Skip to main content

Electron Lenses for Space-Charge Compensation, Other Applications of Electron Lenses

  • Chapter
  • First Online:
Electron Lenses for Super-Colliders

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 550 Accesses

Abstract

Unique properties and flexibility of the electron lenses allow many other important accelerator applications beyond the head-on and long-range beam-beam compensation and the transverse and longitudinal hadron beam halo collimation. Below we consider several of the most actively studied and pursued ideas and proposals, including the electron-lens compensation of space-charge effects in high-intensity proton accelerators, including super-collider injectors; attainment of nonlinear integrable beam dynamics to suppress halo formation and particle loss in high-brightness proton rings; selective bunch-by-bunch or batch-by-batch slow extraction systems; beam-beam compensation in e + e− colliders and electron-ion colliders, tune-spread generators for Landau damping of coherent beam instabilities, and the “beam-beam kicker”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.J. Laslett, BNL Report No. 7535 (1963) p. 154

    Google Scholar 

  2. C.E. Nielsen, A.M. Sessler, Rev. Sci. Instrum. 30, 80 (1959)

    Article  ADS  Google Scholar 

  3. B.W. Montague, CERN Report No. 68 (1968)

    Google Scholar 

  4. F. Sacherer, LNBL Report No. UCRL-18454 (1968)

    Google Scholar 

  5. I. Hofmann et al., Part. Accel. 13, 145 (1983)

    Google Scholar 

  6. J. Struckmeier, M. Reiser, Part. Accel. 14, 227 (1984)

    Google Scholar 

  7. S. Machida, Nucl. Instrum. Meth. Phys. Res. Sect. A 309, 43 (1991)

    Google Scholar 

  8. S. Machida, Nucl. Instrum. Meth. Phys. Res. Sect. A 384, 316 (1997)

    Google Scholar 

  9. I. Hofmann, Phys. Rev. E 57, 4713 (1998)

    Google Scholar 

  10. S.Y. Lee, H. Okamoto, Phys. Rev. Lett. 80, 5133 (1998)

    Article  ADS  Google Scholar 

  11. A.V. Fedotov, J. Holmes, R.L. Gluckstern, Phys. Rev. ST Accel. Beams 4, 084202 (2001)

    Article  ADS  Google Scholar 

  12. J.A. Holmes et al., Phys. Rev. ST Accel. Beams 2, 114202 (1999)

    Article  ADS  Google Scholar 

  13. S.G. Anderson et al., Phys. Rev. ST Accel. Beams 5, 014201 (2002)

    Article  ADS  Google Scholar 

  14. A. Burov, Phys. Rev. ST Accel. Beams 12, 044202 (2009)

    Article  ADS  Google Scholar 

  15. A. Burov, V. Lebedev, Phys. Rev. ST Accel. Beams 12, 034201 (2009)

    Article  ADS  Google Scholar 

  16. M. Reiser, Theory and Design of Charged Particle Beams (Wiley, New York, 2008)

    Book  Google Scholar 

  17. B. Zotter, in Handbook of Accelerator Physics and Engineering, ed. by A. Chao et al., (2nd Edition, World Scientific, Singapore, 2013), pp. 137–140

    Google Scholar 

  18. K. Hirata, J. Jowett (Eds.), ICFA Beam Dynamics Newsletter 20 (1999)

    Google Scholar 

  19. M. Aiba et al., in Proc. 2007 IEEE PAC (Albuquerque, NM, USA, 2007), p. 3390

    Google Scholar 

  20. eRHIC Design Study: An Electron-Ion Collider at BNL, http://arxiv.org/abs/1409.1633

  21. Y. Zhang, J. Bisognano (Eds.), Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab, http://arxiv.org/abs/1209.0757

  22. V. Shiltsev et al., in Proceedings of IEEE NA-PAC’13 (Pasadena, CA, USA, 2013), p. 99

    Google Scholar 

  23. V. Shiltsev et al., in Proceedings of IPAC’15 (Richmond, 2015), p. 4019

    Google Scholar 

  24. V. Shiltsev, in Handbook of Accelerator Physics and Engineering, ed. by A. Chao et al., (2nd Edition, World Scientific, Singapore, 2013), pp. 394–395

    Google Scholar 

  25. P.J. Bryant et al., Preprint CERN ISR-MA/75-54 (1975)

    Google Scholar 

  26. B.G. Logan et al., Nucl. Fusion 45, 131 (2005)

    Article  ADS  Google Scholar 

  27. G. Dimov, V. Chupriyanov, Part. Acc. 14, 155 (1984)

    Google Scholar 

  28. A. Burov, G. Foster, V. Shiltsev, FNAL-TM-2125 (2000)

    Google Scholar 

  29. V. Litvinenko, G. Wang, Phys. Rev. ST Accel. Beams 17(11), 114401 (2014)

    Article  ADS  Google Scholar 

  30. Y. Alexahin et al., in Proceedings of 2007 IEEE PAC (Albuquerque, NM, USA, 2007), p. 3474

    Google Scholar 

  31. Y. Alexahin, V. Kapin, Fermilab document beams-doc-3106 (2008), at http://beamsdoc.fnal.gov

  32. V. Shiltsev et al., AIP Conf. Proc. 1086, 649 (2009)

    Google Scholar 

  33. S. Machida, KEK note “Simulation results of space charge compensation with electron beams” (unpublished, 2001)

    Google Scholar 

  34. S. Nagaitsev et al., in Proceedings of IPAC’12 (New Orleans, LA, USA, 2012), p. 16

    Google Scholar 

  35. A. Valishev et al., in Proceedings of IPAC’12 (New Orleans, LA, USA,  2012), p. 1371

    Google Scholar 

  36. A. Valishev, S. Nagaitsev, V. Shiltsev, in Proceedings of IPAC’15 (Richmond, VA, USA, 2015), MOPMA021

    Google Scholar 

  37. G. Stancari et al., in Proceedings of IPAC’15 (Richmond, VA, USA, 2015), p. 46

    Google Scholar 

  38. E. Prebys et al., in Proceedings of IPAC’15 (Richmond, VA, USA, 2015), p. 2627

    Google Scholar 

  39. V.V. Danilov, V.D. Shiltsev, Preprint FERMILAB-FN-0671 (1998)

    Google Scholar 

  40. V. Danilov, S. Nagaitsev, Phys. Rev. ST Accel. Beams 13, 084002 (2010)

    Article  ADS  Google Scholar 

  41. E.M. McMillan, University of California Report UCRL-17795 (1967)

    Google Scholar 

  42. E.M. McMillan, in Topics in Modern Physics, ed. by W.E. Brittin, H. Odabasi, (Colorado Associated University Press, Boulder, 1971), p. 219

    Google Scholar 

  43. V. Danilov, E. Perevedentsev, in Proceedings of 1997 IEEE PAC (Vancouver, Canada, 1997), p. 1759

    Google Scholar 

  44. D. Swartz et al., in Proceedings of ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders (BB2013, CERN, Geneva, Switzerland, 2013), ed. by W. Herr, G. Papotti, Preprint CERN-2014-004 (2014), p. 43

    Google Scholar 

  45. V. Shiltsev, in Proceedings of IEEE 2007 PAC (Albuquerque, NM, USA, 2007), p. 1159

    Google Scholar 

  46. V. Shiltsev, M. Chung, arXiv:1502.01736

    Google Scholar 

  47. G.H. Rees, P.J. Bryant, in Handbook of Accelerator Physics and Engineering, ed. by A. Chao et al., (2nd Edition, World Scientific, Singapore, 2013), pp. 382–387

    Google Scholar 

  48. See in M. Minty, F. Zimmermann, Measurement and Control of Charged Particle Beams (Springer, New York, 2003), pp. 230–238

    Google Scholar 

  49. S. Holmes, R. Gerig, D. Johnson, Part. Accel. 26, 193 (1990)

    Google Scholar 

  50. C. Moore et al., in Proceedings of 2001 IEEE PAC (Chicago, IL, USA, 2001), p. 1559

    Google Scholar 

  51. V. Shiltsev, J. Marriner, in Proceedings of 2001 IEEE PAC (Chicago, IL, USA, 2001), p. 1468

    Google Scholar 

  52. K. Hirata, in Handbook of Accelerator Physics and Engineering, ed. by A. Chao et al. (2nd Edition, World Scientific, Singapore, 2013), pp. 169–174

