-Woodford LM, Wright CJ, Madrigal G, Hebert SC (1997) Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. International Collaborative Study Group for Bartter-like Syndromes. Hum Mol Genet 6:17–26

    Article  CAS  Google Scholar 

  • Konrad M, Vollmer M, Lemmink HH, Van Den Heuvel LP, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, Guay-Woodford L, Knoers NV, Seyberth HW, Feldmann D, Hildebrandt F (2000) Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11:1449–1459

    CAS  PubMed  Google Scholar 

  • Liu W, Morimoto T, Woda C, Kleyman TR, Satlin LM (2007) Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. Am J Physiol Renal Physiol 293:F227–F235

    Article  CAS  PubMed  Google Scholar 

  • Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE (2002) Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34:933–944

    Article  CAS  PubMed  Google Scholar 

  • Lorenz JN, Baird NR, Judd LM, Noonan WT, Andringa A, Doetschman T, Manning PA, Liu LH, Miller ML, Shull GE (2002) Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 277:37871–37880

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC (2002) Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J Biol Chem 277:37881–37887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Tang XD, Rogers TB, Welling PA (2007) An Andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J Biol Chem 282:5781–5789

    Article  CAS  PubMed  Google Scholar 

  • Mackinnon R (2004) Nobel Lecture. Potassium channels and the atomic basis of selective ion conduction. Biosci Rep 24:75–100

    Article  CAS  PubMed  Google Scholar 

  • McNicholas CM, Wang W, Ho K, Hebert SC, Giebisch G (1994) Regulation of ROMK1 K+ channel activity involves phosphorylation processes. Proc Natl Acad Sci U S A 91:8077–8081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1996) Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci U S A 93:8083–8088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monette MY, Rinehart J, Lifton RP, Forbush B (2011) Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function. Am J Physiol Renal Physiol 300:F840–F847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutig K, Kahl T, Saritas T, Godes M, Persson P, Bates J, Raffi H, Rampoldi L, Uchida S, Hille C, Dosche C, Kumar S, Castaneda-Bueno M, Gamba G, Bachmann S (2011) Activation of the bumetanide-sensitive Na+, K+,2Cl− cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J Biol Chem 286:30200–30210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanazashvili M, Li H, Palmer LG, Walters DE, Sackin H (2007) Moving the pH gate of the Kir1.1 inward rectifier channel. Channels (Austin) 1:21–28

    Article  Google Scholar 

  • Palmer LG, Frindt G (1999) Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol Renal Physiol 277:F805–F812

    CAS  Google Scholar 

  • Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8:279–287

    Article  CAS  PubMed  Google Scholar 

  • Pegan S, Arrabit C, Slesinger PA, Choe S (2006) Andersen’s syndrome mutation effects on the structure and assembly of the cytoplasmic domains of Kir2.1. Biochemistry 45:8599–8606

    Article  CAS  PubMed  Google Scholar 

  • Peters M, Ermert S, Jeck N, Derst C, Pechmann U, Weber S, Schlingmann KP, Seyberth HW, Waldegger S, Konrad M (2003) Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int 64:923–932

    Article  CAS  PubMed  Google Scholar 

  • Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519

    Article  CAS  PubMed  Google Scholar 

  • Pluznick JL, Wei P, Carmines PK, Sansom SC (2003) Renal fluid and electrolyte handling in BKCa-b1−/− mice. Am J Physiol Renal Physiol 284:F1274–F1279

    Article  CAS  PubMed  Google Scholar 

  • Rapedius M, Haider S, Browne KF, Shang L, Sansom MS, Baukrowitz T, Tucker SJ (2006) Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel. EMBO Rep 7:611–616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rapedius M, Fowler PW, Shang L, Sansom MS, Tucker SJ, Baukrowitz T (2007) H bonding at the helix-bundle crossing controls gating in Kir potassium channels. Neuron 55:602–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, Waldegger S (2011) Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J Biol Chem 286:2224–2235

    Article  CAS  PubMed  Google Scholar 

  • Rieg T, Vallon V, Sausbier M, Sausbier U, Kaissling B, Ruth P, Osswald H (2007) The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney Int 72:566–573

    Article  CAS  PubMed  Google Scholar 

  • Ruknudin A, Schulze DH, Sullivan SK, Lederer WJ, Welling PA (1998) Novel subunit composition in a renal KATP channel. J Biol Chem 273:14165–14171

    Article  CAS  PubMed  Google Scholar 

  • Sackin H, Nanazashvili M, Palmer LG, Krambis M, Walters DE (2005) Structural locus of the pH gate in the Kir1.1 inward rectifier channel. Biophys J 88:2597–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte U, Hahn H, Wiesinger H, Ruppersberg JP, Fakler B (1998) pH-dependent gating of ROMK (Kir1.1) channels involves conformational changes in both N and C termini. J Biol Chem 273:34575–34579

    Article  CAS  PubMed  Google Scholar 

  • Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J (1999) pH gating of ROMK (Kir1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci U S A 96:15298–15303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyberth HW, Schlingmann KP (2011) Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol 26:1789–1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon DB, Karet FE, Hamdan JM, Dipietro A, Sanjad S, Lifton RP (1996) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13:183–188

    Article  CAS  PubMed  Google Scholar 

  • Simon D, Karet F, Rodriguez-Soriano J, Hamdan J, Dipietro A, Sanjad S, Lifton R (1997a) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14:152–156

    Article  Google Scholar 

  • Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997b) Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Li D, Edwards N, Hynes AM, Wood K, Al-Hamed M, Wroe AC, Reaich D, Moochhala SH, Welling PA, Sayer JA (2013) Identification of compound heterozygous KCNJ1 mutations (encoding ROMK) in a kindred with Bartter’s syndrome and a functional analysis of their pathogenicity. Physiol Rep 1, e00160

    Article  PubMed  PubMed Central  Google Scholar 

  • Starremans PG, Van Der Kemp AW, Knoers NV, Van Den Heuvel LP, Bindels RJ (2002) Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome. Pflugers Arch 443:466–472

    Article  CAS  PubMed  Google Scholar 

  • Subramanya AR, Welling PA (2011) Toward an understanding of hypertension resistance. Am J Physiol Renal Physiol 300:F838–F839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Walsh SP, Yan Y, De Jesus RK, Shahripour A, Teumelsan N, Zhu Y, Ha S, Owens KA, Thomas-Fowlkes BS, Felixv JP, Liu J, Kohler M, Priest BT, Bailey T, Brochu R, Alonso-Galicia M, Kaczorowski GJ, Roy S, Yang L, Mills SG, Garcia ML, Pasternak A (2012) Discovery of selective small molecule ROMK inhibitors as potential new mechanism diuretics. ACS Med Chem Lett 3:367–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C (2002) Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 13:2259–2266

    Article  CAS  PubMed  Google Scholar 

  • Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J (2008) Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol 294:F1373–F1380

    Article  CAS  PubMed  Google Scholar 

  • Wang WH (1994) Two types of K+ channel in thick ascending limb of rat kidney. Am J Physiol Renal Physiol 267:F599–F605

    CAS  Google Scholar 

  • Wang WH, Schwab A, Giebisch G (1990) Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. Am J Physiol Renal Physiol 259:F494–F502

    CAS  Google Scholar 

  • Watanabe S, Fukumoto S, Chang H, Takeuchi Y, Hasegawa Y, Okazaki R, Chikatsu N, Fujita T (2002) Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360:692–694

    Article  CAS  PubMed  Google Scholar 

  • Weinstein AM (2010) A mathematical model of rat ascending Henle limb. III. Tubular function. Am J Physiol Renal Physiol 298:F543–F556

    Article  CAS  PubMed  Google Scholar 

  • Welling PA (2013) Regulation of renal potassium secretion: molecular mechanisms. Semin Nephrol 33:215–228

    Article  CAS  PubMed  Google Scholar 

  • Welling PA, Ho K (2009) A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 297:F849–F863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZC, Yang Y, Hebert SC (1996) Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. J Biol Chem 271:9313–9319

    Article  CAS  PubMed  Google Scholar 

  • Zeng WZ, Liou HH, Krishna UM, Falck JR, Huang CL (2002) Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am J Physiol Renal Physiol 282:F826–F834

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Tate SS, Palmer LG (1994) Primary structure and functional properties of an epithelial K channel. Am J Physiol Cell Physiol 266:C809–C824

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Welling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Welling, P.A. (2016). ROMK and Bartter Syndrome Type 2. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_19

Download citation

Publish with us

Policies and ethics