Advertisement

Supercontinuum Generation in Condensed Matter

  • Q. Z. Wang
  • P. P. Ho
  • Robert R. Alfano
Chapter

Abstract

Supercontinuum generation, the production of intense ultrafast broadband "white light" pulses, arises from the propagation of intense picosecond or shorter laser pulses through condensed or gaseous media. Various processes are responsible for continuum generation. These are called self-, induced-, and cross-phase modulations and four-photon parametric generation. Whenever an intense laser pulse propagates through a medium, it changes the refractive index, which in turn changes the phase, amplitude, and frequency of the incident laser pulse. A phase change can cause a frequency sweep within the pulse envelope. This process has been called self-phase modulation (SPM) (Alfano and Shapiro, 1970a). Nondegenerate four-photon parametric generation (FPPG) usually occurs simultaneously with the SPM process (Alfano and Shapiro, 1970a). Photons at the laser frequency parametrically generate photons to be emitted at Stokes and anti-Stokes frequencies in an angular pattern due to the required phase-matching condition. When a coherent vibrational mode is excited by a laser, stimulated Raman scattering (SRS) occurs. SRS is an important process that competes and couples with SPM. The interference between SRS and SPM causes a change in the emission spectrum resulting in stimulated Raman scattering cross-phase modulation (SRS-XPM) (Gersten et al., 1980). A process similar to SRS-XPM occurs when an intense laser pulse propagates through a medium possessing a large second-order χ2 and third-order χ 3 susceptibility. Both second harmonic generation (SHG) and SPM occur and can be coupled together. The interference between SHG and SPM alters the emission spectrum and is called second harmonic generation cross-phase modulation (SHG-XPM) (Alfano et al., 1987). A process closely related to XPM, called induced phase modulation (IPM) (Alfano, 1986), occurs when a weak pulse at a different frequency propagates through a disrupted medium whose index of refraction is changed by an intense laser pulse. The phase of the weak optical field can be modulated by the time variation of the index of refraction originating from the primary intense pulse.

Keywords

Stimulate Raman Scattering Group Velocity Dispersion Nonlinear Refractive Index Liquid Argon Pulse Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal, G.P. and M.J. Potasek (1986) Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Phys. Rev. A 33, 1765–1776.CrossRefADSGoogle Scholar
  2. Alfano, R.R. (1972) Interaction of picosecond laser pulses with matter. GTE Technical Report TR 72–330. Published as Ph.D. thesis at New York University, 1972.Google Scholar
  3. Alfano, R.R. (1986) The ultrafast supercontinuum laser source. Proc. International Conference Laser ’85. STS Press, McLean, Virigina, pp. 110–122.Google Scholar
  4. Alfano, R.R. and P.P. Ho (1988) Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation. IEEE J. Quantum Electron. QE-24, 351–363.CrossRefADSGoogle Scholar
  5. Alfano, R.R. and S.L. Shapiro (1970a) Emission in the region 4000–7000 A via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587; Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594; Direct distortion of electronic clouds of rare-gas atoms in intense electric fields. Phys. Rev. Lett. 24, 1219–1222.ADSGoogle Scholar
  6. Alfano, R.R. and S.L. Shapiro (1970b) Picosecond spectroscopy using the inverse Raman effect. Chem. Phys. Lett. 8, 631–633.CrossRefADSGoogle Scholar
  7. Alfano, R.R., L. Hope, and S. Shapiro (1972) Electronic mechanism for production of self-phase modulation. Phys. Rev. A 6, 433–438.Google Scholar
  8. Alfano, R.R., J. Gersten, G. Zawadzkas, and N. Tzoar (1974) Self-phase-modulation near the electronic resonances of a crystal. Phys. Rev. A 10, 698–708.CrossRefADSGoogle Scholar
  9. Alfano, R.R., P. Ho, P. Fleury, and H. Guggeneheim (1976) Nonlinear optical effects in antiferromagnetic KNiF3. Opt. Commun. 19, 261–264.CrossRefADSGoogle Scholar
  10. Alfano, R.R., Q. Li, T. Jimbo, J. Manassah, and P. Ho (1986) Induced spectral broadening of a weak picosecond pulse in glass produced by an intense ps pulse. Opt. Lett. 11, 626–628.CrossRefADSGoogle Scholar
  11. Alfano, R.R., Q.Z. Wang, T. Jimbo, and P.P. Ho (1987) Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals. Phys. Rev. A 35, 459–462.CrossRefADSGoogle Scholar
  12. Alfano, R.R., Q.Z. Wang, D. Ji, and P.P. Ho (1989) Harmonic cross-phase-modulation in ZnSe. App. Phys. Lett, 54, 111–113.CrossRefADSGoogle Scholar
  13. Anderson, D. and M. Lisak (1983) Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393–1398.CrossRefADSGoogle Scholar
  14. Auston, D.H. (1977) In Ultrafast Light Pulses, S.L. Shapiro, ed., Springer, Verlag, New York.Google Scholar
  15. Baldeck, P.L., F. Raccah, and R.R. Alfano (1987a) Observation of self-focusing in optical fibers with picosecond pulses. Opt. Lett. 12, 588–589.CrossRefADSGoogle Scholar
  16. Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987b) Effects of self-, induced-, and cross-phase modulations on the generation of ps and fs white light supercontinuum. Rev. Phys. Appl. 22, 1877–1894.CrossRefGoogle Scholar
  17. Bloembergen, N. and P. Lallemand (1966) Complex intensity dependent index of refraction frequency broadening of stimulated Raman lines and stimulated Rayleigh scattering. Phys. Rev. Lett. 16, 81–84.CrossRefADSGoogle Scholar
  18. Bourkoff, E., W. Zhao, and R.I. Joseph (1987) Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion. Opt. Lett, 12, 272–274.Google Scholar
  19. Brewer, R.G. (1967) Frequency shifts in self-focused light. Phys. Rev. Lett. 19, 8–10.CrossRefADSGoogle Scholar
  20. Brewer, R.G. and C.H. Lee (1968) Self-trapping with picosecond light pulses. Phys. Rev. Lett. 21, 267–270.CrossRefADSGoogle Scholar
  21. Busch, G.E., R.P. Jones, and P.M. Rentzepis (1973) Picosecond spectroscopy using a picosecond continuum. Chem. Phys. Lett. 18, 178–185.CrossRefADSGoogle Scholar
  22. Chinn, S.R., H. Zeiger, and J. O’Connor (1971) Two-magnon Raman scattering and exchange interactions in antiferromagnetic KNiF3 and K2NiF4 and ferrimagnetic RbNiF3. Phys. Rev. B3, 1709–1735.CrossRefADSGoogle Scholar
  23. Corkum, P., P. Ho, R. Alfano, and J. Manassah (1985) Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors. Opt. Lett. 10, 624–626.CrossRefADSGoogle Scholar
  24. Corkum, P.B., C. Rolland, and T. Rao (1986) Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268–2271.CrossRefADSGoogle Scholar
  25. Cornelius, P. and L. Harris (1981) Role of self-phase modulation in stimulated Raman scattering from more than one mode. Opt. Lett. 6, 129–131.CrossRefADSGoogle Scholar
  26. DeMartini, F., C.H. Townes, T.K. Gustafson, and P.L. Kelly (1967) Self-steepening of light pulses. Phys. Rev. 164, 312–322.CrossRefADSGoogle Scholar
  27. Dorsinville, R., P. Delfyett, and R.R. Alfano (1987) Generation of 3 ps pulses by spectral selection of the supercontinuum generated by a 30 ps second harmonic Nd: YAG laser pulse in a liquid. Appl. Opt. 27, 16–18.CrossRefADSGoogle Scholar
  28. Fisher, R.A. and W. Bischel (1975) Numerical studies of the interplay wave laser pulse. J. Appl. Phys. 46, 4921–4934.CrossRefADSGoogle Scholar
  29. Fisher, R.A., B. Suydam, and D. Yevich (1983) Optical phase conjugation for time domain undoing of dispersion self-phase modulation effects. Opt. Lett. 8, 611–613.CrossRefADSGoogle Scholar
  30. Fleury, P.A., W. Hayes, and H.J. Guggenheim (1975) Magnetic scattering of light in K(NiMg)F3. J. Phys. C: Solid State 8, 2183–2189.CrossRefADSGoogle Scholar
  31. Fork, R.L., C.V. Shank, C. Hirliman, R. Yen, and J. Tomlinson (1983) Femtosecond white-light continuum pulse. Opt. Lett. 8, 1–3.CrossRefADSGoogle Scholar
  32. Fork, R.L., C.H. Brito Cruz, P.C. Becker, and C.V. Shank (1987) Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485.Google Scholar
  33. Gersten, J., R. Alfano, and M. Belic (1980) Combined stimulated Raman scattering in fibers. Phys. Rev. A 21, 1222–1224.CrossRefADSGoogle Scholar
  34. Girodmaine, J.A. (1962) Mixing of light beams in crystals. Phys. Rev. Lett. 8, 19–20.CrossRefADSGoogle Scholar
  35. Glownia, J., G. Arjavalingam, P. Sorokin, and J. Rothenberg (1986) Amplification of 350-fs pulses in XeCl excimer gain modules. Opt. Lett. 11, 79–81.CrossRefADSGoogle Scholar
  36. Goldberg, L. (1982) Broadband CARS probe using the picosecond continua. In Ultra-fast Phenomena III. Springer-Verlag, New York, pp. 94–97.Google Scholar
  37. Gomes, A.S.L., A.S. Gouveia-Neto, J.R. Taylor, H. Avramopoulos, and G.H.C. New (1986) Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses. Opt. Commun. 59, 399.CrossRefADSGoogle Scholar
  38. Gustafson, T.K., I.P. Taran, H.A. Haus, J.R. Lifisitz, and P.L. Kelly (1969) Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments. Phys. Rev 177, 306–313.CrossRefADSGoogle Scholar
  39. Gustafson, T.K., J. Taran, P. Kelley, and R. Chiao (1970) Self-modulation of picosecond pulse in electro-optical crystals. Opt. Commun. 2, 17–21.CrossRefADSGoogle Scholar
  40. Hellwarth, R.W. (1970) Theory of molecular light scattering spectra using lineardipole approximation. J. Chem. Phys. 52, 2128–2138.CrossRefADSGoogle Scholar
  41. Hellwarth, R.W., J. Cherlow, and T.T. Yang (1975) Origin and frequency dependence of nonlinear optical susceptibilities of glasses. Phys. Rev. B 11, 964–967.CrossRefADSGoogle Scholar
  42. Heritage, J., A. Weiner, and P. Thurston (1985) Picasecond pulse shaping by spectral phase and amplitude manipulation. Opt. Lett. 10, 609–611.CrossRefADSGoogle Scholar
  43. Ho, P.P. and R.R. Alfano (1978) Coupled molecular reorientational relaxation kinetics in mixed binary liquids directly measured by picosecond laser techniques. J. Chem. Phys. 68, 4551–4563.CrossRefADSGoogle Scholar
  44. Ho, P.P. and R.R. Alfano (1979) Optical Kerr effect in liquids. Phys. Rev. A 20, 2170–4564.CrossRefADSGoogle Scholar
  45. Ho, P.P., Q.X. Li, T. Jimbo, YL. Ku, and R.R. Alfano (1987) Supercontinuum pulse generation and propagation in a liqud carbon tetrachloride. Appl. Opt. 26, 2700–2702.Google Scholar
  46. Ishida, Y., K. Naganuma, T. Yagima, and C. Lin (1984) Ultrafast self-phase modulation in a colliding pulse mode-locking ring dye laser. In Ultrafast Phenomena IV. Springer-Verlag, New York, pp. 69–71.Google Scholar
  47. Jimbo, T., V.L. Caplan, Q.X. Li, Q.Z. Wang, P.P. Ho, and R.R. Alfano (1987) Enhancement of ultrafast supercontinuum generation in water by addition of Zn2+ and K+ cations. Opt. Lett. 12, 477–479.CrossRefADSGoogle Scholar
