Advertisement

Supercontinuum in Telecom Applications

  • S. V. SmirnovEmail author
  • J. D. Ania-Castañón
  • S. Kobtsev
  • S. K. Turitsyn
Chapter

Abstract

Supercontinuum (SC) generation and spectral broadening of coherent or partially coherent light signals in optical fibres has captured much attention over the past couple of decades, fuelled by the advent of microstructured photonic crystal fibres (PCF) that can be designed for extremely high non-linear responses (Knight et al., 1996a; Leong et al., 1820). Fibre-optic based supercontinuum presents multiple practical applications both within and outside the field of optical communications (Holzwarth et al., 2000; Fedotov et al., 2000; He et al., 2002; Sanders, 2002; Hartl et al., 2001; Ivanov et al., 2001; Povazay et al., 2002; Wang et al., 2003a; Marks et al., 2002), and the interest in this phenomenon has led to an improved knowledge of the interplay between the different non-linear processes affecting high-power radiation evolution in optical fibre waveguides. By applying techniques such as frequency-resolved optical gating (FROG) (Kane and Trebino, 1993; Dudley et al., 2002a; Gu et al., 1174; Cao et al., 2003) and spectral-phase interferometry for direct electric-field reconstruction (SPIDER) (Iaconis and Walmsley, 1998, 1999; Anderson et al., 2000; Stibenz and Steinmeyer, 2004), researchers have been able to painstakingly analyse non-linearly broadened radiation, improve on the models used to describe the broadening process and increase our understanding of the phenomenon (Tamura et al., 2000; Appl. Phys. B 77, No. 2–3 (2003) – Special Issue: Supercontinuum generation; Biancalana et al., 2003; Foster et al., 2004; Ranka and Gaeta, 1998; Dudley and Coen, 2002a; Corwin et al., 2003a; Nikolov et al., 2003). From a purely practical point of view, the progress has also been impressive and has allowed, for example, for generation of high-power supercontinuum radiation (Cumberland et al., 2008a; Chen et al., 2011; Chi et al., 2014) with spectra spanning more than one octave, and even reaching thousands of nm (Wadsworth et al., 2002; Nicholson et al., 2003a, 2004a; Takanayagi et al., 2005; Silva et al., 2012; Qin et al., 2009) in microstructured, tapered, and highly non-linear fibres (HNLF). Broad supercontinua extending well into the mid-infrared region have been reported using ZBLAN HNLF fluoride fibres (Chenan et al., 2009).

Keywords

Pump Power Wavelength Division Multiplex Stimulate Raman Scattering Photonic Crystal Fibre Rogue Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Grants of Ministry of Education and Science of the Russian Federation (Agreement No. 14.B25.31.0003, ZN-06-14/2419, order No. 3.162.2014/K); Russian President Grant MK-4683.2013.2; Council of the Russian President for the Leading Research Groups (Project No. NSh-4447.2014.2).

References

  1. A. K. Abeeluck, S. Radic, K. Brar, J.-C. Bouteiller, and C. Headley, in Optical Fiber Communication Conference (OFC) 2003, Postconference Digest, Vol. 86 of OSA Trends in Optics and Photonics Series, pp. 561–562 (2003).Google Scholar
  2. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser”, Opt. Lett. 29, 2163–2165 (2004).ADSCrossRefGoogle Scholar
  3. G. P. Agrawal, “Nonlinear Fiber Optics”. Academic Press, San Diego, Calif. (2001).zbMATHGoogle Scholar
  4. N. Akhmediev, J. M. Dudley, D. R. Solli, and S. K. Turitsyn, “Recent progress in investigating optical rogue waves”, Journal of Optics 15 (6), 060201 (2013).ADSCrossRefGoogle Scholar
  5. D. A. Akimov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. B. Fedotov, V. S. Pivtsov, A. A. Podshivalov, and A. M. Zheltikov, “Two-octave spectral broadening of subnanojoule Cr:forsterite femtosecond laser pulses in tapered fibers”, Appl. Phys. B 74, 307–311 (2002).ADSCrossRefGoogle Scholar
  6. R. R. Alfano, Ed., “The Super Continuum Laser Sources,” Springer-Verlag, Berlin, New York, 1989.Google Scholar
  7. R.R. Alfano and S.L. Shapiro, “Emission in the region 4000 to 7000 angstrom via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).ADSCrossRefGoogle Scholar
  8. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses”, Phys. Rev. Lett. 24, 592–594 (1970).ADSCrossRefGoogle Scholar
  9. M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, “The effects of noise on ultrashortoptical-pulse measurement using SPIDER,” Applied Physics B 70, S85–S93 (2000).ADSCrossRefGoogle Scholar
  10. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media”, Phys. Rev. Lett. 96 (2), 023902 (2006).ADSCrossRefGoogle Scholar
  11. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses”, J. Opt. Soc. Am. B, 19, 2165–2170 (2002).ADSCrossRefGoogle Scholar
  12. Appl. Phys. B 77, No. 2–3 (2003) – Special Issue: Supercontinuum generation.Google Scholar
  13. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers”, Opt. Lett. 28, 1353–1355 (2003).ADSCrossRefGoogle Scholar
  14. S. N. Bagaev, V. I. Denisov, V. F. Zakhar'yash, V. M. Klement'ev, S. M. Kobtsev, S. A. Kuznetsov, S. V. Kukarin, V. S. Pivtsov, S. V. Smirnov, and N. V. Fateev, “Spectral and temporal characteristics of a supercontinuum in tapered optical fibres”, Quantum Electronics 34, 1107–1115 (2004).ADSCrossRefGoogle Scholar
  15. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers”, J. Light. Technol. 5, 1712–1715 (1987).ADSCrossRefGoogle Scholar
  16. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers”, J. Light. Techn. 5, 1712–1715 (1987).ADSCrossRefGoogle Scholar
  17. A. Bartels and H. Kurz, “Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate”, Opt. Lett. 27, 1839–1841 (2002).ADSCrossRefGoogle Scholar
  18. B. Barviau, B. Kibler, and A. Picozzi, “Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion”, Phys. Rev. A 79, 063840 (2009).ADSCrossRefGoogle Scholar
  19. M. Bellini and T.W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer”, Opt. Lett. 25, 1049–1051 (2000).ADSCrossRefGoogle Scholar
  20. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers”, Opt. Lett. 34 (20), 3083–3085 (2009).ADSCrossRefGoogle Scholar
  21. F. Biancalana, D. V. Skryabin, and P. S. Russel, “Four wave mixing instabilities in photonic-crystal and tapered fibers”, Phys. Rev. E 68, 046631–046638 (2003).CrossRefGoogle Scholar
  22. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber”, Opt. Lett. 22, 961–963 (1997).ADSCrossRefGoogle Scholar
  23. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers”, Opt. Lett. 25, 1415–1417 (2000).ADSCrossRefGoogle Scholar
  24. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments”, Opt. Comm. 8, 285–288 (1973).ADSCrossRefGoogle Scholar
  25. J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures”, Opt. Comm. 156, 240–244 (1998).ADSCrossRefGoogle Scholar
  26. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber”, Appl. Phys B. 77, 239-244. (2003).ADSCrossRefGoogle Scholar
  27. K. K. Chen, S. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power”, Optics Express 18 (6), 5426–5432 (2010).ADSCrossRefGoogle Scholar
  28. H. Chen, S. Chen, J. Wang, Z. Chen, and J. Hou (2011) 35W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser, Optics Comm. 284, (23), 5484–5487.ADSCrossRefGoogle Scholar
  29. X. Chenan, X. Zhao, M.N. Islam, F.L. Terry, M.J. Freeman, A. Zakel, J. Mauricio (2009) 10.5 W Time-Averaged Power Mid-IR Supercontinuum Generation Extending Beyond 4 um With Direct Pulse Pattern Modulation, J. Sel. Topics in Quantum Electron. 15 (2).Google Scholar
  30. S. V. Chernikov, E. M. Dianov, D. J. Richardson, R. I. Laming, and D. N. Payne, “114 Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat signal in dispersion decreasing optical fiber”, Appl. Phys. Lett. 63, 293–295 (1993).ADSCrossRefGoogle Scholar
  31. S.V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation”, Opt. Lett. 19, 539–541 (1994).ADSCrossRefGoogle Scholar
  32. D. A. Chestnut, J. R. Taylor, “Gain-flattened fiber Raman amplifiers with nonlinearity-broadened pumps”, Opt. Lett. 153, 2294–2296 (2003).ADSCrossRefGoogle Scholar
  33. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave”, Optics Letters 36 (2), 160–162 (2011).ADSCrossRefGoogle Scholar
  34. J-J Chi, P-X Li, H Hu, Y-F Yao, G-J Zhang, C Yang and Z-Q Zhao, “120 W subnanosecond ytterbium-doped double clad fiber amplifier and its application in supercontinuum generation”, Laser Phys. 24 (8), 085103 (2014).ADSCrossRefGoogle Scholar
  35. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber”, Opt. Lett. 26, 1356–1358 (2001).ADSCrossRefGoogle Scholar
  36. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers”, J. Opt. Soc. Am. B 19, 753–764 (2002).ADSCrossRefGoogle Scholar
  37. P. B. Corkum and C. Rolland, “Femtosecond continua produced in gases”, J. Quant. Electr. 25, 2634–2639 (1989).ADSCrossRefGoogle Scholar
  38. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases”, Phys. Rev. Lett. 57, 2268–2271 (1986).ADSCrossRefGoogle Scholar
  39. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber”, Phys. Rev. Lett. 90, 113904 (2003).ADSCrossRefGoogle Scholar
  40. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber”, Appl. Phys. B 77, 269–277 (2003).ADSCrossRefGoogle Scholar
  41. R. F. Cregan, B. J. Mangan, and J. C. Knight, “Single-mode photonic and gap guidance of light in air”, Science 285, 1537–1539 (1999).CrossRefGoogle Scholar
  42. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).ADSCrossRefGoogle Scholar
  43. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Optics Express 16 (8), 5954–5962 (2008).ADSCrossRefGoogle Scholar
  44. A. Demircan, and U. Bandelow, “Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation”, Applied Physics B 86 (1), 31–39 (2007).CrossRefGoogle Scholar
  45. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, “Generation of a train of fundamental solitons at a high repetition rate in optical fibers”, Opt. Lett. 14, 1008–1010 (1989).ADSCrossRefGoogle Scholar
  46. S.A. Diddams, D.J. Jones, J. Ye, T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, and T.W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb”, Phys. Rev. Lett. 84, 5102–5105 (2000).ADSCrossRefGoogle Scholar
  47. S. A. Diddams, D. J. Jones, J. Ye, T. M. Fortier, R. S. Windeler, S. T. Cundiff, T. W. Hänsch, and J. L. Hall, “Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses”, Opt. Photonics News 11, 16–22 (2000).ADSCrossRefGoogle Scholar
  48. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, and R. S. Windeler, “Direct RF to optical frequency measurements with a femtosecond laser comb”, IEEE Trans. Instrum. Meas. 50, 552–555 (2001).CrossRefGoogle Scholar
  49. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C.M.B. Cordeiro, J.C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs”, Optics Express 16 (10), 7161–7168 (2008).ADSCrossRefGoogle Scholar
  50. W. Drexler, “Ultrahigh-resolution optical coherence tomography”, J. Biomed. Opt. 9, 47–74 (2004).ADSCrossRefGoogle Scholar
  51. W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto. “In vivo ultrahigh-resolution optical coherence tomography”, Opt. Lett. 24, 1221–1224, (1999).ADSCrossRefGoogle Scholar
  52. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).ADSCrossRefGoogle Scholar
  53. J. M. Dudley, and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).ADSCrossRefGoogle Scholar
  54. J. M. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber”, Opt. Express 12, 2423–2428 (2004).ADSCrossRefGoogle Scholar
  55. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments”, Optics Express 10, 1215–1221 (2002).ADSCrossRefGoogle Scholar
  56. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fiber with nanosecond and femtosecond pulse pumping”, J. Opt. Soc. Am. B 19, 765–771 (2002).ADSCrossRefGoogle Scholar
  57. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fibers”, Rev. Mod. Phys. 78 (2006).Google Scholar
  58. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation”, Opt. Express 16, 3644–3651 (2008).ADSCrossRefGoogle Scholar
  59. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation”, Optics Express 17 (24), 21497–21508 (2009).ADSCrossRefGoogle Scholar
  60. T. J. Ellingham, L. M. Gleeson, N. J. Doran, “Enhanced Raman amplifier performance using non-linear pump broadening”, in Proc. ECOC 2002, 4.1.3 (2002).Google Scholar
  61. T. J. Ellingham, J. D. Ania-Castañón, S. K. Turitsyn, A. Pustovskikh, S. Kobtsev, and M. P. Fedoruk, “Dual-pump Raman amplification with increased flatness using modulation instability”, Opt. Express 13, 1079–1084 (2005).ADSCrossRefGoogle Scholar
  62. A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long Raman fiber cavities”, Opt. Express 17, 17909–17915 (2009).ADSCrossRefGoogle Scholar
  63. M. Erkintalo, G. Genty, and J.M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation”, Optics Letters 34 (16), 2468–2470 (2009).ADSCrossRefGoogle Scholar
  64. J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fiber”, IEEE J. Quantum Electron. 42, 1038–1046 (2006).ADSCrossRefGoogle Scholar
  65. A. B. Fedotov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, D. Chorvat, V. I. Beloglazov, L. A. Melnikov, N. B. Skibina, A. P. Tarasevitch, and D. von der Linde, “Supercontinuum-generating holey fibers as new broadband sources for spectroscopic applications”, Laser Phys. 10, 723–726 (2000).Google Scholar
  66. A. F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications”, Rep. on Progr. in Phys. 66, 239–303, (2003).ADSCrossRefGoogle Scholar
  67. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers”, Phys. Rev. Lett. 84 (26), 6010–6013 (2000).ADSCrossRefGoogle Scholar
  68. A. Ferrando, E. Silvestre, J.J. Miret, J.A. Monsoriu, M.V. Andres, and P.S.J. Russell, “Designing a photonic crystal fibre with flattened chromatic dispersion”, El. Lett. 35, 325–327 (1999).CrossRefGoogle Scholar
  69. A. Ferrando, E. Silvestre, J.J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers”, Opt. Lett. 25, 790–792 (2000).ADSCrossRefGoogle Scholar
  70. A. Ferrando, E. Silvestre, P. Andres, J.J. Miret, and M.V. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers”, Opt. Express 9, 687–697 (2001).ADSCrossRefGoogle Scholar
  71. R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect”, Appl. Phys. Lett. 14, 140 (1969).ADSCrossRefGoogle Scholar
  72. R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation”, Opt. Lett. 12, 483–485 (1987).ADSCrossRefGoogle Scholar
  73. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions”, Opt. Express 12, 2880–2887 (2004).ADSCrossRefGoogle Scholar
  74. V. François, F.A. Ilkov, and S.L. Chin, “Experimental study of the supercontinuum spectral width evolution in CO2 gas”, Opt. Comm. 99, 241–246 (1993).ADSCrossRefGoogle Scholar
  75. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers”, Opt. Lett. 27, 924–926 (2002).ADSCrossRefGoogle Scholar
  76. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier”, Applied Optics 51 (7), 834–840 (2012).ADSCrossRefGoogle Scholar
  77. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum generation in microstructured fibers”, Opt. Express 10, 1083–1098 (2002).ADSCrossRefGoogle Scholar
  78. G. Genty, J. M. Dudley, B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime”, Applied Physics B 94 (2), 187–194 (2009).CrossRefGoogle Scholar
  79. M. González-Herráez, S. Martín-López, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser”, Opt. Comm. 226, 323–328 (2003).ADSCrossRefGoogle Scholar
  80. A. V. Gorbach, and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres”, Nature Photonics 1, 653–657 (2007).ADSCrossRefGoogle Scholar
  81. J. P. Gordon, “Theory of the soliton self-frequency shift”, Opt. Lett. 11, 662–664 (1986).ADSCrossRefGoogle Scholar
  82. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Generation of 33-fsec pulses at 1.32 mcm through a high-order soliton effect in a single-mode optical fiber”, Opt. Lett. 12, 395–397 (1987).ADSCrossRefGoogle Scholar
  83. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers”, Optics Express 19 (21), 21003–21010 (2011).ADSCrossRefGoogle Scholar
  84. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, ”Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174 (2002).ADSCrossRefGoogle Scholar
  85. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum”, Opt. Express 11, p. 2697–2703 (2003).ADSCrossRefGoogle Scholar
  86. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber”, Opt. Lett. 26, 608–610 (2001).ADSCrossRefGoogle Scholar
  87. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers”, Opt. Lett. 9, 288–290 (1984).ADSCrossRefGoogle Scholar
  88. G. S. He, T. C. Lin, and P. N. Prasad, “New technique for degenerate two-photon absorption spectral measurements using femtosecond continuum generation”, Opt. Express 10, 566–574 (2002).ADSCrossRefGoogle Scholar
  89. A.M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers”, JOSA B 27 (3), 550–559 (2010).ADSCrossRefGoogle Scholar
  90. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19 (4), 3775–3787 (2011).ADSCrossRefGoogle Scholar
  91. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers”, Phys. Rev. Lett. 88, 173901 (2002).ADSCrossRefGoogle Scholar
  92. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photonics 5, 364–371 (2011).ADSCrossRefGoogle Scholar
  93. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan et al, “Single-Laser 32.5 Tbit/s Nyquist WDM Transmission,” J. Opt. Comm. and Networking 4 (10) 715–723 (2012).CrossRefGoogle Scholar
  94. P. P. Ho, Q. Z. Wang, J. Chen, Q. D. Liu, and R. R. Alfano, “Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation,” Appl. Opt. 36, 3425–3429 (1997).ADSCrossRefGoogle Scholar
  95. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy”, Phys. Rev. Lett. 85, 2264–2267 (2000).ADSCrossRefGoogle Scholar
  96. R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, A. Nevsky, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer”, Appl. Phys. B 73, 269–271 (2001).ADSCrossRefGoogle Scholar
  97. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion”, Optics Express 19 (6), 4902–4907 (2011).ADSCrossRefGoogle Scholar
  98. I-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y.A. Vlasov, and R.M. Osgood, “Supercontinuum generation in silicon photonic wires”, Optics Express 15 (23), 15242–15249 (2007).ADSCrossRefGoogle Scholar
  99. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers”, Optics Express 18 (7), 6722–6739 (2010).ADSCrossRefGoogle Scholar
  100. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy”, Optics Letters 36 (7), 1122–1124 (2011).ADSCrossRefGoogle Scholar
  101. A.V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers”, Phys. Rev. Lett. 87, 203901 (2001).ADSCrossRefGoogle Scholar
  102. C. Iaconis and I. A. Walmsley, “Spectral phase Interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Optics Letters 23, 792–794 (1998).ADSCrossRefGoogle Scholar
  103. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).ADSCrossRefGoogle Scholar
  104. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum fibers”, J. Opt. Soc. Am. B 6, 1149–1158 (1989).ADSCrossRefGoogle Scholar
  105. A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, A. A. Podshivalov, D. Chorvat, and A. M. Zheltikov, “An all-solid-state sub-40-fs self-starting Cr4+: Forsterite laser with holey-fiber beam delivery and chirp control for coherence-domain and nonlinear-optical biomedical applications”, Laser Phys. 11, 158–163 (2001).Google Scholar
  106. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber”, J. Opt. Soc. Am. B 20 (8), 1611–1615 (2003).ADSCrossRefGoogle Scholar
  107. D. A. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis”, Science 288, 635–639 (2000).ADSCrossRefGoogle Scholar
  108. D.J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating”, Opt. Lett. 18, 823–825 (1993).ADSCrossRefGoogle Scholar
  109. S. V. Kartapoulos and M. Bouhiyate, “Supercontinuum sources in CWDM applications with channel protection”, Proc. of OFC 2005, NTuH4, Anaheim (2005).Google Scholar
  110. E. J. R. Kelleher, J.C. Travers, S.V. Popov, and J.R. Taylor, “Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability”, J. Opt. Soc. Am. B 29, 502–512 (2012).ADSCrossRefGoogle Scholar
  111. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions”, Nature Photonics 2, 605–609 (2008).CrossRefGoogle Scholar
  112. J. C. Knight, T. A. Birks, P. S. Russell and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding”, Opt. Lett. 21 (19), 1547–1549 (1996).ADSCrossRefGoogle Scholar
  113. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding”, Opt. Lett. 21, 1547–1549 (1996).ADSCrossRefGoogle Scholar
  114. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding: Errata”, Opt. Lett. 22, 484–485 (1997).ADSCrossRefGoogle Scholar
  115. J.C. Knight, T.A. Birks, P.S.J. Russell, and J.P. de Sandro. “Properties of photonic crystal fiber and the effective index model”. J. Opt. Soc. Am. A 15, 748–752 (1998).ADSCrossRefGoogle Scholar
  116. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre”, El. Lett. 34, 1347–1348 (1998).CrossRefGoogle Scholar
  117. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russel, “Photonic band gap guidance in optical fibers”, Science 282, 1476–1478 (1998).CrossRefGoogle Scholar
  118. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber”, IEEE Phot. Techn. Lett. 12, 807–809 (2000).ADSCrossRefGoogle Scholar
  119. S. Kobtsev, and S. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump”, Optics Express 13 (18), 6912–6918 (2005).ADSCrossRefGoogle Scholar
  120. S. M. Kobtsev, and S. V. Smirnov, “Coherent properties of super-continuum containing clearly defined solitons”, Opt. Express 14, 3968–3980 (2006).ADSCrossRefGoogle Scholar
  121. S. M. Kobtsev, and S. V. Smirnov, “Supercontinuum fiber sources under pulsed and CW pumping”, Laser Physics 17 (11), 1303–1305 (2007).ADSCrossRefGoogle Scholar
  122. S. M. Kobtsev, and S. V. Smirnov, “Fiber supercontinuum generators with dynamically controlled parameters”, Laser Physics 18 (11), 1264–1267 (2008).ADSCrossRefGoogle Scholar
  123. S. M. Kobtsev, and S. V. Smirnov, “Influence of noise amplification on generation of regular short pulse trains in optical fibre pumped by intensity-modulated CW radiation”, Opt. Express 16 (10), 7428–7434 (2008).ADSCrossRefGoogle Scholar
  124. S. M. Kobtsev, and S. V. Smirnov, “Temporal structure of a supercontinuum generated under pulsed and CW pumping”, Laser Physics 18 (11), 1260–1263 (2008).ADSCrossRefGoogle Scholar
  125. S. M. Kobtsev, and S. V. Smirnov, “Optimization of temporal characteristics of supercontinuum generated in tapered air-clad fibers”, Laser Optics 2003: Diode Lasers and Telecommunication Systems, Proc. SPIE 5480, 64–71 (2004).Google Scholar
  126. S. M. Kobtsev, S. V. Kukarin, and N. V. Fateev, “Generation of a polarised supercontinuum in small-diameter quasi-elliptic fibres”, Quantum Electronics 33, 1085–1088 (2003).ADSCrossRefGoogle Scholar
  127. S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping”, Laser Physics 14, 748–751 (2004).Google Scholar
  128. S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Сoherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre”, Appl. Phys. B. 81, No 2–3, 265–269 (2005).ADSCrossRefGoogle Scholar
  129. H. Kubota, K. Tamura, and M. Nakazawa, “Analyzes of coherence maintained ultrashort optical pulse trains and supercontinuum in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Amer. B. 16, 2223–2232 (1999).ADSCrossRefGoogle Scholar
  130. A. Kudlinski, and A. Mussot, “Visible cw-pumped supercontinuum”, Optics Letters 33 (20), 2407–2409 (2008).ADSCrossRefGoogle Scholar
  131. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation”, Optics Express 14 (12), 5715–5722 (2006).ADSCrossRefGoogle Scholar
  132. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources”, J. of Lightwave Technology 27 (11), 1556–1564 (2009).ADSCrossRefGoogle Scholar
  133. A.S. Kurkov, V.A. Kamynin, E.M. Sholokhov, and A.V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier”, Laser Phys. Lett. 8, 754 (2011).ADSCrossRefGoogle Scholar
  134. B. Kuyken, X. Liu, R.M. Osgood, Jr., R. Baets, G. Roelkens, and W.M.J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides”, Optics Express 19 (21), 20172–20181 (2011).ADSCrossRefGoogle Scholar
  135. C. Lafargue, J. Bolger, G. Genty, F. Dias, J.M. Dudley, and B.J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation”, Electron. Lett. 45 (4), 217–219 (2009).CrossRefGoogle Scholar
  136. M. Lehtonen, G. Genty, H. Ludvigsen and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber”, App. Phys. Lett. 82, 2197–2199 (2003).ADSCrossRefGoogle Scholar
  137. J. Y. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R.C. Moore, K. Frampton, V. Finazzi, X. Feng, J. H. Price, T. M. Monro and D. J. Richardson, “A lead silicate holey fiber with γ=1820 W-1 km-1 at 1550 nm”, Proc. of OFC 2005, Anaheim, PDP22 (2005).Google Scholar
  138. J.S. Levy, K. Saha, Y. Okawachi, M.A. Foster, A.L. Gaeta, M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source”, Photon. Technol. Lett. 24 (16) 1375–1377 (2012).ADSCrossRefGoogle Scholar
  139. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation”, Optics Express 17 (14), 12174–12182 (2009).ADSCrossRefGoogle Scholar
  140. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy”, Appl. Phys. Lett. 28, 216–218 (1976).ADSCrossRefGoogle Scholar
  141. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography”, Opt. Lett. 27, 2010–2012 (2002).ADSCrossRefGoogle Scholar
  142. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift”, Opt. Lett. 11, 659–661 (1986).ADSCrossRefGoogle Scholar
  143. Y. Miyagawa, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and H. Takara, “Over-10000-channel 2.5-GHz-spaced ultra-dense WDM light source”, Electronics Letters 42 (11), 655–657 (2006).CrossRefGoogle Scholar
  144. D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, “Group-velocity dispersion in photonic crystal fibers”, Opt. Lett. 23, 1662–1664 (1998).ADSCrossRefGoogle Scholar
  145. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser”, Opt. Lett. 24, 411–413 (1999).ADSCrossRefGoogle Scholar
  146. K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range groupvelocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 μm compact laser source", IEEE Trans. Instrum. Meas. 44, 712–715 (1995).CrossRefGoogle Scholar
  147. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum generated in a dispersion decreasing fiber with convex dispersion profile”, El. Lett. 33, 1806–1808 (1997).CrossRefGoogle Scholar
  148. K. Mori, K. Takara, and S. Kawanishi, “The effect of pump fluctuation in supercontinuum pulse generation,” Nonlinear Guided Waves & Their Applications, OSA Tech. Dig. Ser. 5, 276–278 (1998).Google Scholar
  149. K. Mori, H. Takara, and S. Kawanishi, “Analysis and design of supercontinuum pulse generation in a single-mode optical fiber”, J. Opt. Soc. Am. B 18, 1780–1792 (2001).ADSCrossRefGoogle Scholar
  150. K. Mori, K. Sato, H. Takara, and T. Ohara, “Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C-and L-bands”, Electron. Lett. 39, No. 6, 544 (2003).CrossRefGoogle Scholar
  151. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers”, El. Lett. 29, 862–864 (1993).CrossRefGoogle Scholar
  152. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono (1996) 1 Tbit/s 100 Gbit/s 10 channel OTDM-WDM transmission using a single supercontinuum WDM source, Electron. Lett. 32 (10), 906.CrossRefGoogle Scholar
  153. A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in CW-pumped supercontinuum”, Optics Express 17 (19), 17010–17015 (2009).ADSCrossRefGoogle Scholar
  154. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).ADSCrossRefGoogle Scholar
  155. B. P. Nelson, D. Cotter, K. J. Blow and N. J. Doran, “Large non-linear pulse broadening in long lengths of monomode fibre”, Optics Commun 48, 292–294 (1983).ADSCrossRefGoogle Scholar
  156. N. Newbury, “Searching for applications with a fine-tooth comb,” Nature Photonics 5, 186–188 (2011).ADSCrossRefGoogle Scholar
  157. J.W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).ADSCrossRefGoogle Scholar
  158. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave SC generation in highly nonlinear, dispersion-shifted fibers”, Appl. Phys. B 77, 211–218 (2003).ADSCrossRefGoogle Scholar
  159. J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, “Supercontinuum generation in ultraviolet-irradiated fibers”, Opt. Lett. 29, 2363 - 2365 (2004).ADSCrossRefGoogle Scholar
  160. J. W. Nicholson, J. M. Fini, J.-C. Bouteiller, J. Bromage and K. Brar, “Stretched ultrashort pulses for high repetition rate swept-wavelength Raman pumping”, J. Lightwave Technol. 22 (1), 71–78 (2004).ADSCrossRefGoogle Scholar
  161. N. I. Nikolov, T. Sorensen, O. Bang and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave-mixing”, J. Opt. Soc. Am. B 11, 2329–2337 (2003).ADSCrossRefGoogle Scholar
  162. N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser”, Jpn. J. Appl. Phys. 40, L365–L367, 2001.ADSCrossRefGoogle Scholar
  163. N. Nishizawa, and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system”, JOSA B 24 (8), 1786–1792 (2007).ADSCrossRefGoogle Scholar
  164. S. Oda and A. Maruta, ”A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion”, IEEE Photonics Technology Letters 17, 465-467 (2005).ADSCrossRefGoogle Scholar
  165. S. Oda, S. Okamoto, and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” in Conf. Proc. NLGW 2004, Toronto, Canada, 2004, Paper TuB3.Google Scholar
  166. S. Oda and A. Maruta, “Experimental demonstration of optical quantizer based on slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” in Conf. Proc. of ECOC 2004, Paper We4.P.084, Stockholm, Sweden, 2004.Google Scholar
  167. S. Oda and A. Maruta, “All-optical analog-to-digital conversion by slicing supercontinuum spectrum and switching with nonlinear optical loop mirror”, Proc. OFC 2005, paper OThN3, Anaheim (2005).Google Scholar
  168. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe and H. Takahashi, “Over 1000 channel, 6.25 GHz-spaced ultra-DWDM transmission with supercontinuum multi-carrier source”, Proc. of OFC 2005, OWA6, Anaheim (2005).Google Scholar
  169. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source”, J. Lightwave Technol. 24 (6), 2311–2317 (2006).ADSCrossRefGoogle Scholar
  170. T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber”, IEEE Phot. Technol. Lett. 10, 72–74 (1998).ADSCrossRefGoogle Scholar
  171. A. Ortigosa-Blanch, J.C. Knight, and P.S.J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in PCF”, J. Opt. Soc. Am. B 19, 2567–2572 (2002).ADSCrossRefGoogle Scholar
  172. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system”, Optics Letters 36 (19), 3912–3914 (2011).ADSCrossRefGoogle Scholar
  173. S. Pitois, J. Fatome, and G. Millot, “Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal”, Opt. Lett. 27, 1729–1731 (2002).ADSCrossRefGoogle Scholar
  174. F. Poli, A. Cucinotta, S. Selleri, and A.H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers”, IEEE Phot. Techn. Lett. 16, 1065–1067 (2004).ADSCrossRefGoogle Scholar
  175. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography”, Opt. Lett. 27, 1800–1802 (2002).ADSCrossRefGoogle Scholar
  176. M. Prabhu,N. S. Kim and K. Ueda, “Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser”, Jpn. J. Appl. Phys. 39, L291–293 (2000).ADSCrossRefGoogle Scholar
  177. A. Proulx, J. Ménard, N. Hô, J. M. Laniel, R. Vallée, and C. Paré, “Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers”, Opt. Express 11, 3338–3345 (2003).ADSCrossRefGoogle Scholar
  178. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 um in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).ADSCrossRefGoogle Scholar
  179. J. K. Ranka, A. L. Gaeta, “Breakdown of the slowlyvarying envelope approximation in the self-focusing of ultrashortpulses”, Opt. Lett. 23, 534–536 (1998).ADSCrossRefGoogle Scholar
  180. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm”, Conference on Lasers and Electro-Optics CLEO '99 CPD8/1 -CPD8/2 (1999).Google Scholar
  181. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm”, Opt. Lett. 25, 25–27 (2000).ADSCrossRefGoogle Scholar
  182. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers”, Opt. Lett. 25, 796–798 (2000).ADSCrossRefGoogle Scholar
  183. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers”, Opt. Express 10, 609–613 (2002).ADSCrossRefGoogle Scholar
  184. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).ADSCrossRefGoogle Scholar
  185. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift effects in photonic crystal fibre”, J. Modern Opt. 49, 757–767 (2002).ADSCrossRefGoogle Scholar
  186. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses”, Opt. Lett. 28, 989–991 (2003).ADSCrossRefGoogle Scholar
  187. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window”, Opt. Express 12, 2027–2032 (2004).ADSCrossRefGoogle Scholar
  188. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion”, Opt. Express 11, 843–852 (2003).ADSCrossRefGoogle Scholar
  189. S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy”, Appl. Phys. B 75, 799–802 (2002).ADSCrossRefGoogle Scholar
  190. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum”, Opt. Lett. 28, 1987–1989 (2003).ADSCrossRefGoogle Scholar
  191. C. V Shank, R. L. Fork, R. Yen, and R. H. Stolen, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40 (9), 761(1982).ADSCrossRefGoogle Scholar
  192. F. Silva, D.R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Communications 3 (2012).Google Scholar
  193. E. Silvestre, P. S. J. Russell, T. A. Birks, and J. C. Knight, “Analysis and design of an endlessly single-mode finned dielectric waveguide”, J. Opt. Soc. Am. A 15, 3067–3075 (1998).ADSCrossRefGoogle Scholar
  194. D. V. Skryabin, F. Luan, J. C. Knight, P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers”, Science 301 (5640), 1705–1708 (2003).ADSCrossRefGoogle Scholar
  195. W. L. Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser”, Phys. Rev. A 15, 2396–2403 (1977).ADSCrossRefGoogle Scholar
  196. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves”, Nature 450, 1054–1057 (2007).ADSCrossRefGoogle Scholar
  197. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation”, Phys. Rev. Lett. 101, 233902 (2008).ADSCrossRefGoogle Scholar
  198. H. Sotobayashi, W. Chujo and T. Ozeki, “Bi-directional photonic conversion between 4×10 Gbit/s OTDM and WDM by optical time-gating wavelength interchange”, Proc. OFC 2001, paper WM5, Ahaneim (2001).Google Scholar
  199. H. Sotobayashi, W. Chujo, A. Konishi and T. Ozeki, “Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDMx40-Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization”, J. Opt. Soc. Am. B 19, 2803 (2002).ADSCrossRefGoogle Scholar
  200. H. Sotobayashi, W. Chujo and K. Kitayama, “Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels x 10 Gbits/s)”, J. Opt. Soc. Am. B 19 (11), 2810 (2002).ADSCrossRefGoogle Scholar
  201. H. Sotobayashi, W. Chujo, A. Konishi and T. Ozeki, “Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDMx40-Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization”, J. Opt. Soc. Am. B 19 (11), 2803 (2002).Google Scholar
  202. G. Stibenz and G. Steinmeyer, “High dynamic range characterization of ultrabroadband white-light continuum pulses”, Opt. Express, 12, 6319–6325 (2004).ADSCrossRefGoogle Scholar
  203. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large mode-area holey fiber”, Opt. Lett. 28, 1951–1953 (2003).ADSCrossRefGoogle Scholar
  204. J. Swiderski and M. Michalska, “Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers”, Optics & Laser Technology 52, 75–80 (2013).ADSCrossRefGoogle Scholar
  205. M. Tadakuma, O. Aso, and S. Namiki, “A 104 GHz 328 fs soliton pulse train generation through a comb-like dispersion profiled fiber using short high nonlinearity dispersion shifted fibers”, presented at OFC 2000.Google Scholar
  206. K. Tai, A. Tomita, J.L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability”, Appl. Phys. Lett. 49, 236–238 (1986).ADSCrossRefGoogle Scholar
  207. K. Takada, M. Abe, T. Shibata, and K Okamoto (2002) 5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation”, Electronics Letters 38 (12), 572–573.CrossRefGoogle Scholar
  208. J. Takanayagi, N. Nishizawa, H. Nagai, M. Yoshida and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system”, IEEE Photonics Technology Letters 17, 37–39 (2005).ADSCrossRefGoogle Scholar
  209. T. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, K. Jinguji, Y. Inoue, T. Shibata, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from a single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).CrossRefGoogle Scholar
  210. H. Takara, T. Ohara, and K. Sato, “Over 1000 km DWDM transmission with supercontinuum multi-carrier source”, Electron. Lett. 39, No. 14, 1078 (2003).CrossRefGoogle Scholar
  211. H. Takara, H. Masuda, K. Mori, K. Sato, Y. Inoue, T. Ohara, A. Mori, M. Kohtoku, Y. Miyamoto, T. Morioka, and S. Kawanishi, “124 nm seamless bandwidth, 313x10 Gbit/s DWDM transmission”, Electron. Lett. 39, 382–383 (2003) 2003.Google Scholar
  212. K. Tamura and M. Nakazawa, “Timing jitter of solitons compressed in dispersion-decreasing fibers”, Opt. Lett. 23, 1360–1362 (1998).ADSCrossRefGoogle Scholar
  213. K. Tamura, E. Yoshida, and M. Nakazawa, “Generation of 10 GHz pulse trains at 16 wavelengths by spectrally slicing a high power femtosecond source”, Electron. Lett. 32 (18), 1691 (1996).CrossRefGoogle Scholar
  214. K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of Stable Continuum Generation at High Repetition Rates”, J. Quantum. Electron. 36, 7, 773–779 (2000).ADSCrossRefGoogle Scholar
  215. J. Teipel, K. Franke, D. Turke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses”, Appl. Phys. B 77, 245–251 (2003).ADSCrossRefGoogle Scholar
  216. M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, “Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique”, Japanese J. Appl. Phys. 43, 8059–8063 (2004).ADSCrossRefGoogle Scholar
  217. W. J. Tomlinson, R. J. Stolen, and C.V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers”, J. Opt. Soc. Am. B 1, 139–149 (1984).ADSCrossRefGoogle Scholar
  218. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation”, Optics Express 13 (17), 6615–6625 (2005).ADSCrossRefGoogle Scholar
  219. S. Vergeles, and S. K. Turitsyn, “Optical rogue waves in telecommunication data streams”, Phys. Rev. A 83, 061801 (2011).ADSCrossRefGoogle Scholar
  220. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St.J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).ADSCrossRefGoogle Scholar
  221. Y. M. Wang, Y. H. Zhao, J. S. Nelson, Z. P. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber”, Opt. Lett. 28, 182–184 (2003).ADSCrossRefGoogle Scholar
  222. Y.M. Wang, J.S. Nelson, Z.P. Chen, B.J. Reiser, R.S. Chuck, and R.S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography”, Opt. Express 11, 1411–1417 (2003).ADSCrossRefGoogle Scholar
  223. D. Wang, H. Jiang, S. Wu, H. Yang, Q. Gong, J. Xiang, and G. Xu, “An investigation of solvent effects on the optical properties of dye IR-140 using the pump supercontinuum-probing technique”, J. Opt. A: Pure Appl. Opt. 5, 515–519 (2003).ADSCrossRefGoogle Scholar
  224. B. R. Washburn and N. R. Newbury, “Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber”, Opt. Express, 12, 2166–2175 (2004).ADSCrossRefGoogle Scholar
  225. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C.D. Thuy, “An anomalous frequency broadening in water”, Opt. Comm. 4, 413–415 (1972).ADSCrossRefGoogle Scholar
  226. J. Ye and S.T. Cundiff, eds. Femtosecond optical frequency comb technology. (Springer, New York, 2005).Google Scholar
  227. Q. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler and B. Eggleton, “Dispersion measurement of tapered air–silica microstructure fiber by white-light interferometry”, Applied Optics 41, 4467–4470 (2002).ADSCrossRefGoogle Scholar
  228. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires”, Optics Letters 33 (7), 660–662 (2008).ADSCrossRefGoogle Scholar
  229. Z. Yusoff, P. Petropoulos, K. Furusawa, T. M. Monro, and D. J. Richardson, “A 36 channel x 10 GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fibre”, IEEE Photonics Technology Letters, 15 (12), 1689–1691 (2003).ADSCrossRefGoogle Scholar
  230. J. Zeller, J. Jasapara, W. Rudolph, and M. Sheik-Bahae, “Spectro-temporal characterization of a femtosecond white-light continuum generation by transient-grating diffraction”, Opt. Comm. 185, 133–137 (2000).ADSCrossRefGoogle Scholar
  231. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation”, Optics Express 14 (15), 6800–6812 (2006).ADSCrossRefGoogle Scholar
  232. A. M. Zheltikov, “Holey fibers”. Uspekhi Fizicheskikh Nauk, Russian Acad. Sc. 43, 1125–1136 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. V. Smirnov
    • 1
    Email author
  • J. D. Ania-Castañón
    • 2
  • S. Kobtsev
    • 1
  • S. K. Turitsyn
    • 3
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Instituto de ÓpticaCSICMadridSpain
  3. 3.Aston Institute of Photonic TechnologiesBirminghamUK

Personalised recommendations