Skip to main content

Radiation-Induced Thyroid Cancer

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Radiation is one of the few accepted risk factors for thyroid cancer. The majority of radiation-induced thyroid carcinomas are well-differentiated papillary carcinomas. Children treated with X-rays for various benign conditions were found to be at increased risk of developing thyroid cancer. Likewise, survivors of the atomic bomb exposures in Hiroshima and Nagasaki, Japan, who were under age 20 at the moment of exposure, were at increased risk of developing thyroid cancer. Latency periods are typically ten or more years, and it appears that excess risk persists for decades after exposure. A pooled analysis of seven major studies over a wide range of doses demonstrated an excess relative risk (ERR) of 7.7 per Gy. In individuals exposed before age 15, linear models best describe the dose–response relationship. Without question, the Chernobyl accident was the worst technological disaster in the history of nuclear power generation. Analysis of post-Chernobyl thyroid carcinomas has demonstrated conclusively that 131I is a thyroid carcinogen in children and adolescents. A linear dose–response relationship has also been documented in children exposed to Chernobyl fallout, with an ERR of 5.25 per Gy after one decade. Molecular analyses have revealed that the mechanism of Chernobyl radiation-induced papillary thyroid cancer pathogenesis is primarily related to double-stranded DNA breaks leading to chromosomal translocations and/or inversions and gene rearrangements. The ret/PTC3 rearrangement was most common in early (prior to 10 years) post-Chernobyl papillary thyroid carcinomas, whereas ret/PTC1 was more common after a 10-year latency period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanson GA, Komorowski RA, Cerletty JM, Wilson SD. Thyroid gland morphology in young adults: normal subjects versus those with prior low-dose neck irradiation in childhood. Surgery. 1983;94:984–8.

    CAS  PubMed  Google Scholar 

  2. Spitalnik PF, Straus FH. Patterns of human thyroid parenchymal reaction following low-dose childhood irradiation. Cancer. 1978;41:1098–105.

    Article  CAS  PubMed  Google Scholar 

  3. Freedberg AS, Kurland GS, Blumgart HL. The pathologic effects of I-131 on the normal thyroid gland of man. J Clin Endocrinol. 1952;12:1315–48.

    Article  CAS  Google Scholar 

  4. Carr RF, LiVolsi VA. Morphologic changes in the thyroid after irradiation for Hodgkin’s and non-Hodgkin’s lymphoma. Cancer. 1989;64:825–9.

    Article  CAS  PubMed  Google Scholar 

  5. Quimby EH, Werner SC. Late radiation effects in roentgen therapy for hyperthyroidism. JAMA. 1949;140:1046–7.

    Article  Google Scholar 

  6. Winship T, Rosvoll RV. Thyroid carcinoma in childhood: final report on a 20 year study. Clin Proc Child Hosp Washington DC. 1970;26:327–49.

    Google Scholar 

  7. Roudebush CP, Asteris GT, DeGroot LJ. Natural history of radiation-associated thyroid cancer. Arch Intern Med. 1978;138:1631–4.

    Article  CAS  PubMed  Google Scholar 

  8. Samaan NA, Schultz PN, Ordonez NG, Hickey RC, Johnston DA. A comparison of thyroid carcinoma in those who have and have not had head and neck irradiation in childhood. J Clin Endocrinol Metab. 1987;64:219–23.

    Article  CAS  PubMed  Google Scholar 

  9. Mehta MP, Goetowski PG, Kinsella TJ. Radiation induced thyroid neoplasms 1920 to 1987: a vanishing problem? Int J Radial Oncol Biol Phys. 1989;16:1471–5.

    Article  CAS  Google Scholar 

  10. Akslen LA, Haldorsen T, Thoresen SO, Glattre E. Incidence pattern of thyroid cancer in Norway: influence of birth cohort and time period. Int J Cancer. 1993;53:183–7.

    Article  CAS  PubMed  Google Scholar 

  11. Harach HR, Franssila KO, Wasenius V-M. Occult papillary carcinoma of the thyroid: a “normal” finding in Finland—a systematic autopsy study. Cancer. 1985;56:531–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sampson RJ, Woolner LB, Bahn RC, Kurland LT. Occult thyroid carcinoma in Olmsted County, Minnesota: prevalence at autopsy compared with that in Hiroshima and Nagasaki, Japan. Cancer. 1974;34:2072–6.

    Article  CAS  PubMed  Google Scholar 

  13. Wilson SD, Komorowski R, Cerletty J, Majewski JT, Hooper M. Radiation-associated thyroid tumors: extent of operation and pathology technique influence the apparent incidence of carcinoma. Surgery. 1983;94:663–7.

    CAS  PubMed  Google Scholar 

  14. Robbins J. Thyroid cancer: a lethal endocrine neoplasm—NIH conference. Ann Intern Med. 1991;115:133–47.

    Article  CAS  PubMed  Google Scholar 

  15. Mettler FA, Upton AC. Carcinogenesis at specific sites. In: Medical effects of ionizing radiation. Philadelphia: WB Saunders; 1995. p. 130–9.

