Attosecond Extreme Ultraviolet Supercontinuum

  • Qi Zhang
  • Kun Zhao
  • Zenghu ChangEmail author


Isolated attosecond pulses with supercontinuum spectra can be used to study fast electron dynamics in atomic, molecular and condensed matter systems with unprecedented temporal resolution. In this chapter, we present the most recent advances in generation and characterization of the single attosecond pulses at iFAST, including the work demonstrating the world record of a single 67 as pulse. A continuous spectrum supporting 40 as pulses is observed and an MCP filter which can transmit an ultrabroadband supercontinuum covering the entire extreme ultraviolet and soft X-ray spectral range is demonstrated. In addition, a high resolution Magnetic-Bottle Energy Spectrometer is proposed to accurately characterize both the temporal profile and pulse contrast of isolated 25 as pulses.


Attosecond Pulse Group Delay Dispersion Flight Tube Isolate Attosecond Pulse Polarization Gating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the contributions of Michael Chini for the PROOF algorithm development and Yi Wu and Eric Cunningham for maintaining the laser. The work is funded by the National Science Foundation under grant number 1068604, Army Research Office and the DARPA PULSE program by a grant from AMRDEC.


  1. Altucci, C., Starczewski, T., Mevel, E., Wahlström, C.-G., Carré, B., & L’Huillier, A. (1996). Influence of atomic density in high-order harmonic generation. Journal of the Optical Society of America B, 13(1), 148. doi:10.1364/JOSAB.13.000148.CrossRefADSGoogle Scholar
  2. Ammosov, M. V., Delone, N. B., & Krainov, V. P. (1986). Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Soviet Physics JETP, 64, 1191.Google Scholar
  3. Baker, S., Robinson, J. S., Haworth, C. a, Teng, H., Smith, R. a, Chirila, C. C., … Marangos, J. P. (2006). Probing proton dynamics in molecules on an attosecond time scale. Science (New York, N.Y.), 312(5772), 424–7. doi:10.1126/science.1123904.Google Scholar
  4. Cao, Z., Jin, F., Dong, J., Yang, Z., Zhan, X., Yuan, Z., … Ding, Y. (2013). Soft x-ray low-pass filter with a square-pore microchannel plate. Optics Letters, 38(9), 1509–11.Google Scholar
  5. Cavalieri, A L., Müller, N., Uphues, T., Yakovlev, V. S., Baltuska, A, Horvath, B., … Heinzmann, U. (2007). Attosecond spectroscopy in condensed matter. Nature, 449(7165), 1029–32. doi:10.1038/nature06229.Google Scholar
  6. Chang, Z. (2004). Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau. Phys. Rev. A, 70, 43802.CrossRefADSGoogle Scholar
  7. Chang, Z. (2005). Chirp of the single attosecond pulse generated by a polarization gating. Physical Review A, 71(2), 023813. doi:10.1103/PhysRevA.71.023813.CrossRefADSGoogle Scholar
  8. Chang, Z. (2007). Controlling attosecond pulse generation with a double optical gating. Phys. Rev. A, 76, 051403(R).Google Scholar
  9. Chang, Z., & Corkum, P. (2010). Attosecond photon sources: the first decade and beyond [Invited]. Journal of the Optical Society of America B, 27(11), B9. doi:10.1364/JOSAB.27.0000B9.CrossRefADSGoogle Scholar
  10. Chini, M., Gilbertson, S., Khan, S. D., & Chang, Z. (2010). Characterizing ultrabroadband attosecond lasers. Optics Express, 18(12), 13006–16. doi:10.1364/OE.18.013006.CrossRefADSGoogle Scholar
  11. Chini, M., Mashiko, H., Wang, H., Chen, S., Yun, C., Scott, S., … Chang, Z. (2009a). Delay control in attosecond pump-probe experiments. Opt. Express, 17, 21459.Google Scholar
  12. Chini, M., Wang, H., Khan, S. D., Chen, S., & Chang, Z. (2009b). Retrieval of satellite pulses of single isolated attosecond pulses. Applied Physics Letters, 94(16), 161112. doi:10.1063/1.3125247.Google Scholar
  13. Chini, M., Zhao, K., & Chang, Z. (2014). The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photonics, 8(3), 178–186. doi:10.1038/nphoton.2013.362.CrossRefADSGoogle Scholar
  14. Corkum, P. (1993). Plasma perspective on strong field multiphoton ionization. Physical Review Letters, 71(13), 1994–1997. doi:10.1103/PhysRevLett.71.1994.CrossRefADSGoogle Scholar