  48. Johnson, A., R. Stolen, and W. Simpson (1986) The observation of chirped stimulated Raman scattering light in fibers. In Ultrafast Phenomena V.G.R. Fleming and A.E. Siegman ed. Springer-Verlag, New York, pp. 160–163.Google Scholar
  49. Jones, W.J. and B.P. Stoicheff (1964) Inverse Raman spectra: induced absorption at optical frequencies. Phys. Rev. Lett. 13, 657–659.CrossRefADSGoogle Scholar
  50. Knox, K., R.G. Shulman, and S. Sugano (1963) Covalency effects in KNiF3. II. Optical studies. Phys. Rev. 130, 512–516.ADSGoogle Scholar
  51. Knox, W., R. Fork, M. Dower, R. Stolen, and C. Shank (1985) Optical pulse compression to 8-fs at 5-kHz repetition rate. Appl. Phys. Lett. 46, 1120–1121.CrossRefADSGoogle Scholar
  52. Kobayashi, T. (1979) Broadband picosecond light generation in phosphoric acid by a mode-locked laser. Opt. Commun. 28, 147–149.CrossRefADSGoogle Scholar
  53. Lallemand, P. (1966) Temperature variation of the width of stimulated Raman lines in liquids. Appl. Phys. Lett. 8, 276–277.CrossRefADSGoogle Scholar
  54. Levenson, M.D. and N. Bloembergen (1974) Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media. Phys. Rev. B 10, 4447–4463.CrossRefADSGoogle Scholar
  55. Li, Q.X., T. Jimbo, P.P. Ho, and R.R. Alfano (1986) Temporal distribution of picosecond super-continuum generated in a liquid measured by a streak camera. Appl. Opt. 25, 1869–1871.Google Scholar
  56. Lozobkin, V., A. Malytin, and A. Prohorov (1970) Phase self-modulation of Nd: glass radiation with mode-locking. JETP Lett. 12, 150–152.ADSGoogle Scholar
  57. Magde, D. and M.W. Windsor (1974) Picosecond flash photolysis and spectroscopy: 3,3’-diethyloxadicarbocyanine iodide (DODCI). Chem. Phys. Lett. 27, 31–36.CrossRefADSGoogle Scholar
  58. Manassah, J.T., P.P. Ho, A. Katz, and R.R. Alfano (1984) Ultrafast supercontinuum laser source. Photonics Spectra 18 November, 53–59.Google Scholar
  59. Manassah, J.T, R.R., Alfano and M. Mustafa (1985a) Spectral distribution of an ultrashort supercontinuum laser source. Phys. Lett. A 107, 305–309.Google Scholar
  60. Manassah, J.T., M. Mustafa, R. Alfano, and P. Ho (1985b) Induced supercontinuum and steepening of an ultrafast laser pulse. Phys. Lett. 113A, 242–247.CrossRefADSGoogle Scholar
  61. Manassah, J.T., M. Mustafa, R.R. Alfano, and P.P. Ho (1986) Spectral extent and pulse shape of the supercontinuum for ultrashort laser pulse. IEEE J. Quantum Electron. QE-22, 197–204.Google Scholar
  62. Marcuse, D. (1980) Pulse distortion in single-mode optical fibers Appl. Opt. 19, 1653–1660.ADSGoogle Scholar
  63. Masuhara, H., H. Miyasaka, A. Karen, N. Mataga, and Y. Tsuchiya (1983) Temporal characteristics of picosecond continuum as revealed by two-dimensional analysis of streak images. Opt. Commun. 4, 426.CrossRefADSGoogle Scholar
  64. McTague, J., P., Fleury, and D. DuPre (1969) Intermolecular light scattering in liquids. Phys. Rev. 188, 303–308.Google Scholar
  65. Nakashima, N. and N. Mataga (1975) Picosecond flash photolysis and transient spectral measurements over the entire visible, near ultraviolet and near infrared regions. Chem. Phys. Lett. 35, 487–492.CrossRefADSGoogle Scholar
  66. Patel, C.K.N. and E.D. Shaw (1971) Tunable stimulated Raman scattering from mobile carriers in semiconductors. Phys. Rev. B 3, 1279–1295.CrossRefADSGoogle Scholar
  67. Penzokfer, A., A. Laubereau, and W. Kasier (1973) Stimulated short-wave radiation due to single frequency resonances of χ (3) . Phys. Rev. Lett. 31 863–866.CrossRefADSGoogle Scholar
  68. Potasek, M.J., G.P. Agrawal, and S.C. Pinault (1986) Analytical and numerical study of pulse broadening in nonlinear dispersive optical fibers. J. Opt. Soc. Am. B 3, 205–211.CrossRefADSGoogle Scholar
  69. Shank, C. (1983) Measurement of ultrafast phenomena in the femtosecond domain. Science 219, 1027.CrossRefADSGoogle Scholar
  70. Shank, C.V., R.L. Fork, R. Yen, and R.H. Stolen (1982) Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761–763.CrossRefADSGoogle Scholar
  71. Sharma, D.K., R.W. Yid, D.F. Williams, S.E. Sugamori, and L.L.T. Bradley (1976) Generation of an intense picosecond continuum in D2O by a single picosecond 1.06 μ pulse. Chem. Phys. Lett. 41, 460–465.CrossRefADSGoogle Scholar
  72. Shen, Y.R. (1966) Electrostriction, optical Kerr effect and self-focusing of laser beams. Phys. Lett. 20, 378.CrossRefADSGoogle Scholar
  73. Shen Y.R. (1984) The Principles of Nonlinear Optics. Wiley, New York.Google Scholar
  74. Shimizu, F. (1967) Frequency broadening in liquids by a short light pulse. Phys. Rev. Stark, S. P., J. C. Travers, and P. St. J. Russell (2012) Extreme supercontinuum generation to the deep UV. Optics Letters, Vol. 37, 770–772. Lett. 19, 1097–1100.CrossRefGoogle Scholar
  75. Stark, S. P. J. C. Travers, and P. St. J. Russell (2012) Extreme supercontinuum generation to the deep UV. Optics Letters, Vol. 37, 770–772.Google Scholar
  76. Stolen, R.H. and A.M. Johnson (1986) The effect of pulse walkoff on stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. QE-22, 2154–2160.CrossRefADSGoogle Scholar
  77. Stolen, R.H. and C. Lin (1978) Self-phase modulation in silica optical fibers. Phys. Rev. A 17, 1448–1453.CrossRefADSGoogle Scholar
  78. Topp, M.R. and G.C. Orner (1975) Group velocity dispersion effects in picoseconds spectroscopy. Opt. Commun. 13, 276.CrossRefADSGoogle Scholar
  79. Tzoar, N. and M. Jain (1981) Self-phase modulation in long-geometry waveguide. Phys. Rev. A 23, 1266–1270.CrossRefADSGoogle Scholar
  80. Walrafen, G.E. (1972) Stimulated Raman scattering and the mixture model of water structure. Adv. Mol. Relaxation Processes 3, 43–49.CrossRefGoogle Scholar
  81. Wang, Q.Z., D. Ji, Lina Yang, P.P. Ho, and R.R. Alfano (1989) Self-phase modulation in multimode optical fibers with modest high power. Wang, Q.Z., Q.D. Liu, Disa Liu, P.P. Ho, and R. R. Alfano (1994) High-resolution spectra of self-phase modulation in optical fibers, J. Opt. Soc. Am. B 11, 1084–1089. Opt. Lett. 14, 578–580.CrossRefADSGoogle Scholar
  82. Wang, Q.Z., Q.D. Liu, Disa Liu, P.P. Ho, and R. R. Alfano (1994) High-resolution spectra of self-phase modulation in optical fibers. J. Opt. Soc. Am. B 11, 1084–1089.Google Scholar
  83. Yablonovitch, E. and N. Bloembergen (1972) Avalanche ionization of the limiting diameter of filaments induced by light pulses in transparent media. Phys. Rev. Lett. 29, 907–910.Google Scholar
  84. Yang, G. and Y.R. Shen (1984) Spectral broadening of ultrashort pulse in a nonlinear medium. Opt. Lett. 9, 510–512.CrossRefADSGoogle Scholar
  85. Yu, W., R. Alfano, C.L. Sam, and R.J. Seymour (1975) Spectral broadening of picosecond 1.06 μm pulse in KBr. Opt. Commun. 14, 344.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Q. Z. Wang
    • 1
  • P. P. Ho
    • 2
  • Robert R. Alfano
    • 3
  1. 1.United States Patent and Trademark OfficeAlexandriaUSA
  2. 2.Department of Electrical EngineeringThe City College of the City University of New YorkNew YorkUSA
  3. 3.Department of PhysicsThe City College of the City University of New YorkNew YorkUSA

Personalised recommendations