Advertisement

Fibre Based Supercontinuum

  • J. C. TraversEmail author
  • J. R. Taylor
Chapter

Abstract

As comprehensively described in the earlier chapters of this book, by 1970, Alfano and Shapiro had published three defining papers on supercontinuum generation in bulk materials (Alfano and Shapiro, 1970a,b,c), identifying some of the principal non-linear effects contributing to the observed spectral broadening, as well as recognising the importance of the source in transient absorption measurements, and publishing on the application to picosecond Raman absorption (Alfano and Shapiro, 1970d). By 1970 enormous progress was also being made on the development of low-loss silica glass fibres (Kapron et al., 1970) with the achievement of a loss of ~17 dB/km in a titanium-doped silica fibre by Maurer, Schultz and Keck at Corning Inc. that was driven by the promise of high-capacity broadband optical communications, as predicted by Kao and Hockham (1966), should such “low loss” be attainable. The availability of relatively low loss single mode or few-mode optical fibre was the catalyst for expanding the relatively new field of non-linear optics to lower power regimes. The discovery of the laser (Maiman, 1960) and the techniques of Q-switching (McClung and Helwarth, 1962) and mode locking of solid state lasers (Mocker and Collins, 1965; De Maria et al., 1966), meant that even for pulses of relatively modest energy, power densities greater than a terawatt per square centimetre could be readily achieved at the focal spot of a convex lens, with corresponding field strengths exceeding a megavolt per centimetre. The consequential need to consider higher order terms of the electric field in the description of the pump induced polarisation provided the foundation of non-linear optics and the remarkably simple experimental expedient of simply focusing such pulsed laser outputs into bulk materials provided the early means to generate basic supercontinua.

Keywords

Pump Pulse Modulational Instability Photonic Crystal Fibre Dispersive Wave Single Mode Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdolvand, A., A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St.J. Russell. (2009). “Solitary Pulse Generation by Backward Raman Scattering in H2-Filled Photonic Crystal Fibers.” Physical Review Letters 103 (18): 183902.ADSCrossRefGoogle Scholar
  2. Abdolvand, A., A. M. Walser, M. Ziemienczuk, T. Nguyen, and P. St. J. Russell. (2012). “Generation of a Phase-Locked Raman Frequency Comb in Gas-Filled Hollow-Core Photonic Crystal Fiber.” Optics Letters 37 (21): 4362.ADSCrossRefGoogle Scholar
  3. Abeeluck, A.K. and Headley, C. (2004) Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser. App. Phys. Lett. 85, 4863–4865.ADSCrossRefGoogle Scholar
  4. Abeeluck, A.K., Headley, C. and Jørgensen, C.G. (2004) High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Opt. Lett. 29, 2163–2165.ADSCrossRefGoogle Scholar
  5. Abeeluck, A.K. and Headley, C. (2005) Continuous-wave pumping in the anomalous-and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. Opt. Lett. 30, 61–63.ADSCrossRefGoogle Scholar
  6. Agrawal, G.P. (2012) Nonlinear Fiber Optics 5th edition Academic Press ISBN 9780123970237.Google Scholar
  7. Agrawal, Govind P., and M. J. Potasek. (1986). “Nonlinear Pulse Distortion in Single-Mode Optical Fibers at the Zero-Dispersion Wavelength.” Physical Review A 33 (3): 1765.Google Scholar
  8. Alfano, R.R. and Shapiro, S.L. (1970a) Emission in region 4000 to 7000 Å via 4-photon coupling in glass, Phys. Rev. Lett. 24, 584–587.ADSCrossRefGoogle Scholar
  9. Alfano, R.R. and Shapiro, S.L. (1970b) Observation of self-phase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett. 24, 592–584.ADSCrossRefGoogle Scholar
  10. Alfano, R.R. and Shapiro, S.L. (1970c) Direct distortion of electronic clouds of rare-gas atoms in intense electric fields, Phys. Rev. Lett. 24, 1217–1220.ADSCrossRefGoogle Scholar
  11. Alfano, R.R. and Shapiro, S.L. (1970d) Picosecond spectroscopy using the inverse Raman effect, Chem. Phys. Lett. 8, 631–633.ADSCrossRefGoogle Scholar
  12. Anderson, D., and M. Lisak. (1983). “Nonlinear Asymmetric Self-Phase Modulation and Self-Steepening of Pulses in Long Optical Waveguides.” Physical Review A 27 (3): 1393.ADSCrossRefGoogle Scholar
  13. Avdokhin, A.V., Popov, S.V. and Taylor, J.R. (2003) Continuous-wave, high- power, Raman continuum generation in holey fibers. Opt. Lett. 28, 1353–1355.ADSCrossRefGoogle Scholar
  14. Beaud, P., Hodel, W., Zysset, B. and Weber, H.P. (1987) Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single mode optical fiber. IEEE J. Quantum Elect. QE 23, 1938–1946.Google Scholar
  15. Belli, F., Abdolvand, A., Chang, W., Travers, J.C. and Russell, P.S.J. (2015) Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica 2, 292–300.CrossRefGoogle Scholar
  16. Benabid, F., G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny. (2004). “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen.” Physical Review Letters 93 (12): 123903.ADSCrossRefGoogle Scholar
  17. Benabid, F., J. C. Knight, G. Antonopoulos, and P. St. J. Russell. (2002). “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber.” Science 298 (5592): 399–402.ADSCrossRefGoogle Scholar
  18. Blow, K. J, and D. Wood. (1989). “Theoretical Description of Transient Stimulated Raman Scattering in Optical Fibers.” IEEE Journal of Quantum Electronics 25 (12): 2665–73.ADSCrossRefGoogle Scholar
  19. Birks, T. A., J. C. Knight, and P. St.J. Russell. (1997). “Endlessly Single-Mode Photonic Crystal Fiber.” Optics Letters 22 (13): 961–63.ADSCrossRefGoogle Scholar
  20. Birks, T.A., Wadsworth, W.J. and Russell, P. St.J. (2000) Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417.Google Scholar
  21. Boyer, G., (1999). High-power femtosecond-pulse reshaping near the zero-dispersion wavelength of an optical fiber. Opt. Lett. 24, 945–947.ADSCrossRefGoogle Scholar
  22. Champert, P.A., Couderc, V., Leproux, P., Février, S., Tombelaine, V., Labonté, L., Roy, P. and Froehly, C. (2004) White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Opt. Express 12, 4366–4371.ADSCrossRefGoogle Scholar
  23. Chang, W., A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St.J. Russell. (2011). “Influence of Ionization on Ultrafast Gas-Based Nonlinear Fiber Optics.” Optics Express 19 (21): 21018–27.ADSCrossRefGoogle Scholar
  24. Chen, K.K., Alam, S-ul, Price, J.H.V., Hayes, J.R., Lin, D., Malinowski, A., Codemard, C., Ghosh, D., Pal, M., Bhadra, S.K. and Richardson, D.J. (2010) Picosecond fiber MOPA pumped supercontinuum source with 39 W output power. Opt. Express 18, 5426–5432.ADSCrossRefGoogle Scholar
  25. Chernikov, S.V., Zhu, Y., Taylor, J.R. and Gapontsev, V.P. (1997), “Supercontinuum self-Q switched ytterbium fiber laser”, Opt. Lett. 22, 298–300.ADSCrossRefGoogle Scholar
  26. Coen, S., Chau, A.H.L., Leonhardt, R., Harvey, J.D., Knight, J.C., Wadsworth, W.J. and Russell, P.St.J. (2001) White light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber. Opt. Lett. 26, 1356–1538.ADSCrossRefGoogle Scholar
  27. Coen, S., Chau, A.H.L., Leonhardt, R., Harvey, J.D., Knight, J.C., Wadsworth, W.J. and Russell, P. St.J. (2002) Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. J. Opt. Soc. Am. B 19, 7533764.CrossRefGoogle Scholar
  28. Cohen, L.G. and Lin, C. (1977) Pulse delay measurements in the zero dispersion wavelength region for optical fibers, App. Opt. 16, 3136–3139.ADSCrossRefGoogle Scholar
  29. Cohen, L.G. and Lin, C. (1978) A universal fiber-optic (UFO) measurement system based upon a near-IR fiber Raman laser, IEEE J. Quantum Elect. QE14 855–859.Google Scholar
  30. Collings, B.C., Mitchell, M.I., Brown, L. and Knox, W.H. (2000) A 1021 channel WDM system. IEEE Phot. Tech. Lett. 12, 906–908.ADSCrossRefGoogle Scholar
  31. Conforti, Matteo, Andrea Marini, Truong X. Tran, Daniele Faccio, and Fabio Biancalana. 2013. “Interaction between Optical Fields and Their Conjugates in Nonlinear Media.” Optics Express 21 (25): 31239–52.Google Scholar
  32. Corwin, K. L., N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler. (2003). “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber.” Physical Review Letters 90 (11): 113904.ADSCrossRefGoogle Scholar
  33. Couny, F., Benabid, F. and Light, P.S. (2006) Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt. Lett. 31, 3574–3576.ADSCrossRefGoogle Scholar
  34. Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P. St.J., Roberts, P.J. and Allan, D.C. (1999) Single mode photonic bandgap guidance of light in air. Science 285, 1537–1539.CrossRefGoogle Scholar
  35. Cristiani, I., Tediosi, R., Tartara, L. and Degiorgio, V. (2004), “Dispersive wave generation by solitons in microstructured optical fibers”, Opt. Exp. 12, 124–135.ADSCrossRefGoogle Scholar
  36. Cumberland, B.A., Travers, J.C., Popov, S.V. and Taylor, J.R. (2008a) 29 W High power CW supercontinuum source. Opt. Express 16, 5954–5962.ADSCrossRefGoogle Scholar
  37. Cumberland, B.A., Travers, J.C., Popov, S.V. and Taylor, J.R. (2008b) Toward visible cw-pumped supercontinuua. Opt. Lett. 33, 2122–2124.ADSCrossRefGoogle Scholar
  38. DeMartini, F., C. H. Townes, T. K. Gustafson, and P. L. Kelley. (1967). “Self-Steepening of Light Pulses.” Physical Review 164 (2): 312.ADSCrossRefGoogle Scholar
  39. de Matos, C.J.S., Popov, S.V. and Taylor, J.R. (2004) Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm. App. Phys. Lett. 85, 2706–2707.ADSCrossRefGoogle Scholar
  40. deMatos, C.J.S., Kennedy, R.E., Popov, S.V. and Taylor, J.R. (2005) 20-kW peak power all-fiber 1.57-μm source based on compression in air-core photonic bandgap fiber, its frequency doubling and broadband generation from 430 nm to 1450 nm. Opt. Lett. 30, 436–438.ADSCrossRefGoogle Scholar
  41. De Maria, A.J., Ferrar, C.M. and Danielsonn, G.E. (1966) Mode locking of a Nd3+ doped glass laser. App. Phys. Lett. 8, 22–24.ADSCrossRefGoogle Scholar
  42. Dianov, E.M., Karasik, A.Ya., Mamyshev, P.V., Prokhorov, A.M., Serkin, V.N., Stelmakh, M.F. and Fomichev, A.A. (1985) Stimulated –Raman conversion of multisoliton pulses in quartz optical fibers. JETP Lett. 41, 294–297.ADSGoogle Scholar
  43. Dianov, E. M., Z. S. Nikonova, A. M. Prokhorov, A. A. Podshivalov, and V. N Serkin. (1986). “Optimal Compression of Multi-Soliton Pulses” Sov. Tech. Phys. Lett. (JETP) 12: 311–13.Google Scholar
  44. Dianov, E. M., A. B. Grudinin, D. V. Khaidarov, D. V. Korobkin, A. M. Prokhorov, and V. N. Serkin. (1989). “Nonlinear Dynamics of Femtosecond Pulse Propagation through Single Mode Optical Fiber.” Fiber and Integrated Optics 8 (1): 61–69.CrossRefGoogle Scholar
  45. Domachuk, P., Wolchover, N.A., Cronin-Colomb, M., Wang, A., George, A.K., Cordeiro, C.M.B., Knight, J.C. and Omenetto, F.G. (2008) Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168.ADSCrossRefGoogle Scholar
  46. Drummond, P. D., and J. F. Corney. (2001). “Quantum Noise in Optical Fibers. I. Stochastic Equations.” Journal of the Optical Society of America B 18 (2): 139–52.ADSCrossRefGoogle Scholar
  47. Dudley, John M., and Stéphane Coen. (2002). “Coherence Properties of Supercontinuum Spectra Generated in Photonic Crystal and Tapered Optical Fibers.” Optics Letters 27 (13): 1180–82.Google Scholar
  48. Dudley, J.M., Gu, X., Xu, L., Kimmel, M., Zeek, E., O’Shea, P., Trebino, R., Coen, S. and Windeler, R.S. (2002) Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments. Opt. Express 10, 1215–1221.ADSCrossRefGoogle Scholar
  49. Dudley, J.M., Genty, G. and Coen, S. (2006) Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184.ADSCrossRefGoogle Scholar
  50. Dudley, J.M., Dias, F., Erkintalo, M. and Genty, G. (2014) "Instabilities, breathers and rogue waves in optics," Nat. Photon. 8, 755–764ADSCrossRefGoogle Scholar
  51. Duhant, M., Renard, W., Canat, G., Nguyen, T.N., Smektala, F., Troles, J., Coulombier, Q., Toupin, P., Brilland, L., Bourdon, P. and Renversez, G. (2011) Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm. Opt. Lett. 36, 2859–2861.ADSCrossRefGoogle Scholar
  52. Emaury, Florian, Coralie Fourcade Dutin, Clara J. Saraceno, Mathis Trant, Oliver H. Heckl, Yang Y. Wang, Cinia Schriber, et al. (2013). “Beam Delivery and Pulse Compression to Sub-50 Fs of a Modelocked Thin-Disk Laser in a Gas-Filled Kagome-Type HC-PCF Fiber.” Optics Express 21 (4): 4986–94.Google Scholar
  53. Erkintalo, M., G. Genty, and J.M. Dudley. (2010). “On the Statistical Interpretation of Optical Rogue Waves.” The European Physical Journal - Special Topics 185 (1): 135–44.Google Scholar
  54. Ermolov, A., Mak, K.F., Frosz, M.H., Travers, J.C. and Russell, P.S.J. (2015) Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Phys. Rev. A 92, 033821.Google Scholar
  55. Fedotov, A. B., E. E. Serebryannikov, and A. M. Zheltikov. (2007). “Ionization-Induced Blueshift of High-Peak-Power Guided-Wave Ultrashort Laser Pulses in Hollow-Core Photonic-Crystal Fibers.” Physical Review A 76 (5): 053811.ADSCrossRefGoogle Scholar
  56. Fisher, Robert A., and W. Bischel. (1973). “The Role of Linear Dispersion in Plane-wave Self-phase Modulation.” Applied Physics Letters 23 (12): 661–63.Google Scholar
  57. Fisher, Robert A., and William K. Bischel. (1975). “Numerical Studies of the Interplay between Self-phase Modulation and Dispersion for Intense Plane-wave Laser Pulses.” Journal of Applied Physics 46 (11): 4921–34.Google Scholar
  58. Frosz, Michael H. (2010). “Validation of Input-Noise Model for Simulations of Supercontinuum Generation and Rogue Waves.” Optics Express 18 (14): 14778–87.Google Scholar
  59. Frosz. M.H., Bang, O. and Bjarklev, A. (2006) Soliton collisions and Raman gain regimes in continuous-wave pumped supercontinuum generation. Opt. Express 14, 9391–9407.Google Scholar
  60. Fuji, Y., Kawasaki, B.S., Hill, K.O. and Johnson (1980) Sum-frequency light generation in optical fibres. Opt. Lett. 5, 48–50.Google Scholar
  61. Gabriagues, J.M. (1983) Third-harmonic and three wave sum-frequency light generation in an elliptical-core optical fiber. Opt. Lett. 8, 183–185.ADSCrossRefGoogle Scholar
  62. Gaeta, Alexander L. (2002). “Nonlinear Propagation and Continuum Generation in Microstructured Optical Fibers.” Optics Letters 27 (11): 924–26.Google Scholar
  63. Genty, G., Coen, S. and Dudley, J.M. (2007a) Fiber Supercontinuum Sources. J. Opt. Soc. Am. B 24, 1771–1785.ADSCrossRefGoogle Scholar
  64. Genty, G., C.M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J.M. Dudley. (2010). “Collisions and Turbulence in Optical Rogue Wave Formation.” Physics Letters A 374 (7): 989–96.ADSCrossRefzbMATHGoogle Scholar
  65. Genty, G., P. Kinsler, B. Kibler, and J. M. Dudley. (2007b). “Nonlinear Envelope Equation Modeling of Sub-Cycle Dynamics and Harmonic Generation in Nonlinear Waveguides.” Optics Express 15 (9): 5382–87.ADSCrossRefGoogle Scholar
  66. Genty, G., Lehtonen, M. and Ludvigsen, H. (2004) Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 f. pulses. Opt. Express 12, 4614–4624.ADSCrossRefGoogle Scholar
  67. Gérôme, F., P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth. (2008). “High Power Tunable Femtosecond Soliton Source Using Hollow-Core Photonic Bandgap Fiber, and Its Use for Frequency Doubling.” Optics Express 16 (4): 2381–86.ADSCrossRefGoogle Scholar
  68. Ghosh, S., Bhagwat, A.R., Renshaw, C.K., Goh, S., Gaeta, A.L. and Kirby, B.J. (2006) “Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber”, Phys. Rev. Lett. 97, 023603ADSCrossRefGoogle Scholar
  69. Goda, K. and Jalali, B. (2013) Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7, 102–112.ADSCrossRefGoogle Scholar
  70. Godin, T., Wetzel, B., Sylvestre, T., Larger, L., Kudlinski, A., Mussot, A., Ben Salem, A., Zghal, M., Genty, G., Dias, F. and Dudlety, J.M. (2013) Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Opt. Express. 21, 18452–18460.ADSCrossRefGoogle Scholar
  71. Golovchenko, E.A., Dianov, A.N., Prokhorov, A.M. and Serkin, V.N. (1985) Decay of optical solitons. JETP Lett. 42, 74–77.Google Scholar
  72. Golovchenko, E.A., Dianov, E.M., Pilipetski, A.N., Prokhorov, A.M. and Serkin, V.N. (1987a) Self-effect and maximum contraction of optical femtosecond wave packets in a nonlinear dispersive medium. JETP Lett. 45, 91–95.ADSGoogle Scholar
  73. Golovchenko, E.A., Dianov, E.M., Karasik, A.Ya., Pilipetski, A.N. and Prokhorov, A.M. (1987b) Stimulated Raman self-scattering of laser pulses. Sov. J. Quant. Elect 19, 391–392.ADSCrossRefGoogle Scholar
  74. Golovchenko, E.A., Mamyshev, P.V., Pilipetski, A.N. and Dianov, E.M. (1991) Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single mode fibers. J. Opt. Soc. Am. B 8, 1626–1632.ADSCrossRefGoogle Scholar
  75. González-Herráez, M., Martín-López, S., Corredera, P., Hernanz, M.L. and Horche, P.R. (2003) Supercontinuum generation using a continuous-wave Raman fiber laser. Opt. Commun. 226, 323–328.ADSCrossRefGoogle Scholar
  76. Gorbach, A.V. and Skyrabin, D.V. (2007) Theory of radiation trapping by accelerating solitons in optical fibers. Phys. Rev. A 76, 053803.ADSCrossRefGoogle Scholar
  77. Gordon, J.P. (1986) Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664.ADSCrossRefGoogle Scholar
  78. Gouveia-Neto, A.S., Gomes, A.S.L. and Taylor, J.R. (1987) High-efficiency single-pass solitonlike compression of Raman radiation in an optical fiber around 1.4 μm. Opt. Lett. 12, 1035–1037.ADSCrossRefGoogle Scholar
  79. Gouveia-Neto, A.S., Gomes, A.S.L. and Taylor, J.R. (1988a), Pulses of four optical cycles from an optimized optical fibre/ grating pair/ soliton pulse compressor. J. Mod. Opt., 35, 7–10.ADSCrossRefGoogle Scholar
  80. Gouveia-Neto, A.S. and Taylor J.R. (1989) Soliton evolution from noise bursts, Electron. Lett. 25, 736–737.CrossRefGoogle Scholar
  81. Gouveia-Neto, A.S., Faldon, M.E. and Taylor, J.R. (1988b) Raman amplification of modulational instability and solitary wave formation. Opt. Lett. 13, 1029–1031.ADSCrossRefGoogle Scholar
  82. Gouveia-Neto, A.S., Faldon, M.E. and Taylor, J.R. (1988c) Temporal and spectral evolution of femtosecond solitons in the region of the zero group velocity dispersion of a single mode optical fibre. Opt. Commun. 69, 173–176.ADSCrossRefGoogle Scholar
  83. Gouveia-Neto, A.S., Wigley, P.G.J. and Taylor, J.R. (1989a), Soliton generation through Raman amplification of noise bursts, Opt. Lett. 14, 1122–1124.ADSCrossRefGoogle Scholar
  84. Gouveia-Neto, A.S., Faldon, M.E. and Taylor, J.R. (1989b) Spectral and temporal study of the evolution from modulational instability to solitary wave. Optics Commun. 69, 325–328.ADSCrossRefGoogle Scholar
  85. Grigoryants, E.E., Smirnov, V.I. and Chamorovski, Yu.K. (1982) Generation of wide-band optical continuum in fiber waveguides. Sov. J. Quantum Elect. 12, 841–847.ADSCrossRefGoogle Scholar
  86. Granzow, N., Schmidt, M.A., Chang, W., Wang, L., Coulombier, Q., Troles, J., Toupin, P., Hartl, I., Lee, K.F., Fermann, M.E., Wondraczek, L. and Russell, P. St. J. (2013) Mid-infrared supercontinuum generation in As2S3-silica “nano spike” step index waveguide. Opt. Express 21, 10969–10977.ADSCrossRefGoogle Scholar
  87. B. Gross and J. Manassah, (1992) "Supercontinuum in the anomalous group-velocity dispersion region," J. Opt. Soc. Am. B 9, 1813–1818.ADSCrossRefGoogle Scholar
  88. Grudinin, A.B., Dianov, E.M., Korobkin, D.V., Prokhorov, A.M., Serkin, V.N. and Kaidarov, D.V. (1987) Stimulated-Raman-scattering excitation of 18-fs pulses in 1.6-μm region during pumping of a single mode optical fiber by the beam from a Nd:YAG laser (λ = 1.064 μm). JETP Lett. 45, 260–263.ADSGoogle Scholar
  89. Hagen, C.L., Walewski, J.W. and Sanders, S.T. (2006) Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source. IEEE Phot. Tech. Lett. 18, 91–93.ADSCrossRefGoogle Scholar
  90. Halbout, J-M and Grischkowsky, D. (1985) 12-fs ultrashort optical pulse compression at a high repetition rate, App. Phys. Lett. 45, 1281–128.ADSCrossRefGoogle Scholar
  91. Hardin, R. H., and F. D. Tappert. (1973). “Applications of the Split-Step Fourier Method to the Numerical Solution of Nonlinear and Variable Coefficient Wave Equations.” SIAM Review (Chronicle), SIAM Review, 15 (2): 423.Google Scholar
  92. Hasegawa, A. (1984) Generation of a train of soliton pulses by induced modulational instability in optical fibers, Opt. Lett. 9, 288–290.ADSCrossRefGoogle Scholar
  93. Hasegawa, A. and Brinkman, F. (1980) Tunable coherent IR and FIR sources utilizing modulational instability, IEEE J. Quantum Elect. QE16, 694–699.Google Scholar
  94. Hasegawa, A. and Kodama, Y. (1981), “Signal transmission by optical solitons in monomode fiber”. Proc. IEEE 69, 1145–1150ADSCrossRefGoogle Scholar
  95. Hasegawa, A. and Tappert, F. (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers 1. Anomalous dispersion, App. Phys. Lett. 23, 142–144.ADSCrossRefGoogle Scholar
  96. Heidt, A.M. (2010) Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fiber. J. Opt. Soc. Am. B 27, 50–559.ADSCrossRefGoogle Scholar
  97. Heidt, A.M., Price, J.H.V., Baskiotis, C., Feehan, J.S., Lii, Z., Alam. S.U. and Richardson, D.J. (2013) Mid-infra-red ZBLAN fiber supercontinuum source using picosecond didoe-pumping at 2 μm. Opt. Express 21, 24281–24287.Google Scholar
  98. Herrmann, J., Greibner, U., Zhavoronkov, N., Husakou, A., Nickel, D., Knight, J.C., Wadsworth, W.J., Russell, P.St.J. and Korn, G. (2002) Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett. 88, 173901.ADSCrossRefGoogle Scholar
  99. Hölzer, P., W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell. (2011). “Femtosecond Nonlinear Fiber Optics in the Ionization Regime.” Physical Review Letters 107 (20): 203901.ADSCrossRefGoogle Scholar
  100. Hooper, L.E., Mosley, P.J., Muir, A.C., Wadsworth, W.J. and Knight, J.C. (2010) Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19, 4902–4907.ADSCrossRefGoogle Scholar
  101. Hori, T., Takayanagi, J., Nishizawa, N. and Goto, T. (2004) Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber. Opt. Express 12, 317 – 324.ADSCrossRefGoogle Scholar
  102. Hu, X., Zhang, W., Yang, Z., Wang, Y., Zhao, W., Li, X., Wang, H., Li, C. and Shen, D. (2011) Opt. Lett. 36, 2659–2661.ADSCrossRefGoogle Scholar
  103. Hult, Johan. (2007). “A Fourth-Order Runge?Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers.” Journal of Lightwave Technology 25 (12): 3770–75.Google Scholar
  104. Hundertmark, H., Rammler, S., Wilken, T., Holzwarth, R., Hänsch, T.W. and Russell, P.St.J. (2009) Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse. Opt. Express 17, 1919–1924.ADSCrossRefGoogle Scholar
  105. Husakou, A.V. and Herrmann, J. (2001),”Supercontinuum generation of high order solitons by fission in photonic crystal fibers”, Phys. Rev. Lett. 87, 203901.ADSCrossRefGoogle Scholar
  106. Im, Song-Jin, Anton Husakou, and Joachim Herrmann. (2009). “Guiding Properties and Dispersion Control of Kagome Lattice Hollow-Core Photonic Crystal Fibers.” Optics Express 17 (15): 13050–58.Google Scholar
  107. Ippen, E.P. (1970) Low-power, Quasi-cw Raman oscillator, App. Phys. Lett. 16, 303–305.ADSCrossRefGoogle Scholar
  108. Ippen, E.P. and Stolen, R.H. (1972) Stimulated-Brillouin scattering in optical fibers, App. Phys. Lett. 21, 539–541.ADSCrossRefGoogle Scholar
  109. Ippen E.P., Shank C.V. and Gustafson T.K. (1974), “Self phase modulation of picosecond pulses in optical fibers”, App. Phys. Lett. 24, 190–192ADSCrossRefGoogle Scholar
  110. Islam, M.N., Sucha, G., Bar-Joseph, I., Wegener, M., Gordon, J.P. and Chemla, D.S. (1989) Femtosecond distributed soliton spectrum in fibers. J. Opt. Soc. Am. B 6, 1149–1158.ADSCrossRefGoogle Scholar
  111. Itoh, H, Davis, G.M. and Sudo, S. (1989) Continuous-wave-pumped modulational instability in an optical fiber. Opt. Lett. 14, 1368–1370.ADSCrossRefGoogle Scholar
  112. Jiang, X., Joly, N.Y., Finger, M.A., Wong, G.K.L., Babic, F., Saad, M. and Russell, P. St.J. (2013) Close to three-octave-spanning supercontinuum generated in ZBLAN photonic crystal fiber. Paper JTh5A.6 Post deadline Advanced Solid State Lasers Congress.Google Scholar
  113. Jiang, X., Joly, N.Y., Finger, M.A., Babic, F., Wong, G.K.L., Travers, J.C. and Russell, P.S.J. (2015) Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat Photon 9, 133–139.Google Scholar
  114. Johnson, A.M. and Shank, C.V. (1989) Pulse-compression in single-mode fibers – Picoseconds to Femtoseconds Chapter 10, The Supercontinuum Laser Source, Editor Alfano, R.R., Springer-Verlag, ISBN 0-387-96946-2.Google Scholar
  115. Joly, N. Y., J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell. (2011). “Bright Spatially Coherent Wavelength-Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber.” Physical Review Letters 106 (20): 203901.ADSCrossRefGoogle Scholar
  116. Kao, K.C and Hockham G.A. (1966) Dielectric-fibre surface waveguides for optical frequencies, Proc IEE 113, 1151–1158.Google Scholar
  117. Kapron, F.P., Keck, D.B. and Maurer R.D. (1970) Radiation losses in glass optical waveguides. App. Phys. Lett. 17, 423–425.ADSCrossRefGoogle Scholar
  118. Karasawa, N., S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, Hidemi Shigekawa, and M. Yamashita. (2001). “Comparison between Theory and Experiment of Nonlinear Propagation for a-Few-Cycle and Ultrabroadband Optical Pulses in a Fused-Silica Fiber.” IEEE Journal of Quantum Electronics 37 (3): 398–404.Google Scholar
  119. Kelleher, E.J.R., Travers, J.C., Popov, S.V. and Taylor, J.R. (2012a) Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulational instability. J. Opt. Soc. Am. B 29, 502–512.ADSCrossRefGoogle Scholar
  120. Kelleher, E. J. R., M. Erkintalo, and J. C. Travers. (2012b). “Fission of Solitons in Continuous-Wave Supercontinuum.” Optics Letters 37 (24): 5217–19.ADSCrossRefGoogle Scholar
  121. Kinsler, Paul. (2010). “Optical Pulse Propagation with Minimal Approximations.” Physical Review A 81 (1): 013819.Google Scholar
  122. Knight, J.C. (2003) Photonic Crystal Fibers. Nature 424, 847–851.ADSCrossRefGoogle Scholar
  123. Knight, J.C., Birks, T.A., Russell, P.St.J. and Atkin, D.M. (1996) All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549.ADSCrossRefGoogle Scholar
  124. Knox, W.H., Fork, R.L., Downer, M.C., Stolen, R.H. and Shank, C.V. (1985) Optical pulse compression to 8 f. at a 5-kHz repetition rate, App. Phys. Lett. 46, 1220–1121.CrossRefGoogle Scholar
  125. Kobtsev, S.M. and Smirnov, S.V. (2005) Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. Opt. Express 13, 6912–6918.ADSCrossRefGoogle Scholar
  126. Kodama, Y., and Akira Hasegawa. (1987). “Nonlinear Pulse Propagation in a Monomode Dielectric Guide.” IEEE Journal of Quantum Electronics 23 (5): 510–24.Google Scholar
  127. Kolesik, M., and J. V. Moloney. (2004). “Nonlinear Optical Pulse Propagation Simulation: From Maxwell’s to Unidirectional Equations.” Physical Review E 70 (3): 036604.ADSCrossRefGoogle Scholar
  128. Kubota, H., Tamura, K.R. and Nakazawa, M. (1999) Analysis of coherence-maintained ultrashort optical pulse trains and supercontinuum, generation in the presence of soliton-amplified spontaneous-emission interaction. J. Opt. Soc. Am. B 16, 2223–2232.ADSCrossRefGoogle Scholar
  129. Kudlinski, A., George, A.K., Knight, J.C., Travers, J.C., Rulkov, A.B., Popov, S.V. and Taylor, J.R. (2006) Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt. Express 14, 5715–5722.ADSCrossRefGoogle Scholar
  130. Kudlinski, A. and Mussot, A. (2008) Visible cw-pumped supercontinuum. Opt. Lett. 33, 2407–2409.ADSCrossRefGoogle Scholar
  131. Kudlinski, A., Bouwmans, G., Quiquempois, V., LeRouge, A., Bigot, L., Mélin, G. and Mussot, A. (2009a) Dispersion-engineered photonic crystal fibers for cw-pumped supercontinuum generation. J. Lightwave Tech. 27, 1556–1564.ADSCrossRefGoogle Scholar
  132. Kudlinski, A., Bouwmans, G., Vanvincq, O., Quiquempois, V., LeRouge, A., Bigot, L., Mélin, G. and Mussot, A. (2009b) White-light cw-pumped supercontinuum generation in highly GeO2 -doped-core photonic crystal fibers. Opt. Lett. 34, 3621–3523.ADSCrossRefGoogle Scholar
  133. Kumar, V.V. R.K., George, A.K., Reeves, W.H., Knight, J.C., Russell, P.St.J., Omenetto, F.G. and Taylor, A.J. (2002) Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10, 1520–1525.ADSCrossRefGoogle Scholar
  134. Kumar, V.V. R.K., George, A.K., Knight, J.C., Russell, P.St.J (2003) Tellurite photonic crystal fiber. Opt. Express 11, 2641–2645.ADSCrossRefGoogle Scholar
  135. Labat, D., G. Melin, A. Mussot, A. Fleureau, L. Galkovsky, S. Lempereur, and A. Kudlinski. (2011). “Phosphorus-Doped Photonic Crystal Fibers for High-Power (36 W) Visible CW Supercontinuum.” IEEE Photonics Journal 3 (5): 815–20.CrossRefGoogle Scholar
  136. Laegsgaard, Jesper. (2007). “Mode Profile Dispersion in the Generalised Nonlinear Schrödinger Equation.” Optics Express 15 (24): 16110–23.Google Scholar
  137. Laegsgaard, Jesper. 2012. “Modeling of Nonlinear Propagation in Fiber Tapers.” Journal of the Optical Society of America B 29 (11): 3183–91.Google Scholar
  138. Leon-Saval, S.G., Birks, T.A., Wadsworth, W.J. and Russell, P. St.J. (2004) Supercontinuum generation in submicron fibre waveguides. Opt. Express 12, 2864–2869.ADSCrossRefGoogle Scholar
  139. Lewis, S.A.E., Chernikov, S.V. and Taylor, J.R. (1998) Ultra-broad-bandwidth spectral continuum generation in fibre Raman amplifier. Elect. Lett. 34, 2267–2268.CrossRefGoogle Scholar
  140. Lin, C, and Stolen R.H. (1976) New nanosecond continuum for excited-state spectroscopy, App. Phys. Lett. 28, 216–218.ADSCrossRefGoogle Scholar
  141. Lin, C., Nguyen, V.T. and French, W.G. (1978) Wideband near i.r. continuum (0.7–2.1 mm) generated in low-loss optical fibre, Electron. Lett. 14, 822–823.ADSCrossRefGoogle Scholar
  142. Lou, J.W., Xia, T.J., Boyraz, O., Shi, C.-X., Nowak, G.A. and Islam, M.N. (1997) Broader and flatter supercontinuum spectra in dispersion-tailored fibers, paper TuH6, Technical Digest Optical Fiber Communications, 32–34.Google Scholar
  143. Maiman, T.H. (1960). Stimulated optical radiation in ruby, Nature 187, 493–494.ADSCrossRefGoogle Scholar
  144. Mamyshev, P. V., and S. V. Chernikov. (1990). “Ultrashort-Pulse Propagation in Optical Fibers.” Optics Letters 15 (19): 1076–78.ADSCrossRefGoogle Scholar
  145. Martin-Lopez-S., Carrasco-Sanz, A., Corredera, P., Abrardi, L., Hernanz, M.L. and Gonzalez-Herraez, M. (2006) Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation. Opt. Lett. 31, 3477–3479.Google Scholar
  146. Mak, Ka Fai, John C. Travers, Philipp Hölzer, Nicolas Y. Joly, and Philip St. J. Russell. (2013a). “Tunable Vacuum-UV to Visible Ultrafast Pulse Source Based on Gas-Filled Kagome-PCF.” Optics Express 21 (9): 10942–53.Google Scholar
  147. Mak, K. F., J. C. Travers, N. Y. Joly, A. Abdolvand, and P. St. J. Russell. (2013b). “Two Techniques for Temporal Pulse Compression in Gas-Filled Hollow-Core Kagomé Photonic Crystal Fiber.” Optics Letters 38 (18): 3592–95.ADSCrossRefGoogle Scholar
  148. McClung, F.J. and Helwarth R.W. (1962) Giant optical pulsations from ruby, J. App. Phys. 33, 828–829.ADSCrossRefGoogle Scholar
  149. Mitschke, F.M. and Mollenauer, L.F. (1986) Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661.ADSCrossRefGoogle Scholar
  150. Mitschke, F.M. and Mollenauer, L.F. (1987a) Experimental observation of interaction forces between solitons in optical fibers, Opt. Lett. 12, 355–357.ADSCrossRefGoogle Scholar
  151. Mitschke, F.M. and Mollenauer, L.F. (1987b) Ultrashort pulses from the soliton laser, Opt. Lett. 12, 407–409.ADSCrossRefGoogle Scholar
  152. Mocker, H.W. and Collins, R.J. (1965) Mode competition and self-locking effects in a Q-switched ruby laser. App. Phys. Lett. 7, 270–273.ADSCrossRefGoogle Scholar
  153. Mollenauer, L.F. and Gordon, J.P. (2006) Solitons in Optical Fibers, Elsevier-Academic Press, ISBN 13: 978-0-12-504190-4.Google Scholar
  154. Mollenauer, L.F. and Stolen, R.H. (1984) The soliton laser, Opt. Lett. 9, 13–16.ADSCrossRefGoogle Scholar
  155. Mollenauer, L.F., Stolen, R.H. and Islam, M.N. (1985) Experimental demostration of soliton propagation in long fibers: loss compensated by Raman gain, Opt. Lett. 10, 229–231.ADSCrossRefGoogle Scholar
  156. Mollenauer, L.F., Stolen, R.H. and Gordon, J.P. (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett. 45, 1095–1098.ADSCrossRefGoogle Scholar
  157. Mollenauer, L.F., Stolen, R.H., Gordon, J.P. and Tomlinson, W.J. (1983) Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers, Opt. Lett. 8, 289–291.ADSCrossRefGoogle Scholar
  158. Møller, Uffe, Yi Yu, Christian R. Petersen, Irnis Kubat, David Mechin, Laurent Brilland, Johann Troles, Barry Luther-Davies, and Ole Bang. (2014). “High Average Power Mid-Infrared Supercontinuum Generation in a Suspended Core Chalcogenide Fiber.” In Advanced Photonics, JM5A.54. OSA Technical Digest (online). Optical Society of America.Google Scholar
  159. Monro, T.M., West, Y.D., Hewak, D.W., Broderick, N.C.R. and Richardson, D.J. (2000) Chalcogenide holey fibres. Elect. Lett. 36, 1998–2000.CrossRefGoogle Scholar
  160. Mori, K., Takara, H., Kawanishi, T., Saruwatari, M. and Morioka, T. (1997) Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile. Elect. Lett. 33, 1806–1808.CrossRefGoogle Scholar
  161. Morioka, T., Kawanishi, S., Mori, K. and Saruwatari, M. (1993) More than 100 wavelength channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres. Elect. Lett. 29, 862–863.CrossRefGoogle Scholar
  162. Morioka,T., Kawanishi, S., Mori, K. and Saruwatari, M. (1994) Nearly penalty free <4ps supercontinuum Gbits/s pulse generation over 1535–1560 nm. Elect. Lett. 30, 790–791.Google Scholar
  163. Morioka, T., Takara, H., Kawanishi, S., Kamatani, O., Takiguchi, K., Uchiyama, K., Saruwatari, M., Takahashi, H., Yamada, M., Kanamori, T. and Ono, H. (1996) 1 Tbit/s (100Gbits/s x 10 channel) OTDM/WDM transmission using single supercontinuum WDM source. Elect. Lett. 32, 906–907.CrossRefGoogle Scholar
  164. Mussot, A., Lantz, E., Maillotte, H., Sylvestre, T., Finot, C., and Pitois, S. (2004) Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Opt. Express 12, 2838–2843.ADSCrossRefGoogle Scholar
  165. Mussot, A., Beaugeois, M., Bouazaoui, M. and Sylvestre, T. (2007) Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths. Opt. Express 15, 11553–11563.ADSCrossRefGoogle Scholar
  166. Mussot, A., Kudlinski, A., Kolobov, M., Louvergneaux, E., Douay, M. and Taki, M. (2009) Observation of extreme temporal events in CW-pumped supercontinuum. Opt. Express 17, 17101–17015.CrossRefGoogle Scholar
  167. Mussot, A. and Kudlinki, A. (2009) 19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm. Elect. Lett. 45.Google Scholar
  168. Nakazawa, M. and Tokuda, M. (1983) Continuum spectrum generation in a multimode fiber using two pump beams at 1.3μm wavelength region. Jap. J. App. Phys. 22, L239–241.ADSCrossRefGoogle Scholar
  169. Nicholson, J.W., Yan, M.F., Wisk, P., Fleming, J., DiMarcello, F., Monberg, E. Yablon, A., Jørgensen, C. and Veng, T. (2003) All-fiber, octave-spanning supercontinuum. Opt. Lett. 28, 643–645.ADSCrossRefGoogle Scholar
  170. Nicholson, J.W., Abeluck, A.K., Headley, C., Yan, M.F. and Jørgensen, C.G. (2003b) Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers. App. Phys. B 77, 211–218.ADSCrossRefGoogle Scholar
  171. Nicholson, J.W., Yablon, A.D., Westbrook, P.S., Feder, K.S., and Yan, M.F. (2004a) High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. Opt. Express 12, 3025–3034.ADSCrossRefGoogle Scholar
  172. Nicholson, J.W., Westbrook, P.S., Fedetr, K.S. and Yablon, A.D. (2004b) Supercontinuum generation in ultraviolet-irradiated fibers. Opt. Lett. 29, 2363–2365.ADSCrossRefGoogle Scholar
  173. Nicholson, J.W., Bise, R., Alonzo, J., Stockert, T., Trevor, D.J., Dimarcello, F., Monberg, E., Fini, J.M., Westbrook, P.S., Feder, K. and Grüner-Nielsen, L. (2008), “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber”, Opt. Lett. 33, 28–30ADSCrossRefGoogle Scholar
  174. Nishizawa, N. and Goto, T. (2002a) Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength. Opt. Lett. 27, 152–154.ADSCrossRefGoogle Scholar
  175. Nishizawa, N. and Goto, T. (2002b) Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero dispersion wavelength. Opt. Exp 10, 1151–1159.ADSCrossRefGoogle Scholar
  176. Nold, J., P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St.J. Russell. (2010). “Pressure-Controlled Phase Matching to Third Harmonic in Ar-Filled Hollow-Core Photonic Crystal Fiber.” Optics Letters 35 (17): 2922–24.ADSCrossRefGoogle Scholar
  177. Nowak, G.A., Kim, J. and Islam, M.N. (1999) Stable supercontinuum generation in short lengths of conventional dispersion shifted fiber. App. Opt. 38, 7364–7369.ADSCrossRefGoogle Scholar
  178. Okuno, T., Onishi, M. and Nishimura, M. (1998) Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber. IEEE Phot. Tech. Lett. 10, 72–74.ADSCrossRefGoogle Scholar
  179. Österberg, U. and Margulis W. (1986) Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber. Opt. Lett. 11, 516–518.ADSCrossRefGoogle Scholar
  180. Ouzounov, Dimitre G., Faisal R. Ahmad, Dirk Müller, Natesan Venkataraman, Michael T. Gallagher, Malcolm G. Thomas, John Silcox, Karl W. Koch, and Alexander L. Gaeta. (2003). “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers.” Science 301 (5640): 1702 –1704.Google Scholar
  181. Ouzounov, Dimitre, Christopher Hensley, Alexander Gaeta, Natesan Venkateraman, Michael Gallagher, and Karl Koch. (2005). “Soliton Pulse Compression in Photonic Band-Gap Fibers.” Optics Express 13 (16): 6153–59.Google Scholar
  182. Palfrey, S.L. and Grischkowsky, D. (1984) Generation of 16-fsec frequency-tunable pulses by optical pulse compression. Opt. Lett. 10, 562–564.ADSCrossRefGoogle Scholar
  183. Persephonis, P., Chernikov, S.V. and Taylor, J.R. (1996) Cascaded CW fibre Raman laser source 1.6–1.9 μm. Elect. Lett. 32, 1486–1487.CrossRefGoogle Scholar
  184. Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A. and Bang, O. (2014), “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photon 8, 830–834.ADSCrossRefGoogle Scholar
  185. Poletti, Francesco, and Peter Horak. (2008). “Description of Ultrashort Pulse Propagation in Multimode Optical Fibers.” Journal of the Optical Society of America B 25 (10): 1645–54.Google Scholar
  186. Popov, S.V., Champert, P.A., Solodyankin, M. A. and Taylor, J.R. (2002) Seeded fibre amplifiers and multi-watt average power continuum generation in holety fibres, Paper WKK2, Proceedings OSA Annual Meeting, 117.Google Scholar
  187. Price, J.H.V., Monro, T.M. Ebendorff-Heidepriem, H., Poletti, F., Horak, P., Finazzi, V., Leong, J.Y.Y., Petropoulos, P., Flanagan, J.C., Brambilla, G., Feng, X. and Richardson, D.J. (2007) Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. IEEE J. Sel. Top. Quantum Elect. 13, 738–749.CrossRefGoogle Scholar
  188. Provino, L., Dudley, J.M., Maillotte, H., Grossard, N., Windeler, R.S. and Eggleton, B.J. (2001) Compact broadband continuum source based on microchip laser pumped microstructured fibre. Elect. Lett. 37, 558–559.CrossRefGoogle Scholar
  189. Qin, G., Yan, X., Kito, C., Liao, M., Chaudhari, C., Suzuki, T. and Ohishi, Y. (2009) Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber. Opt. Lett. 34, 2015–2017.ADSCrossRefGoogle Scholar
  190. Qin, G., Yan, X., Kito, C., Liao, M., Chaudhari, C., Suzuki, T. and Ohishi, Y. (2009) Ultrabroad supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. App. Phys. Lett. 95, 161103.Google Scholar
  191. Ranka, J.K., Windeler, R.S. and Stentz, A.J. (2000) Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm. Opt. Lett. 25, 25–27.ADSCrossRefGoogle Scholar
  192. Ruban, V., Y. Kodama, M. Ruderman, J. Dudley, R. Grimshaw, P.V.E. McClintock, M. Onorato, et al. (2010). “Rogue Waves – towards a Unifying Concept?: Discussions and Debates.” The European Physical Journal - Special Topics 185 (1): 5–15.Google Scholar
  193. Rulkov, A.B., Getman, A.G., Vyatkin, M.Y., Popov, S.V., Gapontsev, V.P. and Taylor, J.R. (2004) 525–1800 nm, Watt level all-fibre picosecond source, Paper CDPC7, Conference on Lasers and Electro-Optics, San Francisco.Google Scholar
  194. Rulkov A.B., Popov S.V. and Taylor, J.R., (2004a). “1.5 – 2.0 μm, multi Watt white-light generation in CW format in highly nonlinear fibres”. Paper TuA6 OSA Conference, Advanced Solid State Photonics, Santa Fe, NM, USA.Google Scholar
  195. Rulkov, A.B., Vyatkin, M.Y., Popov, S.V., Taylor, J.R. and Gapontsev, V.P. (2005) High brightness picosecond all-fiber generation in 525-1800 nm range with picosecond Yb pumping. Opt. Express 13, 377–381.Google Scholar
  196. Russell, P.St.J. (2006) Photonic-Crystal Fibers, J. Lightwave Tech. 24, 4729–4749.ADSCrossRefGoogle Scholar
  197. Russell, P. St J., P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers. (2014). “Hollow-Core Photonic Crystal Fibres for Gas-Based Nonlinear Optics.” Nature Photonics 8 (4): 278–86.Google Scholar
  198. Rusu, M., Grudinin, A.B. and Okhotnikov, O.G. (2005) Slicing the supercontinuum radiation generated in photonic crystal fiber using an all-fiber chirped-pulse amplification scheme. Opt. Express 13, 6390–6400.ADSCrossRefGoogle Scholar
  199. Sanghera, J.S., Shaw, L.B. and Aggarwal, I.D. (2009) Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE J. Sel. Top. Quantum Elect. 15, 114–119.CrossRefGoogle Scholar
  200. Satsuma, J. and Yajima, N. (1974) Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Suppl. Prog. Theor. Phys. 55, 284–306.Google Scholar
  201. Schreiber, T., Limpert, J., Zellmer, H., Tünnermann, A. and Hansen, K.P. (2003) High average power supercontinuum generation in photonic crystal fibers. Opt. Commun. 228, 71–78.ADSCrossRefGoogle Scholar
  202. Seefeldt, M., Heuer, A. and Menzel, R. (2003) Compact white-light source with an average output power of 2.4W and 900 nm spectral bandwidth. Opt. Commun. 216, 199–202.ADSCrossRefGoogle Scholar
  203. Serkin,V.N. (1987a) Self compression and decay of femtosecond optical wavepackets in fiber light guides. Sov. Phys. Lebedev Inst. Rep. 6, 49–53.Google Scholar
  204. Serkin, V.N. (1987b) Colored envelope solitons in optical fibers. Sov. Tech. Phys. Lett. 13, 320–321.Google Scholar
  205. Solli, D.R., Ropers, C., Koonath, P. and Jalali, B. (2007) Optical Rogue Waves. Nature 450, 1054–1058.ADSCrossRefGoogle Scholar
  206. Solli, D.R., Ropers, C. and Jalali, B. (2008) Active control of rogue waves for stimulated supercontinuum generation, Phys. Rev. Lett. 101, 233902.ADSCrossRefGoogle Scholar
  207. Sørensen, S. T., U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang. (2012). “Deep-Blue Supercontinnum Sources with Optimum Taper Profiles ? Verification of GAM.” Optics Express 20 (10): 10635–45.Google Scholar
  208. Stark, S. P., T. Steinmetz, R. A. Probst, H. Hundertmark, T. Wilken, T. W. Hänsch, Th. Udem, P. St. J. Russell, and R. Holzwarth. (2011). “14 GHz Visible Supercontinuum Generation: Calibration Sources for Astronomical Spectrographs.” Optics Express 19 (17): 15690–95.ADSCrossRefGoogle Scholar
  209. Stark, Sebastian, John C. Travers, Nicolas Y. Joly, and Philip St. J. Russell. (2012a). “Supercontinuum Sources Based on Photonic Crystal Fiber.” In Fiber Lasers, edited by Oleg G. Okhotnikov, 63–96. Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
  210. Stark, S. P., J. C. Travers, and P. St. J. Russell. (2012b). “Extreme Supercontinuum Generation to the Deep UV.” Optics Letters 37 (5): 770–72.ADSCrossRefGoogle Scholar
  211. Stolen, R.H. (2008) The early years of fiber nonlinear optics, IEEE J. Lightwave Tech. 26, 1021–1031.ADSCrossRefGoogle Scholar
  212. Stolen, R.H. and Ashkin, A. (1973) Optical Kerr effect in glass waveguides, App. Phys. Lett. 22, 294–296.ADSCrossRefGoogle Scholar
  213. Stolen, R.H., Bjorkholm, J.E. and Ashkin, A. (1974) Phase matched three-wave mixing in silica fiber optical waveguides, App. Phys. Lett. 24, 308–310.ADSCrossRefGoogle Scholar
  214. Stolen, R. H., J. P. Gordon, W. J. Tomlinson, and H. A. Haus. (1989). “Raman Response Function of Silica-Core Fibers.” Journal of the Optical Society of America B 6 (6): 1159–66. doi:10.1364/JOSAB.6.001159.ADSCrossRefGoogle Scholar
  215. Stolen, R.H., Ippen, E.P. and Tynes, A.R. (1972) Raman oscillation in glass optical waveguides, App. Phys. Lett. 20, 62–64.ADSCrossRefGoogle Scholar
  216. Stolen, R.H. and Lin, C. (1978) Self phase modulation in silica optical fibers. Phys. Rev A 17, 1448–1453.ADSCrossRefGoogle Scholar
  217. Stolen, R.H., Mollenauer, L.F. and Tomlinson W.J. (1983) Observation of pulse restoration at the soliton period in optical fibers, Opt. Lett. 8, 186–188.ADSCrossRefGoogle Scholar
  218. Stone, J.M. and Knight, J.C. (2008) Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser. Opt. Express 16, 2670–2675.ADSCrossRefGoogle Scholar
  219. Tai, Kuochou, Akira Hasegawa, and Naoaki Bekki. (1988). “Fission of Optical Solitons Induced by Stimulated Raman Effect.” Optics Letters 13 (5): 392–94.Google Scholar
  220. Tai, K., Hasegawa, A. and Tomita, A. (1986a) Observation of modulational instability in optical fibers, Phys. Rev. Lett. 56, 135–138.ADSCrossRefGoogle Scholar
  221. Tai, K. and Tomita, A. (1986) 1100x optical fiber pulse compression using grating pair and soliton effect at 1.319 μm, App. Phys. Lett. 48, 1033–1035.ADSCrossRefGoogle Scholar
  222. Tai, K., Tomita, A., Jewell, J.L. and Hasegawa, A. (1986b) generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability. App. Phys. Lett. 49, 236–238.ADSCrossRefGoogle Scholar
  223. Takara, H., Ohara, T., Mori, K., Sato, K., Yamada, E., Inoue, Y., Shibata, T., Abe, M., Morioka, T. and Sato, K.I. (2000) More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. Elect. Lett. 36, 2089–2090.CrossRefGoogle Scholar
  224. Takayanagi, J., Nishizawa, N., Nagai, H., Yoshida, M. and Goto, T. (2005) Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system. IEEE Phot. Tech. Lett. 17, 37–39.ADSCrossRefGoogle Scholar
  225. Takushima, Y., Futami, F. and Kikuchi, K. (1998) Generation of over 140-nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked-semiconductor laser source. IEEE Phot. Tech. Lett. 10, 1560–1562.ADSCrossRefGoogle Scholar
  226. Tani, F., J. C. Travers, and P. St. J. Russell. (2013). “PHz-Wide Supercontinua of Nondispersing Subcycle Pulses Generated by Extreme Modulational Instability.” Physical Review Letters 111 (3): 033902.ADSCrossRefGoogle Scholar
  227. Tani, Francesco, John C. Travers, and Philip St.J. Russell. (2014). “Multimode Ultrafast Nonlinear Optics in Optical Waveguides: Numerical Modeling and Experiments in Kagomé Photonic-Crystal Fiber.” Journal of the Optical Society of America B 31 (2): 311.Google Scholar
  228. Teipel, J., Türke, D. and Giessen, H. (2005) Compact multi-watt picosecond coherent white light sources using multiple-taper fibers. Opt. Express 13, 1734–1742.ADSCrossRefGoogle Scholar
  229. Tomlinson, W.J., Stolen, R.H. and Shank, C.V. (1984) Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139–149.ADSCrossRefGoogle Scholar
  230. Travers, J. C. 2009. “Blue Solitary Waves from Infrared Continuous Wave Pumping of Optical Fibers.” Optics Express 17 (3): 1502–7.ADSMathSciNetCrossRefGoogle Scholar
  231. Travers, J.C. (2010a) Continuous wave supercontinuum generation Chapter 8 in Supercontinuum generation in Optical Fibers, Eds Dudley, J.M. and Taylor, J.R. Cambridge University Press. ISBN 978-0-521-51480-4.Google Scholar
  232. Travers, J.C. (2010b) High average power supercontinuum sources. Pramana J. Phys. 75, 769–785.ADSCrossRefGoogle Scholar
  233. Travers, J C. (2010c). “Blue Extension of Optical Fibre Supercontinuum Generation.” Journal of Optics 12 (11): 113001.ADSCrossRefGoogle Scholar
  234. Travers, John C., Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell. (2011). “Ultrafast Nonlinear Optics in Gas-Filled Hollow-Core Photonic Crystal Fibers [Invited].” Journal of the Optical Society of America B 28 (12): A11–A26.Google Scholar
  235. Travers, John C., Alexey Ermolov, Federico Belli, Ka Fai Mak, Michael H. Frosz, Francesco Tani, A. Abdolvand, and Philip St.J Russell. (2014). “Efficient Broadband Vacuum-Ultraviolet Generation in Gas-Filled Hollow-Core Photonic Crystal Fibers.” In Frontiers in Optics, FM4C.6. OSA Technical Digest (online). Optical Society of America.Google Scholar
  236. Travers, JC, MH Frosz, and JM Dudley. (2010d). “Nonlinear Fibre Optics Overview.” Chapter 3 in Supercontinuum generation in Optical Fibers, Eds Dudley, J.M. and Taylor, J.R. Cambridge University Press. ISBN 978-0-521-51480-4.Google Scholar
  237. Travers, J.C., Kennedy, R.E., Popov, S.V., Taylor, J.R., Sabert, H. and Mangan, B. (2005a) Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber. Opt. Lett. 30, 1938–1940.ADSCrossRefGoogle Scholar
  238. Travers, J. C., Popov, S.V. and Taylor, J.R. (2005b) Extended blue supercontinuum generation in cascaded holey fibers. Opt. Lett. 30, 3132–3134.ADSCrossRefGoogle Scholar
  239. Travers, J.C., Rulkov, A.B., Cumberland, B.A., Popov, S.V. and Taylor, J.R. (2008) Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. Opt. Express 16, 14435–14447.ADSCrossRefGoogle Scholar
  240. Travers, J C., A B. Rulkov, S V. Popov, J R. Taylor, A Kudlinski, A K. George, and J C. Knight. (2007). “Multi-Watt Supercontinuum Generation from 0.3 to 2.4 Μm in PCF Tapers.” In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, JTuB2. OSA Technical Digest (CD). Optical Society of America.Google Scholar
  241. Travers, J.C. and Taylor, J.R. (2009) Soliton trapping of dispersive waves in tapered optical fibers. Opt. Lett. 34, 115–117.ADSCrossRefGoogle Scholar
  242. Tzoar, N., and M. Jain. (1981). “Self-Phase Modulation in Long-Geometry Optical Waveguides.” Physical Review A 23 (3): 1266.ADSCrossRefGoogle Scholar
  243. Vanholsbeeck, F., Martin-Lopez, S., González-Herráez, M. and Coen, S. (2005) The role of pump coherence in continuous-wave supercontinuum generation. Opt. Express 13, 6615–6625.ADSCrossRefGoogle Scholar
  244. Vysloukh, V.A. (1983) Propagation of pulses in optical fibers in the region of a dispersion minimum. Role of nonlinearity and higher-order dispersion. Sov. J. Quantum.. Elect. 13, 1113–1114.Google Scholar
  245. Vodop’yanov, K.L., Grudinin, A.B., Dianov, E.M., Kulevskii, L.A., Prokhorov, A.M. and Khaidarov, D.V. (1987) Generation of pulses of 100–200 f. duration by stimulated Raman scattering in a single-mode fiber waveguide at wavelengths 1.5–1.7 μm. Sov. J. Quantum Elect. 17, 1311–1313.Google Scholar
  246. Vysloukh, V.A. and Serkin, V.N. (1983) Generation of high-energy solitons of stimulated Raman radiation in fiber light guides, JETP Lett. 38, 199–202.ADSGoogle Scholar
  247. Vysloukh, V.A. and Serkin, V.N. (1984) Nonlinear transformation of solitons in fiber lightguides, Bull. Acad. Sci. USSR Phys. Ser. 48, 125–129.Google Scholar
  248. Wai, P. K. A., C. R. Menyuk, Y. C. Lee, and H. H. Chen. (1986a). “Nonlinear Pulse Propagation in the Neighborhood of the Zero-Dispersion Wavelength of Monomode Optical Fibers.” Optics Letters 11 (7): 464–66.ADSCrossRefGoogle Scholar
  249. Wetzel, B., Stefani, A., Larger, L., Lacourt, P.A., Merolla, J.M. Sylvestre, T., Kudlinski, A., Mussot, A., Genty, G., Dias, F. and Dudley, J.M. (2012) Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Scientific Reps. 2, 882, 1–7.Google Scholar
  250. Wadsworth, W.J., Knight, J.C., Ortigosa-Blanch, A., Arriaga,J., Silvestre, E. and Russell, P.St.J. (2000) Soliton effects in photonic crystal fibres at 850 nm. Elect. Lett. 36, 53–55.Google Scholar
  251. Wai, P.K.A., Menyuk, C.R., Lee, C. and Chen, H.H. (1986b) Nonlinear pulse propagation in the neighbourhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 11, 464–466.ADSCrossRefGoogle Scholar
  252. Wai, P.K.A., Menyuk, C.R., Lee, C. and Chen, H.H. (1987) Soliton at the zero-group-velocity-dispersion wavelength of a single mode fiber. Opt.Lett. 12, 628–630.Google Scholar
  253. Washio, K., Inoue, K. and Tanigawa, T. (1980) Efficient generation of near-i.r. stimulated light scattering in optical fibres pumped in low-dispersion region at 1.3μm, Electron. Lett. 16, 331–333.ADSCrossRefGoogle Scholar
  254. Westbrook, P.S., Nicholson, J.W., Feder, K.S. and Yablon, A.D. (2005) Improved supercontinuum generation through UV processing of highly nonlinear fibers. J. Lightwave Tech. 23, 13–18.ADSCrossRefGoogle Scholar
  255. Xia, C., Kumar, M., Cheng, M.Y., Hegde, R.S., Islam, M.N., Galvanauskas, A., Winful, H.G., Terry Jr, F.L. Freeman, M.J., Poulain, M., Mazé, G., (2007) Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power. Opt. Express 15, 865–871.ADSCrossRefGoogle Scholar
  256. Xia, C., Islam, M.N., Terry Jr., F.L., Freeman, M.J. and Mauricio, J. (2009) 10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation. IEEE J. Sel. Top. Quantum. Elect. 15, 422–434.CrossRefGoogle Scholar
  257. Yeom, D.I., Mägi, E.C., Lamont, M.R.E., Roelens, M.A.E., Fu, L. and Eggleton, B.J. (2008) Low-threshold supercontinuum generation in highly nonluinear chalcogenide nanowires. Opt. Lett. 33, 660–662.ADSCrossRefGoogle Scholar
  258. Yu, Fei, and Jonathan C. Knight. (2013). “Spectral Attenuation Limits of Silica Hollow Core Negative Curvature Fiber.” Optics Express 21 (18): 21466–71.Google Scholar
  259. Zakharov, V. E., and A. B. Shabat. (1971). “Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media.” Zh. Eksp. Teor. Fiz. 61, 118–134.Google Scholar
  260. Zakharov, V.E., and L.A. Ostrovsky. (2009). “Modulation Instability: The Beginning.” Physica D: Nonlinear Phenomena 238 (5): 540–48.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  261. Zhang, M., Kelleher, E.J.R., Runcorn, T.H., Mashinsky, V.M., Medvedkov, O.I., Dianov, E.M., Popa, D., Milana, S., Hasan, T., Sun, Z., Bonaccorso, F., Jiang, Z., Flahaut, E., Chapman, B.H., Ferrari, A.C., Popov, S.V. and Taylor, J.R. (2013) Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. Opt. Express 21, 23261–23271.ADSCrossRefGoogle Scholar
  262. Zysset, B., Beaud, P. and Hodel,W. (1987) Generation of optical solitons in the wavelength region 1.37–1.49 μm. App. Phys. Lett. 50, 1027–1029.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Max Planck Institute for the Science of LightErlangenGermany
  2. 2.Physics DepartmentImperial CollegeLondonUK

Personalised recommendations