    Google Scholar 

  53. K. Ohmi, Phys. Rev. E 62(5), 7287 (2000)

    Article  ADS  Google Scholar 

  54. R. Talman, Phys. Rev. ST Accel. Beams 5, 081001 (2002)

    Article  ADS  Google Scholar 

  55. J. Seeman, in Nonlinear Dynamics Aspects of Particle Accelerators, Lecture Notes in Physics Vol. 247 (Springer-Verlag, New York, 1985), p. 121

    Google Scholar 

  56. I. Koop, G. Tumaikin (Eds.), in Proceedings of 3rd Advanced ICFA Beam Dynamics Workshop on Beam-Beam Effects in Circular Colliders (Budker INP, Novosibirsk, Russia, 1989)

    Google Scholar 

  57. K. Oide, in Elementary Particles—Accelerators and Colliders Series: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series, ed. by H. Schopper, S. Myers, Sub volume 21C (Springer, New York, 2013), pp. 10.31–10.40

    Google Scholar 

  58. V.Shiltsev, in Proceedings of 23rd Advanced ICFA Beam Dynamics Workshop on High Luminosity e + e− Colliders FACTORIES’2001 (Cornell University, Ithaca, NY, 2001); see, e.g., at http://www.lepp.cornell.edu/public/icfa/proceedings/index.html

  59. PEP-II Conceptual Design Report, Preprint LBL-PUB- 5379, SLAC-418, CALT-68-1869, UCRL-ID-114055, UC- IIRPA-93-01 (1993)

    Google Scholar 

  60. P. Raimondi, in Proceedings of the 2nd Workshop on Super B-Factory (Frascati, Italy, 2006)

    Google Scholar 

  61. P. Raimondi, D. Shatilov, M. Zobov, INFN Report No. LNF-07/003; arXiv:physics/0702033

    Google Scholar 

  62. M. Zobov et al., Phys. Rev. Lett. 104, 174801 (2010)

    Article  ADS  Google Scholar 

  63. see Chapter 5 in V. Lebedev, V. Shiltsev (Eds.), Accelerator Physics at the Tevatron Collider (Springer, New York, 2014)

    Google Scholar 

  64. E. Métral et al., Present Understanding of the Instabilities Observed at the LHC During Run I and Implications for HL-LHC. in Proceedings of 3rd Joint HiLumi LHC-LARP Annual Meeting (Daresbury, UK, November 11–15, 2013)

    Google Scholar 

  65. E. Métral, Initial Estimate of Machine Impedance. No. CERN-ACC-2014-0005 (2014)

    Google Scholar 

  66. K.Y. Ng, Physics of Intensity Dependent Beam Instabilities (World Scientific, Singapore, 2006)

    MATH  Google Scholar 

  67. K. Bishofberger, Successful Beam-Beam Tuneshift Compensation (Ph.D. Thesis, UCLA, 2005)

    Google Scholar 

  68. V. Shiltsev, in Proceedings of CARE-HHH-APD LHC-LUMI-06 WorkshopTowards a Roadmap for the Upgrade of the CERN & GSI Accelerator Complex” (16–20 October 2006, Valencia, Spain), Yellow Report CERN-2007-002 (2007), p. 92

    Google Scholar 

  69. T.Behnke et al. (eds.), The International Linear Collider Technical Design Report, ILC-REPORT-2013-040 (2013)

    Google Scholar 

  70. V. Shiltsev, Nucl. Instrum. Meth. A 374(2), 137–143 (1996)

    Article  ADS  Google Scholar 

  71. F. Richard, J.R. Schneider, D. Trines, A. Wagner (eds.), TESLA Technical Design Report, Preprint DESY-2001-011 (2001)

    Google Scholar 

  72. Y. Zhang, J. Bisognano (eds.), Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab, arxiv:1209.0757 (2012)

    Google Scholar 

  73. R. Brinkmann, Ya. Derbenev, K. Floettmann, TESLA Note 99-09 (1999)

    Google Scholar 

  74. P. Piot, Y.-E Sun, K.-J. Kim, Phys. Rev. ST Accel. Beams 9, 031001 (2006)

    Google Scholar 

  75. T. Ieiri et al., Phys. Rev. ST Accel. Beams 12, 064401 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shiltsev, V.D. (2016). Electron Lenses for Space-Charge Compensation, Other Applications of Electron Lenses. In: Electron Lenses for Super-Colliders. Particle Acceleration and Detection. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3317-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3317-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3315-0

  • Online ISBN: 978-1-4939-3317-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics