Advertisement

Current Applications of Supercontinuum Light

  • Y. S. Rumala
  • R. Dorsinville
  • Robert R. AlfanoEmail author
Chapter

Abstract

Since the first observation of supercontinuum (SC) light in 1970 by Alfano and Shapiro (1970), numerous applications have emerged. The first application of SC was in inverse Raman scattering (Alfano and Shapiro, 1971) and later for time-resolved laser spectroscopy of liquids and solids. In the previous edition of the book published in 2006, Dorsinville et al. (2006) reviewed many supercontinuum light applications of time resolved absorption spectroscopy (in the areas of solid state physics, chemistry, and biology), time resolved excitation spectroscopy (in the areas of coherent anti-Stokes Raman scattering, and Raman induced Phase conjugation), as well as optical pulse compression. Dorsinville et al. also explored future applications in ranging, imaging, optical computational switches, atmospheric remote sensing, kinetics of nonlinearities in solids, and optical fiber measurements. This chapter does not focus on these previously reviewed topics. Interested readers can refer to the second edition of the book published in 2006.

Keywords

Black Hole Event Horizon Orbital Angular Momentum Frequency Comb Optical Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. R. R. Alfano and S. L. Shapiro, "Observation of self phase modulation and small scale filaments in crystals and glasses," Physical Review Letters, vol. 24, pp. 592–594, 1970.CrossRefADSGoogle Scholar
  2. R. Alfano and S. Shapiro, "Picosecond spectroscopy using the inverse Raman effect," Chemical Physics Letters, vol. 8, no. 6, p. 631–633, 1971.CrossRefADSGoogle Scholar
  3. R. R. Anderson and J. A. Parrish, "The optics of human skin," Journal of Investigative Dermatology, vol. 77, p. 13–19, 1981.CrossRefGoogle Scholar
  4. M. E. Anderson, H. Bigman, L. E. E. de Araujo and J. L. Chaloupka, "Measuring the topological charge of ultrabroadband, optical-vortex beams with a triangular aperture," Journal of the Optical Society of America B, vol. 29, no. 8, pp. 1968–1976, 2012.CrossRefGoogle Scholar
  5. D. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, London: Academic Press, 2011.Google Scholar
  6. D. Andrews and M. Babiker, The Angular Momentum of Light, Cambridge: Cambridge University Press, 2012.CrossRefGoogle Scholar
  7. E. Auksorius, B. R. Boruah, C. Dunsby, P. Laniga, G. Kennedy, M. A. Neil and P. M. French, "Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging," Optics Letters, vol. 33, no. 2, pp. 113–115, 2008.CrossRefADSGoogle Scholar
  8. F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala and D. Faccio, "Hawking Radiation from Ultrashort Laser Pulse Filaments," Physical Review Letters, vol. 105, p. 203901, 2010.CrossRefADSGoogle Scholar
  9. M. Bellini and T. W. Hänsch, "Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer," Optics Letters, vol. 25, pp. 1049–1051, 2000.CrossRefADSGoogle Scholar
  10. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley and J. Ye, "An optical lattice clock with accuracy and stability at the 10–18 level," Nature, vol. 506, pp. 71–75, 2014.CrossRefADSGoogle Scholar
  11. G. Chang, C.-H. Li, D. F. Phillips, R. L. Walsworth and F. X. Kärtner, "Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers," Optics Express, vol. 18, no. 12, pp. 12736–12746, 2010.CrossRefADSGoogle Scholar
  12. M. Chini, K. Zhao and Z. Chang, "The generation, characterization and applications of broadband isolated attosecond pulses," Nature Photonics, vol. 8, pp. 178–186, 2014.CrossRefADSGoogle Scholar
  13. M. R. Chitgarha, S. Khaleghi, M. Ziyadi, A. Almaiman, A. Mohajerin-Ariaei, O. Gerstel, L. Paraschis, C. Langrock, M. M. Fejer, J. Touch and A. E. Willner, "Demonstration of tunable optical generation of higher-order modulation formats using nonlinearities and coherent frequency comb," Optics Letters, vol. 39, pp. 4915–4918, 2014.CrossRefADSGoogle Scholar
  14. L.-D. Chiu, L. Su, S. Reichelt and W. Amos, "Use of a white light supercontinuum laser for confocal interference-reflection microscopy," Journal of Microscopy, vol. 246, no. 2, p. 153–159, 2012.CrossRefGoogle Scholar
  15. A. Cho, "Test of Hawking’s prediction on the horizon with mock ‘White Hole’," Science, vol. 319, p. 1321, 2008.CrossRefGoogle Scholar
  16. S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Reviews of Modern Physics, vol. 75, pp. 325–342, 2003.CrossRefADSGoogle Scholar
  17. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature, vol. 450, pp. 1214–1217, 2007.CrossRefADSGoogle Scholar
  18. S. A. Diddams, D. Jones, J. Ye, S. Cundiff, J. L. Hall, J. Ranka, R. S. Windeler, R. Holzwarth, T. Udem and T. Hänsch, "Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb," Physical Review Letters, vol. 84, no. 22, pp. 5102–5104, 2000.CrossRefADSGoogle Scholar
  19. S. A. Diddams, D. J. Jones, L.-S. Ma, S. T. Cundiff and J. Hall, "Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb," Optics Letters, vol. 25, no. 3, pp. 186–188, 2000.CrossRefADSGoogle Scholar
  20. R. Dorsinville, P. Ho, J. Manassah and R. Alfano, "Applications of Supercontinuum: Present and Future," in The supercontinuum laser source, New York, Springer, 2006, pp. 377–398.Google Scholar
  21. W. Drexler, "Ultrahigh resolution optical coherence tomography," Journal of Biomedical Optics, vol. 9, no. 1, pp. 47–74, 2004.CrossRefADSGoogle Scholar
  22. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Optics Letters, vol. 24, no. 17, pp. 1221–1223, 1999.CrossRefADSGoogle Scholar
  23. J. M. Dudley and D. Skryabin, "New horizons for Hawking radiation," Physics, vol. 3, p. 95, 2010.CrossRefGoogle Scholar
  24. J. Dudley, G. Genty and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of modern physics, vol. 78, no. 4, pp. 1135–1184, 2006.CrossRefADSGoogle Scholar
  25. K. M. Evenson, J. S. Wells, F. R. Petersen, B. I. Danielson, G. V. Day, R. L. Barger and J. L. Hall, "Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser," Physical Review Letters, vol. 29, no. 19, pp. 1347–1349, 1972.CrossRefADSGoogle Scholar
  26. D. Faccio, "Laser pulse analogues for gravity and analogue Hawking radiation," Contemporary Physics, vol. 53, no. 2, p. 97–112, 2012.CrossRefADSGoogle Scholar
  27. T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, A. S. Desyatnikov, W. Krolikowski and Y. S. Kivshar, "Spatially engineered polarization states and optical vortices in uniaxial crystals," Optics Express, vol. 18, pp. 10848–10863, 2010.CrossRefGoogle Scholar
  28. P. Fischer, A. E. Carruthers, K. Volke-Sepulveda, E. M. Wright, C. Brown, W. Sibbett and K. Dholakia, "Enhanced optical guiding of colloidal particles using a supercontinuum light source," Optics Express, vol. 14, no. 12, pp. 5792–5802, 2006.CrossRefADSGoogle Scholar
  29. H. Fragnito, J.-Y. Bigot, P. Becker and C. Shank, "Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 f. optical pulse," Chemical Physics Letters, vol. 160, no. 2, p. 101–104, 1989.CrossRefADSGoogle Scholar
  30. S. Franke-Arnold, L. Allen and M. Padgett, "Advances in optical angular momentum," Lasers and photonics reviews, vol. 2, pp. 299–313, 2008.CrossRefGoogle Scholar
  31. S. Fujiyoshi, S. Takeuchi and T. Tahara, "Time-resolved impulsive stimulated raman scattering from excited-state polyatomic molecules in solution," Journal of Physical Chemistry A, vol. 107, no. 4, p. 494–500, 2003.CrossRefADSGoogle Scholar
