Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy

  • J. H. Glownia
  • J. Misewich
  • P. P. Sorokin


Through the work of photochemists extending over many decades, there now exists a wealth of information on the various reactions that photoexcited gas phase molecules undergo. Most of this information relates to the product molecules that are formed, either as the direct result of a primary photochemical act, such as photodissociation, or through subsequent secondary reactions, involving collisions with other molecules in the gas. Recently, there has been an extensive effort directed at determining the exact energy distributions of the primary products formed in photodissociation. With the use of nanosecond tunable-laser techniques, such as laser-induced fluorescence (LIF) and coherent anti-Stokes Raman spectroscopy (CARS), scientists have successfully determined the nascent electronic, vibrational, and rotational energy distributions of various diatomic fragments such as CN, OH, NO, and O2 that are directly formed in the photodissociation of many kinds of molecules. The ready availability of high-quality, tunable, nanosecond lasers has made determination of the above-mentioned collisionless energy distributions a relatively straightforward process. The determination of product translational energies has long effectively been handled by angularly resolved time-of-flight (TOF) spectroscopy, or by sub-Doppler resolution spectroscopy, including a recently improved version of the latter, velocity-aligned Doppler spectroscopy (Xu et al., 1986).


Pump Pulse Stimulate Raman Scattering Gain Module Seed Pulse Subpicosecond Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhmanov, S.A., K.N. Drabovich, A.P. Sukhorukov, and A.K. Shchednova (1972) Combined effects of molecular relaxation and medium dispersion in stimulated Raman scattering of ultrashort light pulses. Sov. Phys. JETP 35, 279-286.ADSGoogle Scholar
  2. Alfano, R.R. and S.L. Shapiro (1970a) Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584-587.Google Scholar
  3. Alfano, R.R. and S.L. Shapiro (1970b) Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592-594.Google Scholar
  4. Avouris, Ph., D.S. Bethune, J.R. Lankard, J.A. Ors, and P.P. Sorokin (1981) Time-resolved infrared spectral photography: study of laser-initiated explosions in HN3. J. Chem. Phys. 74, 2304-2312.CrossRefADSGoogle Scholar
  5. Bethune, D.S., J.R. Lankard, P.P. Sorokin, R.M. Plecenik, and Ph. Avouris (1981) Time-resovled infrared study of bimolecular reactions between tert-butyl radicals. J. Chem. Phys. 75, 2231-2236.CrossRefADSGoogle Scholar
  6. Bethune, D.S., A.J. Schell-Sorokin, J.R. Lankard, M.M.T. Loy, and P.P. Sorokin (1983) Time-resolved study of photo-induced reactions of chlorine dioxide. In B.A. Garetz and J.R. Lombardi (eds.), Advances in Laser Spectroscopy, vol. 2, pp. 1-43. Wiley, New York.Google Scholar
  7. Burksbaum, P.A., J. Bokor, R.H. Storz, and J.C. White (1982) Amplification of ultrashort pulses in krypton fluoride at 248 nm. Opt. Lett. 7, 399-401.CrossRefADSGoogle Scholar
  8. Burnham, R. and N. Djeu (1978) Efficient Raman conversion of XeCl-laser radiation in metal vapors. Opt. Lett. 3, 215-217.CrossRefADSGoogle Scholar
  9. Carman, R.L., F. Shimizu, C.S. Wang, and N. Bloembergen (1970) Theory of Stokes pulse shapes in transient stimulated Raman scattering. Phys. Rev. A 2, 60-72.CrossRefADSGoogle Scholar
  10. Carrick, P.G. and P.C. Engelking (1984) The electronic emission spectrum of methylnitrene. J. Chem. Phys. 81, 1661-1665.CrossRefADSGoogle Scholar
  11. Corkum, P.B. and R.S. Taylor (1982) Picosecond amplification and kinetic studies of XeCl. IEEE J. Quantum Electron. QE-18, 1962-1975.CrossRefADSGoogle Scholar
  12. Corkum, P.B., C. Rolland, and T. Srinivasan-Rao (1986a) Supercontinuum generation in gases: a high order nonlinear optics phenomenon. In G.R. Fleming and A.E. Siegman (eds.), Ultrafast Phenomena V, pp. 149-152. Springer-Verlag, New York.Google Scholar
  13. Corkum, P.B., C. Rolland, and T. Srinivasan-Rao (1986b) Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268-2271.Google Scholar
  14. Cotter, D. and W. Zapka (1978) Efficient Raman conversion of XeCl excimer laser radiation in Ba vapour. Opt. Commun. 26, 251-255.CrossRefADSGoogle Scholar
  15. Dantus, M., M.J. Rosker, and A.H. Zewail (1987) Real-time femtosecond probing of “transition states” in chemical reactions. J. Chem. Phys. 87, 2395-2397.CrossRefADSGoogle Scholar
  16. Davidovits, P. and J.A. Bellisio (1969) Ultraviolet absorption cross sections for the thallium halide and silver halide vapors. J. Chem. Phys. 50, 3560-3567.CrossRefADSGoogle Scholar
  17. Demuynck, J., D.J. Fox, Y. Yamaguchi, and H.F. Schaefer III (1980) Triplet methyl nitrene: an indefinitely stable species in the absence of collisions. J. Am. Chem. Soc. 102, 6204-6207.CrossRefGoogle Scholar
  18. Egger, H., T.S. Luk, K. Boyer, D.F. Muller, H. Pummer, T. Srinivasan, and C.K. Rhodes (1982) Picosecond, tunable ArF* excimer laser source. Appl. Phys. Lett. 41, 1032-1034.CrossRefADSGoogle Scholar
  19. Fluegel, B., N. Peyghambarian, G. Olbright, M. Lindberg, S.W. Koch, M. Joffre, D. Hulin, A. Migus, and A. Antonetti (1987) Femtosecond studies of coherent transients in semiconductors. Phys. Rev. Lett. 59, 2588-2591.CrossRefADSGoogle Scholar
  20. Fork, R.L., B.I. Greene, and C.V. Shank (1981) Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 38, 671-672.CrossRefADSGoogle Scholar
  21. Fork, R.L., C.V. Shank, R.T. Yen, and C. Hirlimann (1982) Femtosecond continuum generation. In K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser, and A. Laubereau (eds.), Picosecond Phenomena III, pp. 10-13. Springer-Verlag, New York.CrossRefGoogle Scholar
  22. Fork, R.L., C.V. Shank, C. Hirlimann, R. Yen, and W.J. Tomlinson (1983) Femtosecond white-light continuum pulses. Opt. Lett. 8, 1-3.CrossRefADSGoogle Scholar
  23. Franken, Th., D. Perner, and M.W. Bosnali (1970) UV-absorptionsspektren von methyl- und äthylnitren mittels pulsradiolyse in der gasphase. Z. Naturforsch. A 25, 151-152.CrossRefADSGoogle Scholar
  24. Glownia, J.H., G. Arjavalingam, and P.P. Sorokin (1985) The potential of DABCO for two-photon amplification. J. Chem. Phys. 82, 4086-4101.CrossRefADSGoogle Scholar
  25. Glownia, J.H., J. Misewich, and P.P. Sorokin (1986a) Ultrafast ultraviolet pump-probe apparatus. J. Opt. Soc. Am. B 3, 1573-1579.Google Scholar
  26. Glownia, J.H., G. Arjavalingam, P.P. Sorokin, and J.E. Rothenberg (1986b) Amplification of 350-fsec pulses in XeCl excimer gain modules. Opt. Lett. 11, 79-81.Google Scholar
  27. Glownia, J.H., J. Misewich, and P.P. Sorokin (1986c) New excitation and probe continuum sources for subpicosecond absorption spectroscopy. In G.R. Fleming and A.E. Siegman (eds.), Ultrafast Phenomena V, pp. 153-156. Springer-Verlag, New York.Google Scholar
  28. Glownia, J.H., J. Misewich, and P.P. Sorokin (1986d) Amplification in a XeCl excimer gain module of 200-fsec UV pulses derived from a colliding pulse mode locked (CPM) laser system. Proc. Soc. Photo-Opt. Instrum. Eng. 710, 92-98.Google Scholar
  29. Glownia, J.H., J. Misewich, and P.P. Sorokin (1987a) Subpicosecond time-resolved infrared spectral photography. Opt. Lett. 12, 19-21.Google Scholar
  30. Glownia, J.H., J. Misewich, and P.P. Sorokin (1987b) 160-fsec XeCl excimer amplification system. J. Opt. Soc. Am. B 4, 1061-1065.Google Scholar
  31. Glownia, J.H., J. Misewich, and P.P. Sorokin (1987c) Subpicosecond IR transient absorption spectroscopy: measurement of internal conversion rates in DABCO vapor. Chem. Phys. Lett. 139, 491-495.Google Scholar
  32. Halpern, A.M., J.L. Roebber, and K. Weiss (1968) Electronic structure of cage amines: absorption spectra of triethylenediamine and quinuclidine. J. Chem. Phys. 49, 1348-1357.CrossRefADSGoogle Scholar
  33. Hamada, Y., A.Y. Hirikawa, and M. Tsuboi (1973) The structure of the triethylenediamine molecule in an excited electronic state. J. Mol. Spectrosc. 47, 440-456.CrossRefADSGoogle Scholar
  34. Hartmann, H.-J. and A. Laubereau (1984) Transient infrared spectroscopy on the picosecond time-scale by coherent pulse propagation. J. Chem. Phys. 80,4663-4670.CrossRefADSGoogle Scholar
  35. Li, Q.X., T. Jimbo, P.P. Ho, and R.R. Alfano (1986) Temporal distribution of picosecond super-continuum generated in a liquid measured by a streak camera. Appl. Opt. 25, 1869-1871.CrossRefADSGoogle Scholar
  36. Mack, M.E., R.L. Carman, J. Reintjes, and N. Bloembergen (1970) Transient stimulated rotational and vibrational Raman scattering in gases. Appl. Phys. Lett. 16, 209-211.CrossRefADSGoogle Scholar
  37. Margenau, H. (1939) Van der Waals forces. Rev. Mod. Phys. 11, 1-35.CrossRefADSzbMATHGoogle Scholar
  38. Michielson, S., A.J. Merer, S.A. Rice, F.A. Novak, K.F. Freed, and Y. Hamada (1981) A study of the rotational state dependence of predissociation of a polyatomic molecule: the case of ClO2. J. Chem. Phys. 74, 3089-3101.CrossRefADSGoogle Scholar
  39. Misewich, J., J.H. Glownia, and P.P. Sorokin (1988a) Measurement with subpicosecond resolution of the frequency sweep of an ultrashort supercontinuum. In Conference on Lasers and Electro-Optics Technical Digest Series 1988, vol. 7, pp. 420–421. Optical Society of America. Washington, D.C.Google Scholar
  40. Misewich, J., J.H. Glownia, J.E. Rothenberg, and P.P. Sorokin (1988b) Subpicosecond UV kinetic spectroscopy; Photolysis of thallium halide vapors. Chem. Phys. Lett. 150, 374-379.Google Scholar
  41. Nakatsuka, H., D. Grischkowsky, and A.C. Balant (1981) Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910-913.CrossRefADSGoogle Scholar
  42. Nikolaus, B. and D. Grischkowsky (1983) 90-fsec tunable optical pulses obtained by two-stage pulse compression. Appl. Phys. Lett. 43, 228-230.CrossRefADSGoogle Scholar
  43. Parker, D.H. and Ph. Avouris (1978) Multiphoton ionization spectra of two caged amines. Chem. Phys. Lett. 53, 515-520.CrossRefADSGoogle Scholar
  44. Parker, D.H. and Ph. Avouris (1979) Multiphoton ionization and two-photon fluorescence excitation spectroscopy of triethylenediamine. J. Chem. Phys. 71, 1241-1246.CrossRefADSGoogle Scholar
  45. Schwarzenbach, A.P., T.S. Luk, I.A. McIntyre, V. Johann, A. McPherson, K. Boyer, and C.K. Rhodes (1986) Subpicosecond KrF* excimer-laser source. Opt. Lett. 11, 499-501.CrossRefADSGoogle Scholar
  46. Smith, M.A., J.W. Hager, and S.C. Wallace (1984) Two-color laser photoionization spectroscopy in a collisionless free-jet expansion: spectroscopy and excited-state dynamics of diazabicyclooctane. J. Phys. Chem. 88, 2250-2255.CrossRefGoogle Scholar
  47. Szatmári, S. and F.P. Schäfer (1983) Simple generation of high-power, picosecond, tunable excimer laser pulses. Opt. Commun. 48, 279-283.CrossRefADSGoogle Scholar
  48. Szatmári, S. and F.P. Schäfer (1984a) Generation of intense, tunable ultrashort pulses in the ultraviolet using a single excimer pump laser. In D.H. Auston and K.B. Eisenthal (eds.), Ultrafast Phenomena IV, pp. 56-59. Springer-Verlag, New York.Google Scholar
  49. Szatmári, S. and F.P. Schäfer (1984b) Excimer-laser-pumped psec-dye laser. Appl. Phys. B 33, 95-98.Google Scholar
  50. Szatmári, S., B. Racz, and F.P. Schäfer (1987a) Bandwidth limited amplification of 220 f. pulses in XeCl. Opt. Commun. 62, 271-276.Google Scholar
  51. Szatmári, S., F.P. Schäfer, E. Muller-Horsche, and W. Mukenheim (1987b) Hybrid dye-excimer laser system for the generation of 80 fs, 900 GW pulses at 248 nm. Opt. Commun. 63, 305-309.Google Scholar
  52. Valdmanis, J.A., R.L. Fork, and J.P. Gordon (1985) Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Opt. Lett. 10, 131-133.CrossRefADSGoogle Scholar
  53. van Veen, N.J.A., M.S. deVries, T. Beller, and A.E. deVries (1981) Photofragmentation of thallium halides. Chem. Phys. 55, 371-384.CrossRefADSGoogle Scholar
  54. Xu, Z., B. Koplitz, S. Buelow, D. Bauch, and C. Wittig (1986) High-resolution kinetic energy distributions via Doppler shift measurements. Chem. Phys. Lett. 127, 534-540.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. H. Glownia
    • 1
  • J. Misewich
    • 1
  • P. P. Sorokin
    • 1
  1. 1.IBM Research DivisionThomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations