Generation of Ultrashort and Coherent Supercontinuum Light Pulses in All-Normal Dispersion Fibers

  • Alexander M. HeidtEmail author
  • Alexander Hartung
  • Hartmut Bartelt


Supercontinuum (SC) generation has become a scientific and commercial success story in the past decade driven by specialty optical fiber technology, in particular the invention of the photonic crystal fiber (PCF). From optical frequency metrology to biophotonic imaging—its unique spectral properties have revolutionized dozens of applications, many of which are described in this book. However, especially noise-sensitive or ultrafast photonics applications such as time-resolved spectroscopy or nonlinear pulse compression, which require not only a broad spectral bandwidth but also a coherent ultrashort pulse in the time domain, have struggled to incorporate fiber based SC sources.


Pump Pulse Photonic Crystal Fiber Dispersion Profile Zero Dispersion Wavelength Fiber Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported in part by Fellowships awarded to A.M. Heidt by the German Academic Exchange Service (DAAD) and the EU People Programme (Marie Curie Actions) under grant agreement 300859 (ADMIRATION). A. Hartung and H. Bartelt acknowledge funding by the Thuringian Ministry of Education, Science and Culture under the European EFRE program.


  1. Agrawal, G. (2007) Nonlinear Fiber Optics. Academic Press.Google Scholar
  2. Akhmediev, N. and M. Karlsson (1995) Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602.CrossRefADSGoogle Scholar
  3. Alfano, R. R. and S. L. Shapiro (1970a). Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584.CrossRefADSGoogle Scholar
  4. Alfano, R. R. and S. L. Shapiro (1970b). Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592.CrossRefADSGoogle Scholar
  5. Alfano, R. R. and S. L. Shapiro (1970c). Direct distortion of electronic clouds of rare gas atoms in intense electric fields. Phys. Rev. Lett. 24, 1217.CrossRefADSGoogle Scholar
  6. Anderson, D., M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro (1992) Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Am. B 9, 1358.CrossRefADSGoogle Scholar
  7. Baili, A., R. Cherif, A. M. Heidt, and M. Zghal (2014) Maximizing the band- width of coherent, mid-IR supercontinuum using highly nonlinear aperiodic nanofibers. J. Mod. Opt. 61 , 650.CrossRefADSGoogle Scholar
  8. Birks, T. A., J. C. Knight, and P. S. Russell (1997) Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961.CrossRefADSGoogle Scholar
  9. Brimacombe, R. K., R. S. Taylor, and K. E. Leopold (1989) Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength. J. Appl. Phys. 66, 4035.CrossRefADSGoogle Scholar
  10. Chen, C.-M. and P. L. Kelley (2002) Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis. J. Opt. Soc. Am. B 19, 1961.CrossRefADSGoogle Scholar
  11. Chow, K., Y. Takushima, C. Lin, C. Shu, and A. Bjarklev (2006) Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre. Electron. Lett. 42, 989.CrossRefGoogle Scholar
  12. Coello, Y., V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-h. Tseng, T. Weinacht, and M. Dantus (2008) Interference without an interferometer: a different approach to measuring, compressing, and shaping ultra- short laser pulses. J Opt. Soc. Am. B 25, 140.CrossRefADSGoogle Scholar
  13. Cohen, L. (1989) Time-frequency distributions-a review. Proc. IEEE 77, 941.CrossRefADSGoogle Scholar
  14. Corwin, K. L., N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler (2003) Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett. 90, 113904.CrossRefADSGoogle Scholar
  15. Demmler, S., J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann (2011) Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. Opt. Express 19, 20151.Google Scholar
  16. Domingue, S. R. and R. A. Bartels (2013) Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave- breaking-extended nonlinear fiber supercontinuum generation. Opt. Express 21, 13305.CrossRefADSGoogle Scholar
  17. Dudley, J. M. and S. Coen (2002) Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27, 1180.CrossRefADSGoogle Scholar
  18. Dudley, J. M. and S. Coen (2004) Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. Opt. Express 12, 2423.CrossRefADSGoogle Scholar
  19. Dudley, J. M., G. Genty, and S. Coen (2006) Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135.CrossRefADSGoogle Scholar
  20. Falk, P., M. Frosz, and O. Bang (2005) Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths. Opt. Express 13, 7535.CrossRefADSGoogle Scholar
  21. Feng, X., T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak (2003) Solid microstructured optical fiber. Opt. Express 11, 2225.CrossRefADSGoogle Scholar
  22. Finot, C., B. Kibler, L. Provost, and S. Wabnitz (2008) Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938.CrossRefADSGoogle Scholar
  23. Golovchenko, E. A., E. M. Dianov, A. M. Prokhorov, and V. N. Serkin (1985) Decay of optical solitons. JETP Lett. 42, 74.Google Scholar
  24. Gordon, J. P. (1986) Theory of the soliton self-frequency shift. Opt. Lett. 11, 662.CrossRefADSGoogle Scholar
  25. Gu, X., L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler (2002) Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum. Opt. Lett. 27, 1174.CrossRefADSGoogle Scholar
  26. Hansen, K. (2003) Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Opt. Express 11, 1503.CrossRefADSGoogle Scholar
  27. Hartung, A., A. M. Heidt, and H. Bartelt (2011a) Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Opt. Express 19, 7742.CrossRefADSGoogle Scholar
  28. Hartung, A., A. M. Heidt, and H. Bartelt (2011b) Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers. Opt. Express 19, 12275.CrossRefADSGoogle Scholar
  29. Hartung, A., A. M. Heidt, and H. Bartelt (2012) Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths. Opt. Express 20, 13777.CrossRefADSGoogle Scholar
  30. Heckl, O., C. Baer, C. Kränkel, S. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. Robinson, J. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller (2009) High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. B 97, 369.CrossRefADSGoogle Scholar
  31. Heidt, A. M. (2009) Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers. J. Lightwave Tech. 27, 3984.CrossRefADSGoogle Scholar
  32. Heidt, A. M. (2010) Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J. Opt. Soc. Am. B 27, 550.CrossRefADSGoogle Scholar
  33. Heidt, A. M., A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt (2011a) Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express 19, 3775.CrossRefADSGoogle Scholar
  34. Heidt, A. M., J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann (2011b) High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. Opt. Express 19, 13873.CrossRefADSGoogle Scholar
  35. Herrmann, J., U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. Knight, W. Wadsworth, P. S. J. Russell, and G. Korn (2002) Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic crystal fibers. Phys. Rev. Lett. 88, 173901.CrossRefADSGoogle Scholar
  36. Hilligsøe, K. M., T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen (2004) Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Opt. Express 12, 1045.CrossRefADSGoogle Scholar
  37. Hooper, L. E., P. Mosley, A. C. Muir, F. Yu, B. Mangan, W. Wadsworth, J. Knight, and J. M. Dudley (2011a) Coherent widely tunable source of sub-picosecond pulses using all-normal dispersion fiber supercontinuum. In 7th Workshop on Fibre and Optical Passive Components (WFOPC). IEEE, Piscataway, New Jersey.Google Scholar
  38. Hooper, L. E., P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight (2011b) Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19, 4902.CrossRefADSGoogle Scholar
  39. Hori, T., J. Takayanagi, N. Nishizawa, and T. Goto (2004) Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber. Opt. Express 12, 317.CrossRefADSGoogle Scholar
  40. Hossain, M., Y. Namihira, S. Razzak, M. Islam, J. Liu, S. Kaijage, and Y. Hirako (2012) Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources: Applications to optical coherence tomography systems. Opt. & Laser Technol. 44, 976.CrossRefADSGoogle Scholar
  41. Hult, J. (2008) A fourth-order runge–kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol. 25, 3770.CrossRefADSGoogle Scholar
  42. Humbert, G., W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter (2006) Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Opt. Express 14, 1596.CrossRefADSGoogle Scholar
  43. Jackson, S. D. (2012) Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6, 423.CrossRefADSGoogle Scholar
  44. Kärtner, F. X., ed. (2004) Few-Cycle Laser Pulse Generation and Its Applications. Springer-Verlag, Berlin.Google Scholar
  45. Klimczak, M., B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. M. Heidt, C. Radzewicz, and R. Buczynski, Coherent supercontinuum generation up to 2.3 μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. Opt. Express 22, 18824-18832 (2014).CrossRefADSGoogle Scholar
  46. Knight, J. C. (2003) Photonic crystal fibers. Nature 424, 847.CrossRefADSGoogle Scholar
  47. Knight, J. C. and W. J. Wadsworth (2010) Silica fibres for supercontinuum generation. In Supercontinuum generation in optical fibers, J. M. Dudley and J. R. Taylor, eds. Cambridge University Press, New York.Google Scholar
  48. Koshiba, M. and K. Saitoh (2004) Applicability of classical optical fiber theories to holey fibers. Opt. Lett. 29, 1739.CrossRefADSGoogle Scholar
  49. Krausz, F. and M. Ivanov (2009) Attosecond physics. Rev. Mod. Phys. 81, 163.CrossRefADSGoogle Scholar
  50. Kudlinski, A., A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor (2006) Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt. Express 14, 5715.CrossRefADSGoogle Scholar
  51. Lin, C., V. Nguyen, and W. French (1978) Wideband near-i.r. continuum (0.7-2.1 μm) generated in low-loss optical fibres. Electron. Lett. 14, 822.CrossRefADSGoogle Scholar
  52. Lin, C. and R. H. Stolen (1976) New nanosecond continuum for excited-state spectroscopy. Appl. Phys. Lett. 28, 216.CrossRefADSGoogle Scholar
  53. Liu, Y., M. D. King, H. Tu, Y. Zhao, and S. A. Boppart (2013) Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum. Opt. Express 21, 8269.CrossRefADSGoogle Scholar
  54. Liu, Y., H. Tu, W. A. Benalcazar, E. J. Chaney, and S. A. Boppart (2012a) Multimodal nonlinear microscopy by shaping a fiber supercontinuum from 900 to 1160 nm. IEEE J. Sel. Top. Quantum Electron. 18, 1209.CrossRefGoogle Scholar
  55. Liu, Y., H. Tu, and S. A. Boppart (2012b) Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. Opt. Lett. 37, 2172.CrossRefADSGoogle Scholar
  56. Martynkien, T., D. Pysz, R. Stepien, and R. Buczynski (2014) All-solid microstructured fiber with flat normal chromatic dispersion. Opt. Lett. 39, 2342.CrossRefADSGoogle Scholar
  57. Matsubara, E., K. Yamane, T. Sekikawa, and M. Yamashita (2007) Generation of 2.6 f. optical pulses using induced-phase modulation in a gas-filled hollow fiber. J. Opt. Soc. Am. B 24, 985.CrossRefADSGoogle Scholar
  58. Mitschke, F. M. and L. F. Mollenauer (1986) Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659.CrossRefADSGoogle Scholar
  59. Nakazawa, M., K. Tamura, H. Kubota, and E. Yoshida (1998) Coherence degradation in the process of supercontinuum generation in an optical fiber. Opt. Fiber Technol. 4, 215.CrossRefADSGoogle Scholar
  60. Nishizawa, N., Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto (2004) Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 μm. Opt. Lett. 29, 2846.CrossRefADSGoogle Scholar
  61. Nishizawa, N. and J. Takayanagi (2007) Octave spanning high-quality super-continuum generation in all-fiber system. J. Opt. Soc. Am. B 24, 1786.CrossRefADSGoogle Scholar
  62. Poletti, F., X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D. J. Richardson (2011) All-solid highly nonlinear single mode fibers with a tailored dispersion profile. Opt. Express 19, 66.CrossRefADSGoogle Scholar
  63. Prasad, P. N. (2003) Introduction to Biophotonics. John Wiley & Sons.Google Scholar
  64. Price, J. H., X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson (2012) Supercontinuum generation in non-silica fibers. Opt. Fiber Technol. 18, 327 .CrossRefADSGoogle Scholar
  65. Price, J. H., T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson (2007) Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. IEEE J. Sel. Top. Quantum Electron. 13, 738.CrossRefGoogle Scholar
  66. Rieznik, A. A., A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz (2012) Optimum integration procedures for supercontinuum simulation. IEEE Photonics Journal 4, 552.CrossRefGoogle Scholar
  67. Rothhardt, J., S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann (2012) Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate. Opt. Express 20, 10870.CrossRefADSGoogle Scholar
  68. Saitoh, K. and M. Koshiba (2005) Empirical relations for simple design of photonic crystal fibers. Opt. Express 13, 267.CrossRefADSGoogle Scholar
  69. Schenkel, B., R. Paschotta, and U. Keller (2005) Pulse compression with super- continuum generation in microstructure fibers. J. Opt. Soc. Am. B 22, 687.CrossRefADSGoogle Scholar
  70. Shabahang, S., G. Tao, J. J. Kaufman, and A. F. Abouraddy (2013) Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers. J. Opt. Soc. Am. B 30, 2498.CrossRefADSGoogle Scholar
  71. Shabahang, S., G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy (2014) Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation. J. Opt. Soc. Am. B 31, 450.CrossRefADSGoogle Scholar
  72. Smith, R. G. (1972) Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 2489.CrossRefADSGoogle Scholar
  73. Stark, S. P., A. Podlipensky, N. Y. Joly, and P. S. J. Russell (2010) Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber. J. Opt. Soc. Am. B 27, 592.CrossRefADSGoogle Scholar
  74. Stark, S. P., J. C. Travers, and P. S. J. Russell (2012) Extreme supercontinuum generation to the deep UV. Opt. Lett. 37, 770.CrossRefADSGoogle Scholar
  75. Stepien, R., J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski (2014) Soft glasses for photonic crystal fibers and microstructured optical components. Opt. Eng. 53, 071815.CrossRefADSGoogle Scholar
  76. Stolen, R. H. and C. Lin (1978) Self-phase-modulation in silica optical fibers. Phys. Rev. A 17, 1448.CrossRefADSGoogle Scholar
  77. Tao, G., S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy (2012) Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. Opt. Lett. 37, 2751.CrossRefADSGoogle Scholar
  78. Taylor, A. J., R. B. Gibson, and J. P. Roberts (1988) Two-photon absorption at 248 nm in ultraviolet window materials. Opt. Lett. 13, 814.CrossRefADSGoogle Scholar
  79. Travers, J. (2010) Blue extension of optical fibre supercontinuum generation. J. Opt. 12, 113001.CrossRefADSGoogle Scholar
  80. Travers, J. C., W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell (2011) Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28, 11.CrossRefADSGoogle Scholar
  81. Tse, M.-L. V., P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson (2006) Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles. Opt. Express 14, 4445.CrossRefADSGoogle Scholar
  82. Tu, H. and S. A. Boppart (2013) Coherent fiber supercontinuum for biophotonics. Laser & Photon. Rev. 7, 628.CrossRefGoogle Scholar
  83. Tu, H. and S. A. Boppart (2014) Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. J. Biophoton. 7, 9.CrossRefGoogle Scholar
  84. Tu, H., Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart (2010) Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources. Opt. Express 18, 27872.CrossRefADSGoogle Scholar
  85. Tu, H., Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. Boppart (2012a) Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source. Appl. Phys. B 106, 379.CrossRefADSGoogle Scholar
  86. Tu, H., Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart (2012b) Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser. Opt. Express 20, 1113.CrossRefADSGoogle Scholar
  87. Tu, H., Y. Liu, D. Turchinovich, and S. A. Boppart (2011) Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus. Opt. Lett. 36, 2315.CrossRefADSGoogle Scholar
  88. Zhang, W. Q., S. Afshar, and T. M. Monro (2009) A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. Opt. Express 17, 19311.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexander M. Heidt
    • 1
    Email author
  • Alexander Hartung
    • 2
  • Hartmut Bartelt
    • 2
  1. 1.Institute of Applied PhysicsUniversity of BernBernSwitzerland
  2. 2.Leibniz-Institute of Photonic TechnologyJenaGermany

Personalised recommendations