  32. C. Gadermaier, V. Kabanov, L. S. A. S. Alexandrov, T. Mertelj, C. Manzoni, G. Cerullo, N. Zhigadlo, J. Karpinski, Y. Cai, X. Yao, Y. Toda, M. Oda, S. Sugai and D. Mihailovic, "Strain-Induced Enhancement of the Electron Energy Relaxation in Strongly Correlated Superconductors," Physical Review x, vol. 4, p. 011056, 2014.CrossRefADSGoogle Scholar
  33. R. R. Gattass, L. B. Shaw and J. S. Sanghera, "Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber," Optics Letters, vol. 39, no. 12, pp. 3418–3420, 2014.CrossRefADSGoogle Scholar
  34. M. Guillon, K. Dholakia and D. McGloin, "Optical trapping and spectral analysis of aerosols with a supercontiuum laser source," Optics Express, vol. 16, no. 11, pp. 7655–7664 , 2008.CrossRefADSGoogle Scholar
  35. E. Harel, P. Long and G. Engel, "Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2," Optics Letters, vol. 36, no. 9, pp. 1665–1667, 2011.CrossRefADSGoogle Scholar
  36. S. W. Hawking, "Black hole explosions?," Nature, vol. 248, pp. 30–31 , 1974.CrossRefADSGoogle Scholar
  37. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy," Optics Letters, vol. 19, no. 11, p. 780–782., 1994.CrossRefADSGoogle Scholar
  38. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky and T. J. Kippenberg, "Universal formation dynamics and noise of Kerr-frequency combs in microresonators," Nature Photonics, vol. 6, pp. 480–487, 2012.CrossRefADSGoogle Scholar
  39. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates and A. D. Ludlow, "An Atomic Clock with 10–18 Instability," Science, vol. 341, pp. 1215–1218, 2013.CrossRefADSGoogle Scholar
  40. R. Hubbard, Y. B. Ovchinnikov, J. Hayes, D. J. Richardson, Y. J. Fu, S. Lin, P. See and A. Sinclair, "Wide spectral range confocal microscope based on endlessly single-mode fiber," Optics Express, vol. 18, no. 18, pp. 18811–18819, 2010.CrossRefADSGoogle Scholar
  41. G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. S. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Optics Express, vol. 14, no. 4, pp. 1596–1603, 2006.CrossRefADSGoogle Scholar
  42. S. Ishida, N. Nishizawa, T. Ohta and K. Itoh, "Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples," Applied Physics Express, vol. 4, p. 052501, 2011.CrossRefADSGoogle Scholar
  43. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science, vol. 288, pp. 635–639, 2000.CrossRefADSGoogle Scholar
  44. A. Kahan, O. Nahmias, N. Friedman, M. Sheves and S. Ruhman, "Following Photoinduced Dynamics in Bacteriorhodopsin with 7-fs Impulsive Vibrational Spectroscopy," Journal of the American Chemical Society, vol. 129, no. 3, p. 537–546, 2007.CrossRefGoogle Scholar
  45. H. Kano and H. Hamaguchi, "Ultrabroadband (>2500 cm-1) Multiplex coherent anti-stokes raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber," Applied Physics Letters, vol. 86, pp. 121113–121115, 2005.CrossRefADSGoogle Scholar
  46. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Optics Express, vol. 13, pp. 1322–1327, 2005.CrossRefADSGoogle Scholar
  47. H. Kano and H. Hamaguchi, "In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber," Optics Express, vol. 14, pp. 2798–2804, 2006.CrossRefADSGoogle Scholar
  48. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Optics Letters, vol. 29, pp. 2701–2703, 2004.CrossRefADSGoogle Scholar
  49. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Optics Letters, vol. 29, no. 23, pp. 2701–2703, 2004.CrossRefADSGoogle Scholar
  50. K. Kieu, K. J, A. Evans, J. Barton and N. Peyghambarian, "Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source.," Journal of Biomedical Optics, vol. 16, no. 10, p. 106004, 2011.Google Scholar
  51. N. Krebs, I. Pugliesi, J. Hauer and E. Riedle, "Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 f. pump pulses and 250–720 nm supercontinuum probe," New Journal of Physics, vol. 15, p. 085016, 2013.CrossRefADSGoogle Scholar
  52. P. Kukura, D. McCamant and R. A. Mathies, "Femtosecond stimulated Raman Spectroscopy," Annual Review of Physical Chemistry, vol. 58, p. 461–488, 2007.CrossRefADSGoogle Scholar
  53. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson and A. L. Gaeta, "Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides," Optics Letters, vol. 39, no. 15, pp. 4518–4521, 2014.CrossRefADSGoogle Scholar
  54. M. Lavery, S. Barnett, F. Speirits and M. J. Padgett, "Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body," Optica, vol. 1, no. 1, pp. 1–4, 2014.CrossRefGoogle Scholar
  55. F. Leo, S.-P. Gorza, S. Coen, B. Kuyken and G. Roelkens, "Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range," Optics Letters, vol. 40, no. 1, pp. 123–126, 2015.CrossRefADSGoogle Scholar
  56. P. Leproux, V. Couderc, A. d. Angelis, M. Okuno, H. Kano and H. Hamaguchic, "New opportunities offered by compact sub-nanosecond supercontinuum sources in ultra-broadband multiplex CARS microspectroscopy," Journal of Raman Spectrsocopy, vol. 42, p. 1871–1874, 2011.Google Scholar
  57. M. Liebel and P. Kukura, "Broad-band impulsive vibrational spectroscopy of excited electronic states in the time domain," Journal of Physical Chemistry Letters, vol. 4, p. 1358−1364, 2013.CrossRefGoogle Scholar
  58. K. Lindfors, T. Kalkbrenner, P. Stoller and V. Sandoghdar, "Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy," Physical Review Letters, vol. 93, p. 037401, 2004.CrossRefADSGoogle Scholar
  59. S. Lingyan, S. Laura, R.-C. Adrian, and A. Robert, "Transmission in infrared optical window for deep brain imaging", Journal of Biophotonics, 1(6).Google Scholar
  60. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik and P. O. Schmidt, "Optical Atomic Clocks," arXiv:1407.3493 [physics.atom-ph], pp. 1–90, 2014.Google Scholar
  61. J. Mandon, E. Sorokin, I. Sorokina, G. Guelachvili and N. Picqué, "Supercontinua for high-resolution absorption multiplex infrared spectroscopy," Optics Letters, vol. 33, no. 3, pp. 285–287, 2008.CrossRefADSGoogle Scholar
  62. D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey and D. Shemo, "The vector vortex coronagraph: Laboratory results and first light at Polmar observatory," The Astrophysical Journal, vol. 709, p. 53–57, 2010.CrossRefADSGoogle Scholar
  63. J. E. Morris, A. E. Carruthers, M. Mazilu, P. Reece, T. Cizmar, P. Fischer and K. Dholakia, "Optical micromanipulation using supercontinuum Laguerre-Gaussian and Gaussian beams," Optics Express, vol. 16, pp. 10117–10129, 2008.CrossRefADSGoogle Scholar
  64. N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba and M. Tamura, "Design and laboratory demonstration of an achromatic vector vortex coronagraph," Optics Express, vol. 21, no. 6, pp. 7400–7410, 2013.CrossRefADSGoogle Scholar
  65. D. N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc and Y. S. Kivsha, "Supercontinuum generation with optical vortices," Optics Express, vol. 18, no. 17, pp. 18368–18373, 2010.CrossRefADSGoogle Scholar
  66. S. B. Papp, K. Beha, P. Del'haye, F. Quinlan and H. Lee, "Microresonator frequency comb optical clock," Optica, vol. 1, no. 1, pp. 10–14, 2014.CrossRefGoogle Scholar
  67. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg and C. Koos, "Coherent terabit communications with microresonator Kerr frequency combs," Nature Photonics, vol. 8, p. 375–380, 2014.CrossRefADSGoogle Scholar
  68. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König and U. Leonhardt, "Fiber-optical analog of the event horizon," Science, vol. 319, pp. 1367–1370, 2008.CrossRefADSGoogle Scholar
  69. N. Poli, C. W. Oates, P. Gill and G. M. Tino, "Optical atomic clocks," La rivista del Nuovo Cimento, vol. 36, no. 12, pp. 555–624, 2013.ADSGoogle Scholar
  70. D. Polli, D. Brida, S. Mukamel, G. Lanzani and G. Cerullo, "Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses," Physical Review A, vol. 82, p. 053809, 2010.CrossRefADSGoogle Scholar
  71. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane and H. C. Kapteyn, "The attosecond nonlinear optics of bright coherent X-ray generation," Nature Photonics, vol. 4, pp. 822–832, 2010.CrossRefADSGoogle Scholar
  72. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M.M. Murnane and H.C. Kapteyn, "Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers," Science, vol. 336, pp. 1287–1291, 2012.Google Scholar
  73. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland and J. C. Bergquist, "Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th Decimal Place," Science, vol. 319, pp. 1808–1811, 2008.CrossRefADSGoogle Scholar
  74. S. Ruhman, A. G. Joly and K. A. Nelson, "Time‐resolved observations of coherent molecular vibrational motion and the general occurrence of impulsive stimulated scattering," Journal Chemical Physics, vol. 86, pp. 6563–6565, 1987.CrossRefADSGoogle Scholar
  75. Y. S. Rumala, G. Milione, T. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci and R. R. Alfano, "Tunable supercontinuum light vector vortex beam generator using a q-plate," Optics Letters, vol. 38, no. 23, pp. 5083–5086, 2013.CrossRefADSGoogle Scholar
  76. Y. Rumala, G. Milione, T. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci and R. Alfano, "Tuning vector vortex in spatially coherent supercontinuum multicolored optical beam using q-plate," Proceedings of SPIE, vol. 8999, p. 899936, 2014.Google Scholar
  77. K. Shi, P. Li, S. Yin and Z. Liu, "Chromatic confocal microscopy using supercontinuum light," Optics Express, vol. 12, no. 10, pp. 2096–2101, 2004.CrossRefADSGoogle Scholar
  78. S. D. Silvestri, J. Fujimoto, E. Ippen, E. B. G. Jr, L. R. Williams and K. A. Nelson, "Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated raman scattering in α-perylene crystal from 20 to 300 K," Chemical Physics Letters, vol. 116, p. 146–152, 1985.CrossRefADSGoogle Scholar
  79. L. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky and R. Alfano, "Deep optical imaging of tissue using the second and third near-infrared spectral windows," Journal of Biomedical Optics, vol. 19, no. 5, p. 056004, 2014.Google Scholar
  80. L. A. Sordillo, L. Lindwasser, Y. Budansky, P. Leproux and R. R. Alfano, "Imaging of tissue using a NIR supercontinuum laser light source with wavelengths in the second and third NIR optical windows," in Photonics West, California, 2015.Google Scholar
  81. B. Spokoyny and E. Harel, "Mapping the Vibronic Structure of a Molecule by Few-Cycle Continuum Two-Dimensional Spectroscopy in a Single Pulse," Journal of Physical Chemistry Letters, vol. 16, no. 5, p. 2808–2814, 2014.CrossRefGoogle Scholar
  82. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt and T. Udem, "Laser frequency combs for astronomical observations," Science, vol. 321, pp. 1335–1337, 2008.CrossRefADSGoogle Scholar
  83. G. A. Swartzlander, "Broadband nulling of a vortex phase mask," Optics Letters, vol. 30, no. 21, pp. 2876–2878, 2005.CrossRefADSGoogle Scholar
  84. G. A. Swartzlander, E. L. Ford, R. S. Abdul-Malik, L. M. Close, M. A. Peters, D. M. Palacios and D. W. Wilson, "Astronomical demonstration of an optical vortex coronagraph," Optics Express, vol. 16, no. 14, pp. 10200–10207, 2008.CrossRefADSGoogle Scholar
  85. H. I. Sztul, V. Kartazayev and R. R. Alfano, "Laguerre–Gaussian supercontinuum," Optics Letters, vol. 31, pp. 2725–2727, 2006.CrossRefADSGoogle Scholar
  86. P. F. Tekavec, J. A. Myers, K. Lewis and J. P. Ogilvie, "Two-dimensional electronic spectroscopy with a continuum probe," Optics Letters, vol. 34, no. 2, pp. 1390–1392, 2009.CrossRefADSGoogle Scholar
  87. Y. Tokizane, K. Oka and R. Morita, "Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion," Optics Express, vol. 17, no. 17, pp. 14517–14525, 2009.CrossRefADSGoogle Scholar
  88. J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum, Wiley-VCH, 2011.Google Scholar
  89. T. Udem, R. Holzwarth and T. W. Hänsch, "Optical frequency metrology," Nature, vol. 416, pp. 233–237, 2002.CrossRefADSGoogle Scholar
  90. Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck and R. S. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Optics Express, vol. 11, no. 12, p. 1411, 2003.Google Scholar
  91. L. Wang, P. Ho, C. Liu, G. Zhang and R. R. Alfano, "Ballistic 2D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate," Science, Vols. 253, 767–771 (1991).CrossRefADSGoogle Scholar
  92. L. Wang, P. P. Ho and R. R. Alfano, "Time-resolved Fourier spectrum and imaging in highly scattering media," Applied Optics, vol. 32, pp. 5043–5048, 1993.CrossRefADSGoogle Scholar
  93. Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim and F. Wise, "Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography," Journal of the Optical Society of America A, vol. 22, no. 8, pp. 1492–1499, 2005.CrossRefADSGoogle Scholar
  94. K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty and S. G. Murdoch, "Nonlinear optics of fibre event horizons," Nature Communication, vol. 5, p. 4969, 2014.CrossRefADSGoogle Scholar
  95. A. M. Weiner, D. E. Leaird and G. P. Wiederrecht, "Femtosecond pulse sequences used for optical manipulation of molecular motion," Science, vol. 247, pp. 1317–1319, 1990.CrossRefADSGoogle Scholar
  96. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht and K. A. Nelson, "Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy," Journal of the Optical Society of America, vol. 8, no. 6, 1991.Google Scholar
  97. D. Wildanger, E. Rittweger, L. Kastrup and S. Hell, "STED microscopy with a supercontinuum laser source," Optics Express, vol. 16, no. 13, pp. 9614–9621, 2008.CrossRefADSGoogle Scholar
  98. A. Wright, J. Girkin, G. Gibson, J. Leach and M. Padgett, "Transfer of orbital angular momentum from a super-continuum, white-light beam," Optics Express, vol. 16, no. 13, pp. 9495–9500, 2008.CrossRefADSGoogle Scholar
  99. A. M. Yao and M. J. Padgett, "Orbital angular momentum: origins, behavior and applications," Advances in Optics and Photonics, vol. 3 , pp. 161–204, 2011.CrossRefGoogle Scholar
  100. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application, New York: Springer, 2005.CrossRefGoogle Scholar
  101. K. M. Yoo and R. R. Alfano, "Time-resolved coherent and incoherent components of forward light scattering in random media," Optics Letters, vol. 15, pp. 320–322, 1990.CrossRefADSGoogle Scholar
  102. Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur and A. E. Willner, "Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber," Optics Letters, vol. 37, pp. 1889–1891, 2012.CrossRefADSGoogle Scholar
  103. Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, pp. 1–57, 2009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Y. S. Rumala
    • 1
  • R. Dorsinville
    • 2
  • Robert R. Alfano
    • 1
    Email author
  1. 1.Department of PhysicsThe City College of the City University of New YorkNew YorkUSA
  2. 2.Department of Electrical EngineeringThe City College of the City University of New YorkNew YorkUSA

Personalised recommendations