  15. Corkum, P. B., Burnett, N. H., & Ivanov, M. Y. (1994). Subfemtosecond pulses. Optics Letters, 19(22), 1870. doi:10.1364/OL.19.001870.CrossRefADSGoogle Scholar
  16. Delong, K. W., Fittinghoff, D. N., Trebino, R., Kohler, B., & Wilson, K. (1994). Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections. Optics Letters, 19(24), 2152–4.CrossRefADSGoogle Scholar
  17. Falcone, R. W., & Bokor, J. (1983). Dichroic beam splitter for extreme-ultraviolet and visible radiation. Optics Letters, 8(1), 21–3.CrossRefADSGoogle Scholar
  18. Feng, X., Gilbertson, S., Mashiko, H., Wang, H., Khan, S. D., Chini, M., … Chang, Z. (2009). Generation of Isolated Attosecond Pulses with 20 to 28 Femtosecond Lasers. Phys. Rev. Lett., 103, 183901.Google Scholar
  19. Ferray, M., L’Huillier, A., Li, X. F., Lompre, L. A., Mainfray, G., & Manus, C. (1988). Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B, 21, 31.CrossRefADSGoogle Scholar
  20. Frassetto, F., Villoresi, P., & Poletto, L. (2008). Beam separator for high-order harmonic radiation in the 3-10 nm spectral region. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25(5), 1104–14.CrossRefADSGoogle Scholar
  21. Gagnon, J., & Yakovlev, V. S. (2009). The robustness of attosecond streaking measurements. Optics Express, 17(20), 17678–93.CrossRefADSGoogle Scholar
  22. Gilbertson, S., Mashiko, H., Li, C., Khan, S. D., Shakya, M. M., Moon, E., & Chang, Z. (2008). A low-loss, robust setup for double optical gating of high harmonic generation. Appl. Phys. Lett., 92, 71109.CrossRefGoogle Scholar
  23. Gilbertson, S., Wu, Y., Khan, S. D., Chini, M., Zhao, K., Feng, X., & Chang, Z. (2010). Isolated attosecond pulse generation using multicycle pulses directly from a laser amplifier. Phys. Rev. A, 81, 43810.CrossRefADSGoogle Scholar
  24. Goulielmakis, E., Schultze, M., Hofstetter, M., Yakovlev, V. S., Gagnon, J., Uiberacker, M., … Kleineberg, U. (2008). Single-Cycle Nonlinear Optics. Science, 320, 1614.Google Scholar
  25. Henke, B. L., Gullikson, E. M., & Davis, J. C. (1993). X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. Atomic Data and Nuclear Data Tables, 54(2), 181–342. doi:10.1006/adnd.1993.1013.CrossRefADSGoogle Scholar
  26. Hentschel, M., Kienberger, R., Spielmann, C., Reider, G. A, Milosevic, N., Brabec, T., … Krausz, F. (2001). Attosecond metrology. Nature, 414(6863), 509–13. doi:10.1038/35107000.Google Scholar
  27. Huillier, A. L., Lewenstein, M., Salieres, P., & Balcou, P. (1993). High-order harmonic-generation cutoff, 48(5), 69–72.Google Scholar
  28. Itatani, J., Quéré, F., Yudin, G. L., Ivanov, M. Y., Krausz, F., & Corkum, P. B. (2002). Attosecond Streak Camera. Phys. Rev. Lett., 88, 173903.CrossRefADSGoogle Scholar
  29. Kennedy, D., & Manson, S. (1972). Photoionization of the Noble Gases: Cross Sections and Angular Distributions. Physical Review A, 5(1), 227–247. doi:10.1103/PhysRevA.5.227.CrossRefADSGoogle Scholar
  30. Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., … Krausz, F. (2004). Atomic transient recorder. Nature, 427, 817.Google Scholar
  31. Ko, D. H., Kim, K. T., & Nam, C. H. (2012). Attosecond-chirp compensation with material dispersion to produce near transform-limited attosecond pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(7), 074015. doi:10.1088/0953-4075/45/7/074015.Google Scholar
  32. Kruit, P., & Read, F. H. (1983). Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier. J. Phys. E, 16, 313.CrossRefADSGoogle Scholar
  33. López-Martens, R., Varjú, K., Johnsson, P., Mauritsson, J., Mairesse, Y., Salières, P., … L’Huillier, A. (2005). Amplitude and Phase Control of Attosecond Light Pulses. Physical Review Letters, 94(3), 033001. doi:10.1103/PhysRevLett.94.033001.Google Scholar
  34. Mairesse, Y., & Quéré, F. (2005). Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A, 71, 011401(R).Google Scholar
  35. Mashiko, H., Gilbertson, S., Li, C., Khan, S. D., Shakya, M. M., Moon, E., & Chang, Z. (2008). Double Optical Gating of High-Order Harmonic Generation with Carrier-Envelope Phase Stabilized Lasers. Physical Review Letters, 100(10), 103906. doi:10.1103/PhysRevLett.100.103906.CrossRefADSGoogle Scholar
  36. McPherson, A., Gibson, G., Jara, H., Johann, U., Luk, T. S., McIntyre, I. A., … Rhodes, C. K. (1987). Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. Journal of the Optical Society of America B, 4(4), 595. doi:10.1364/JOSAB.4.000595.Google Scholar
  37. Paul, P. M., Toma, E. S., Breger, P., Mullot, G., Auge, F., Balcou, P., … Agostini, P. (2001). Observation of a train of attosecond pulses from high harmonic generation. Science (New York, N.Y.), 292(5522), 1689–92. doi:10.1126/science.1059413.Google Scholar
  38. Peatross, J., Chaloupka, J. L., & Meyerhofer, D. D. (1994). High-order harmonic generation with an annular laser beam. Optics Letters, 19(13), 942–4. Retrieved from Scholar
  39. Pfeifer, T., Abel, M. J., Nagel, P. M., Jullien, A., Loh, Z.-H., Justine Bell, M., … Leone, S. R. (2008). Time-resolved spectroscopy of attosecond quantum dynamics. Chemical Physics Letters, 463(1-3), 11–24. doi:10.1016/j.cplett.2008.08.059.Google Scholar
  40. Platonenko, V. T., & Strelkov, V. V. (1999). Single attosecond soft-x-ray pulse generated with a limited laser beam. Journal of the Optical Society of America B, 16(3), 435. doi:10.1364/JOSAB.16.000435.CrossRefADSGoogle Scholar
  41. Popmintchev, T., Chen, M.-C., Popmintchev, D., Arpin, P., Brown, S., Alisauskas, S., … Kapteyn, H. C. (2012). Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science (New York, N.Y.), 336(6086), 1287–91. doi:10.1126/science.1218497.Google Scholar
  42. Porras, M. A., Horvath, Z. L., & Major, B. (2012). On the use of lenses to focus few-cycle pulses with controlled carrier–envelope phase. Applied Physics B, 108(3), 521–531. doi:10.1007/s00340-012-5073-y.CrossRefGoogle Scholar
  43. Sansone, G., Benedetti, E., Calegari, F., Vozzi, C., Avaldi, L., Flammini, R., Nisoli, M. (2006). Isolated single-cycle attosecond pulses. Science (New York, N.Y.), 314(5798), 443–6. doi:10.1126/science.1132838.Google Scholar
  44. Sansone, G., Kelkensberg, F., Pérez-Torres, J. F., Morales, F., Kling, M. F., Siu, W., … Vrakking, M. J. J. (2010). Electron localization following attosecond molecular photoionization. Nature, 465, 763.Google Scholar
  45. Seres, J., Seres, E., Verhoef, A. J., Tempea, G., Streli, C., Wobrauschek, P., … Krausz, F. (2005). Laser technology: source of coherent kiloelectronvolt X-rays. Nature, 433(7026), 596. doi:10.1038/433596a.Google Scholar
  46. Shan, B., & Chang, Z. (2001). Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Physical Review A, 65(1), 011804. doi:10.1103/PhysRevA.65.011804.CrossRefADSGoogle Scholar
  47. Takahashi, E. J., Hasegawa, H., Nabekawa, Y., & Midorikawa, K. (2004). beam splitter for high-order harmonics in the extreme-ultraviolet region, 29(5), 507–509.Google Scholar
  48. Trebino, R., Delong, K. W., Fittinghoff, D. N., Sweetser, J. N., Richman, B. A., Krumbu, M. A., & Kane, D. J. (1997). REVIEW ARTICLE Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, 68(9), 3277–3295.Google Scholar
  49. Tsuboi, T., Xu, E. Y., Bae, Y. K., & Gillen, K. T. (1988). Magnetic bottle electron spectrometer using permanent magnets. Review of Scientific Instruments, 59(8), 1357. doi:10.1063/1.1139722.CrossRefADSGoogle Scholar
  50. Wang, H., Chini, M., Khan, S. D., Chen, S., Gilbertson, S., Feng, X., … Chang, Z. (2009). Practical issues of retrieving isolated attosecond pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 42(13), 134007. doi:10.1088/0953-4075/42/13/134007.Google Scholar
  51. Zhao, K., Zhang, Q., Chini, M., Wu, Y., Wang, X., & Chang, Z. (2012). Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Optics Letters, 37(18), 3891. doi:10.1364/OL.37.003891.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Coherent ChinaBeijingChina
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Institute for the Frontier of Attosecond Science and Technology (iFAST), CREOL and Department of PhysicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations