Advertisement

Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses

  • P. L. Baldeck
  • P. P. Ho
  • Robert R. Alfano
Chapter

Abstract

Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse progagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).

Keywords

Pump Pulse Modulation Instability Stimulate Raman Scattering Probe Pulse Ultrashort Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal, G.P. (1987) Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880-883.CrossRefADSGoogle Scholar
  2. Agrawal, G.P. and M.J. Potasek. (1986) Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Phys. Rev. 3, 1765-1776.CrossRefGoogle Scholar
  3. Agrawal, G.P., P.L. Baldeck, and R.R. Alfano. (1988) Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers. Conference abstract #MW3, in Digest of the 1988 OSA annual meeting. Optical Society of America, Washington, D.C. Opt. Lett. 14, 137-139 (1989).Google Scholar
  4. Agrawal, G.P., P.L. Baldeck, and R.R. Alfano. (1989a) Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. Submitted for publication in Phys. Rev. A.Google Scholar
  5. Agrawal, G.P., P.L. Baldeck, and R.R. Alfano. (1989b) Modulation instability induced by cross-phase modulation in optical fibers. Phys. Rev. A (April 1989).Google Scholar
  6. Alfano, R.R. and P.P. Ho. (1988) Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation. IEEE J. Quantum Electron. 24, 351-364.CrossRefADSGoogle Scholar
  7. Alfano, R.R. and S.L. Shapiro. (1970) Emission in the region 4000–7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584-587. Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592-594.CrossRefADSGoogle Scholar
  8. Alfano, R.R., Q. Li, T. Jimbo, J.T. Manassah, and P.P. Ho. (1986) Induced spectral broadening of a weak picosecond pulse in glass produced by an intense ps pulse. Opt. Lett. 11, 626-628.CrossRefADSGoogle Scholar
  9. Alfano, R.R., Q.Z. Wang, T. Jimbo, and P.P. Ho. (1987a) Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals. Phys. Rev. A35, 459-462.Google Scholar
  10. Alfano, R.R., P.L. Baldeck, F. Raccah, and P.P. Ho. (1987b) Cross-phase modulation measured in optical fibers. Appl. Opt. 26, 3491-3492.Google Scholar
  11. Alfano, R.R., P.L. Baldeck, and P.P. Ho. (1988) Cross-phase modulation and induced-focusing of optical nonlinearities in optical fibers and bulk materials. Conference abstract #ThA3, In Digest of the OSA topical meeting on nonlinear optical properties of materials. Optical Society of America, Washington, D.C.Google Scholar
  12. Auston, D.H. (1977) In Ultrafast Light Pulses S.L. Shapiro, ed. Springer-Verlag, Berlin, 1977.Google Scholar
  13. Ayral, J.L., J.P. Pochelle, J. Raffy, and M. Papuchon. (1984) Optical Kerr coefficient measurement at 1.15 μm in single-mode optical fivers. Opt. Commun. 49, 405-408.CrossRefADSGoogle Scholar
  14. Baldeck, P.L. and R.R. Alfano. (1987) Intensity effects on the stimulated four-photon spectra generated by picosecond pulses in optical fibers. Conference abstract #FQ7, March meeting of the American Physical Society, New York, New York, 1987; J. Lightwave Technol. L. T-5, 1712-1715.Google Scholar
  15. Baldeck, P.L., F. Raccah, and R.R. Alfano. (1987a) Observation of self-focusing in optical fibers with picosecond pulses. Opt. Lett. 12, 588-589.Google Scholar
  16. Baldeck, P.L., P.P. Ho, and R.R. Alfano. (1987b) Effects of self, induced-, and cross-phase modulations on the generation of picosecond and femtosecond white light supercontinua. Rev. Phys. Appl. 22, 1677-1694.Google Scholar
  17. Baldeck, P.L., P.P. Ho, and R.R. Alfano. (1987c) Experimental evidences for cross-phase modulation, induced-phase modulation and self-focusing on picosecond pulses in optical fibers. Conference abstract #TuV4, in Digest of the 1987 OSA annual meeting. Optical Society of America, Washington, D.C.Google Scholar
  18. Baldeck, P.L., F. Raccah, R. Garuthara, and R.R. Alfano. (1987d) Spectral and temporal investigation of cross-phase modulation effects on picosecond pulses in singlemode optical fibers. Proceeding paper #TuC4, International Laser Science conference ILS-III, Atlantic City, New Jersey, 1987.Google Scholar
  19. Baldeck, P.L., R.R. Alfano, and G.P. Agrawal. (1988a) Induced-frequency shift of copropagating pulses. Appl. Phys. Lett. 52, 1939-1941.Google Scholar
  20. Baldeck, P.L., R.R. Alfano, and G.P. Agrawal. (1988b) Observation of modulation instability in the normal dispersion regime of optical fibers. Conference abstract #MBB7, in Digest of the 1988 OSA annual meeting. Optical Society of America, Washington, D.C.Google Scholar
  21. Baldeck, P.L., R.R. Alfano, and G.P. Agrawal. (1988c) Induced-frequency shift, induced spectral broadening and optical amplification of picosecond pulses in a single-mode optical fiber. Proceeding paper #624, Electrochemical Society symposium on nonlinear optics and ultrafast phenomena, Chicago, Illinois, 1988.Google Scholar
  22. Baldeck, P.L., R.R. Alfano, and G.P. Agrawal. (1988d) Generation of sub-100-fsec pulses at 532 nm from modulation instability induced by cross-phase modulation in single-mode optical fibers. Proceeding paper #PD2, in Utrafast Phenomena 6. Springer-Verlag, Berlin.Google Scholar
  23. Baldeck, P.L. and R.R. Alfano. (1989) Cross-phase modulation: a new technique for controlling the spectral, temporal and spatial properties of ultrashort pulses. SPIE Proceedings of the 1989 Optical Science Engineering conference, Paris, France.Google Scholar
  24. Chraplyvy, A.R. and J. Stone. (1984) Measurement of cross-phase modulation in coherent wavelength-division multiplexing using injection lasers. Electron. Lett. 20, 996-997.CrossRefGoogle Scholar
  25. Chraplyvy, A.R., D. Marcuse and P.S. Henry. (1984) Carrier-induced phase noise in angel-modulated optical-fiber systems. J. Lightwave Technol. LT-2, 6-10.CrossRefADSGoogle Scholar
  26. Cornelius, P. and L. Harris. (1981) Role of self-phase modulation in stimulated Raman scattering from more than one mode. Opt. Lett. 6, 129-131.CrossRefADSGoogle Scholar
  27. Dianov, E.M., A.Y. Karasik, P.V. Mamyshev, G.I. Onishchukov, A.M. Prokhorov, M.F. Stel’Marh, and A.A. Formichev. (1984) Picosecond structure of the pump pulse in stimulated Raman scattering in optical fibers. Opt. Quantum Electron. 17, 187.Google Scholar
  28. Duguay, M.A. and J.W. Hansen. (1969) An ultrafast light gate. Appl. Phys. Lett. 15, 192-194.CrossRefADSGoogle Scholar
  29. Dziedzic, J.M., R.H. Stolen, and A. Ashkin. (1981) Optical Kerr effect in ling fibers, Appl. Opt. 20, 1403-1406.ADSGoogle Scholar
  30. French, P.M.W., A.S.L. Gomes, A.S. Gouveia-Neto, and J.R. Taylor. (1986) Picosecond stimulated Raman generation, pump pulse fragmentation, and fragment compression in single-mode optical fibers. IEEE J. Quantum Electron. QE-22, 2230.CrossRefADSGoogle Scholar
  31. Gersten, J., R.R. Alfano, and M. Belic. (1980) Combined stimulated Raman scattering and continuum self-phase modulation. Phys. Rev. A#21, 1222-1224.CrossRefADSGoogle Scholar
  32. Gomes, A.S.L., W. Sibbet, and J.R. Taylor. (1986) Spectral and temporal study of picosecond-pulse propagation in a single-mode optical fibers. Appl. Phys. B#39, 44-46.ADSGoogle Scholar
  33. Gomes, A.S.L., V.L. da Silva, and J.R. Taylor. (1988) Direct measurement of nonlinear frequency chirp of Raman radiation in single-mode optical fibers using a spectral window method. J. Opt. Soc. Am. B#5, 373-380.CrossRefADSGoogle Scholar
  34. Gouveia-Neto, A.S., M.E. Faldon, A.S.B. Sombra, P.G.J. Wigley, and J.R. Taylor. (1988a) Subpicosecond-pulse generation through cross-phase modulation-induced modulation instability in optical fibers. Opt. Lett. 12, 901-906.Google Scholar
  35. Gouveia-Neto, A.S., M.E. Faldon, and J.R. Taylor. (1988b) Raman amplification of modulation instability and solitary-wave formation. Opt. Lett. 12, 1029-1031.Google Scholar
  36. Grudinin, A.B., E.M. Dianov, D.V. Korobkin, A.M. Prokhorov, V.N. Serkinand, and D.V. Khaidarov. (1987) Decay of femtosecond pulses in single-mode optical fibers. Pis’ma Zh. Eksp. Teor. Fiz. 46, 175-177. [Sov. Phys. JETP Lett. 46, 221, 225.]ADSGoogle Scholar
  37. Hasegawa, A. (1975). Plasma Instabilities and Nonlinear Effects. Springer-Verlag. Heidelberg.CrossRefGoogle Scholar
  38. Ho, P.P., Q.Z. Wang, D. Ji, and R.R. Alfano. (1988) Propagation of harmonic cross-phase-modulation pulses in ZnSe. Appl. Phys. Lett. 111-113.Google Scholar
  39. Hook, A.D. Anderson, and M. Lisak. (1988) Soliton-like pulses in stimulated Raman scattering. Opt. Lett. 12, 114-116.Google Scholar
  40. Imoto, N., S. Watkins, and Y. Sasaki. (1987) A nonlinear optical-fiber interferometer for nondemolition measurement of photon number. Optics Commun. 61, 159-163.CrossRefADSGoogle Scholar
  41. Islam, M.N., L.F. Mollenauer, and R.H. Stolen. (1986) Fiber Raman amplification soliton laser, in Ultrafast Phenomena 5. Springer-Verlag, Berlin.Google Scholar
  42. Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simson, and H.T. Shang. (1987a) Cross-phase modulation in optical fibers. Opt. Lett. 12, 625-627.Google Scholar
  43. Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simson, and H.T. Shang. (1987b) Amplifier/compressor fiber Raman lasers. Opt. Lett. 12, 814-816.Google Scholar
  44. Jaskorzynska, B. and D. Schadt. (1988) All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion. IEEE J. Quantum Electron. QE-24, 2117-2120.CrossRefADSGoogle Scholar
  45. Johnson, A.M., R.H. Stolen, and W.M. Simpson. (1986) The observation of chirped stimulated Raman scattered light in fibers. In Ultrafast Phenomena 5. Springer-Verlag, Berlin.Google Scholar
  46. Keiser, G. (1983) In Optical Fiber Communications. McGraw-Hill, New York.Google Scholar
  47. Kelley, P.L. (1965) Self-focusing of optical beams. Phys. Rev. Lett. 15, 1085.CrossRefADSGoogle Scholar
  48. Kimura, Y., K.I. Kitayama, N. Shibata, and S. Seikai. (1986) All-fibre-optic logic "AND" gate. Electron. Lett. 22, 277-278.CrossRefGoogle Scholar
  49. Kitayama, K.I., Y. Kimura, and S. Seikai. (1985a) Fiber-optic logic gate. Appl. Phys. Lett. 46, 317-319.Google Scholar
  50. Kitayama, K.I., Y. Kimura, K. Okamoto, and S. Seikai. (1985) Optical sampling using an all-fiber optical Kerr shutter. Appl. Phys. Lett. 46, 623-625.CrossRefADSGoogle Scholar
  51. Levenson, M.D., R.M. Shelby, M. Reid, and D.F. Walls. (1986) Quantum nondemolition detection of optical quadrature amplitudes. Phys. Rev. Lett. 57, 2473-2476.CrossRefADSGoogle Scholar
  52. Lin, C. and M.A. Bosh. (1981) Large Stokes-shift stimulated four-photon mixing in optical fibers. Appl. Phys. Lett. 38, 479-481.CrossRefADSGoogle Scholar
  53. Lu Hian-Hua, Yu-Lin Li, and Jia-Lin Jiang. (1985) On combined self-phase modulation and stimulated Raman scattering in fibers. Opt. Quantum Electron. 17, 187.CrossRefGoogle Scholar
  54. Manassah, J.T. (1987a) Induced phase modulation of the Raman pulse in optical fibers. Appl. Opt. 26, 3747-3749.Google Scholar
  55. Manassah, J.T. (1987b) Time-domain characteristics of a Raman pulse in the presence of a pump. Appl. Opt. 26, 3750-3751.Google Scholar
  56. Manassah, J.T. (1987c) Amplitude and phase of a pulsed second-harmonic signal. J. Opt. Soc. Am. B#4, 1235-1240.Google Scholar
  57. Manassah, J.T. (1988) Pulse compression of an induced-phase modulated weak signal. Opt. Lett. 13, 752-755.CrossRefADSGoogle Scholar
  58. Manassah, J.T. and O.R. Cockings. (1987) Induced phase modulation of a generated second-harmonic signal. Opt. Lett. 12, 1005-1007.CrossRefADSGoogle Scholar
  59. Manassah, J.T., M. Mustafa, R.R. Alfano, and P.P. Ho. (1985) Induced supercontinuum and steepening of an ultrafast laser pulse. Phys. Lett. 113A, 242-247.CrossRefADSGoogle Scholar
  60. Monerie, M. and Y. Durteste. (1987) Direct interferometric measurement of nonlinear refractive index of optical fibers by cross-phase modulation. Electron. Lett. 23, 961-962.CrossRefGoogle Scholar
  61. Morioka, T., M. Saruwatari, and A. Takada. (1987) Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode optical fibers. Electron. Lett. 23, 453-454.CrossRefGoogle Scholar
  62. Nakashima, T., M. Nakazawa, K. Nishi, and H. Kubuta. (1987) Effect of stimulated Raman scattering on pulse-compression characteristics. Opt. Lett. 12, 404-406.CrossRefADSGoogle Scholar
  63. Schadt, D., B. Jaskorzynska, and U. Osterberg. (1986) Numerical study on combined stimulated Raman scattering and self-phase modulation in optical fibers influenced by walk-off between pump and Stokes pulses. J. Opt. Soc. Am. B#3, 1257-1260.CrossRefADSGoogle Scholar
  64. Schadt, D. and B. Jaskorzynska. (1987a) Frequency chirp and spectra due to self-phase modulation and stimulated Raman scattering influenced by walk-off in optical fibers. J. Opt. Soc. Am. B#4, 856-862.Google Scholar
  65. Schadt, D. and B. Jaskorzynska. (1987b) Generation of short pulses from CW light by influence of cross-phase modulation in optical fibers. Electron. Lett. 23, 1091-1092.Google Scholar
  66. Schadt, D. and B. Jaskorzynska. (1988) Suppression of the Raman self-frequency shift by cross-phase modulation. J. Opt. Soc. Am. B#5, 2374-2378.CrossRefADSGoogle Scholar
  67. Shen, Y.R. (1984) In The Principles of Nonlinear Optics. Wiley, New York.Google Scholar
  68. Shimizu, F. and B.P. Stoicheff. (1969) Study of the duration and birefringence of self-trapped filaments in CS2. IEEE J. Quantum Electron. QE-5, 544.CrossRefADSGoogle Scholar
  69. Stolen, R.H. (1975) Phase-matched stimulated four-photon mixing. IEEE J. Quantum Electron. QE-11, 213-215.Google Scholar
  70. Stolen, R.H. (1979) In Nonlinear properties of Optical fibers, S.E. Miller and A.G. Chynoweth, eds. Academic Press, New York, Chapter 5.CrossRefGoogle Scholar
  71. Stolen, R.H. and A. Ashkin. (1972) Optical Kerr effect in glass waveguide. Appl. Phys. Lett. 22, 294-296.CrossRefADSGoogle Scholar
  72. Stolen, R.H., M.A. Bosh, and C. Lin. (1981) Phase matching in birefringent fibers. Opt. Lett. 6, 213-215.CrossRefADSGoogle Scholar
  73. Stolen, R.H. and A.M. Johnson. (1986) The effect of pulse walk-off on stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. QE-22, 2230.Google Scholar
  74. Swartzlander, G.A. Jr., and A.E. Kaplan. (1988) Self-deflection of laser beams in a thin nonlinear film. J. Opt. Soc. Am. B5, 765-768.CrossRefADSGoogle Scholar
  75. Tai, K., A. Hasegawa, and A. Tomita. (1986) Observation of modulation instability in optical fibers. Phys. Rev. Lett. 56, 135-138.CrossRefADSGoogle Scholar
  76. Tomlinson, W.J., R.H. Stolen, and A.M. Johnson. (1985) Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 457-459.CrossRefADSGoogle Scholar
  77. Trillo, S., S. Wabnitz, E.M. Wright, and G.I. Stegeman. (1988) Optical solitary waves induced by cross-phase modulation. Opt. Lett. 13, 871-873.CrossRefADSGoogle Scholar
  78. Wahio, K., K. Inoue, and T. Tanigawa. (1980) Efficient generation near-IR stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 mm. Electron. Lett. 16, 331-333.CrossRefADSGoogle Scholar
  79. Weiner, A.M., J.P. Heritage, and R.H. Stolen. (1986) Effect of stimulated Raman scattering and pulse walk-off on self-phase modulation in optical fibers. In Digest of the Conference on Lasers and Electro-Optics. Optical Society of America, Washington, D.C., p. 246.Google Scholar
  80. Weiner, A.M., J.P. Heritage, and R.H. Stolen. (1988) Self-phase modulation and optical pulse compression influenced by stimulated Raman scattering in fibers. J. Opt. Soc. Am. B5, 364-372.CrossRefADSGoogle Scholar
  81. White, I.H., R.V. Penty, and R.E. Epworth. (1988) Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers. Electron. Lett. 24, 172-173.CrossRefGoogle Scholar
  82. Zysset, B. and H.P. Weber. (1986) Temporal and spectral investigation of Nd:YAG pulse compression in optical fibers and its application to pulse compression. In Digest of the Conference on Lasers and Electro-Optics. Optical Society of America, Washington, D.C., p. 182.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. L. Baldeck
    • 1
  • P. P. Ho
    • 2
  • Robert R. Alfano
    • 3
  1. 1.Laboratoire de Spectrométrie Physique, UMR 5588Université Joseph Fourier/CNRSSaint Martin d’HèresFrance
  2. 2.Department of Electrical EngineeringThe City College of the City University of New YorkNew YorkUSA
  3. 3.Department of PhysicsThe City College of the City University of New YorkNew YorkUSA

Personalised recommendations