    Google Scholar 

  16. Aldinger KA, Samaan NA, Ibanez M, Hill CS. Anaplastic carcinoma of the thyroid: a review of 84 cases of spindle and giant cell carcinoma of the thyroid. Cancer. 1978;41:2267–75.

    Article  CAS  PubMed  Google Scholar 

  17. Duffy BJ, Fitzgerald PJ. Cancer of the thyroid in children: a report of 28 cases. J Clin Endocrinol Metab. 1950;10:1296–308.

    Article  PubMed  Google Scholar 

  18. Simpson CL, Hempelmann LH. The association of tumors and roentgen-ray treatment of the thorax in infancy. Cancer. 1957;10:42–56.

    Article  CAS  PubMed  Google Scholar 

  19. Saenger EL, Silverman FN, Sterling TD, Turner ME. Neoplasia following therapeutic irradiation for benign conditions in childhood. Radiology. 1960;74:889–904.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, et al. Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958–1987. Radiat Res. 1994;137:817–67.

    Article  Google Scholar 

  21. Parker LN, Belsky JL, Yamamoto T, Kawamoto S, Keehn RJ. Thyroid carcinoma after exposure to atomic radiation: a continuing survey of a fixed population, Hiroshima and Nagasaki, 1958–1971. Ann Intern Med. 1974;80:600–4.

    Article  CAS  PubMed  Google Scholar 

  22. Schull WJ. Atomic bomb survivors: patterns of cancer risk. Prog Cancer Res Ther. 1984;26:21–36.

    Google Scholar 

  23. Fjalling M, Tisell L-E, Carlsson S, Hansson G, Lundberg L-M, Oden A. Benign and malignant thyroid nodules after neck irradiation. Cancer. 1986;58:1219–24.

    Article  CAS  PubMed  Google Scholar 

  24. Furst CJ, Lundell M, Holm LE, Silfversward C. Cancer incidence after radiotherapy for skin hemangioma: a retrospective cohort study in Sweden. J Natl Cancer Inst. 1988;80:1387–92.

    Article  CAS  PubMed  Google Scholar 

  25. Lundell M, Hakulinen T, Holm L-E. Thyroid cancer after radiotherapy for skin hemangioma in infancy. Radiat Res. 1994;140:334–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lindberg S, Karlsson P, Arvidsson B, Holmberg E, Lundberg LM, Wallgren A. Cancer incidence after radiotherapy for skin haemangioma during infancy. Acta Oncol. 1995;34:735–40.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider AB, Ron E, Lubin J, Slovall M, Gierlowski TC. Dose-response relationships for radiation-induced thyroid cancer and nodules: evidence for the prolonged effects of radiation on the thyroid. J Clin Endocrinol Metab. 1993;77:362–9.

    CAS  PubMed  Google Scholar 

  28. Schneider AB, Recant W, Pinsky SM, Ryo UY, Bekerman C, Shore-Freedman E. Radiation-induced thyroid carcinoma: clinical course and results of therapy in 296 patients. Ann Intern Med. 1986;105:405–12.

    Article  CAS  PubMed  Google Scholar 

  29. Viswanathan K, Gierlowski TC, Schneider AB. Childhood thyroid cancer: characteristics and long-term outcome in children irradiated for benign conditions of the head and neck. Arch Pediatr Adolesc Med. 1994;148:260–5.

    Article  CAS  PubMed  Google Scholar 

  30. Schneider AB, Shore-Freedman E, Weinstein RA. Radiation-induced thyroid and other head and neck tumors: occurrence of multiple tumors and analysis of risk factors. J Clin Endocrinol Metab. 1986;63:107–12.

    Article  CAS  PubMed  Google Scholar 

  31. Paloyan E, Lawrence AM. Thyroid neoplasms after radiation therapy for adolescent acne vulgaris. Arch Dermatol. 1978;114:53–5.

    Article  CAS  PubMed  Google Scholar 

  32. Hempelmann LH, Hall WJ, Phillips M, Cooper RA, Ames WR. Neoplasms in persons treated with x-rays in infancy: fourth survey in 20 years. J Natl Cancer Inst. 1975;55:519–30.

    CAS  PubMed  Google Scholar 

  33. Shore RE, Hildreth N, Dvoretsky P, Andresen E, Moseson M, Pasternack B. Thyroid cancer among persons given x-ray treatment in infancy for an enlarged thymus gland. Am J Epidemiol. 1993;137:1068–80.

    CAS  PubMed  Google Scholar 

  34. Ron E, Modan B, Preston D, Alfandary E, Stovall M, Boice JD. Thyroid neoplasia following low-dose radiation in childhood. Radiat Res. 1989;120:516–31.

    Article  CAS  PubMed  Google Scholar 

  35. Shore RE, Albert RE, Pasternack BS. Follow-up study of patients treated by x-ray epilation for tinea capitis: resurvey of post-treatment illness and mortality experience. Arch Environ Health. 1976;31:17–24.

    Article  Google Scholar 

  36. Ron E, Modan B. Thyroid and other neoplasms following childhood scalp irradiation. Prog Cancer Res Ther. 1984;26:139–51.

    Google Scholar 

  37. Tucker MA, Morris Jones PH, Boice JD, Robison LL, Stone BJ, Stovall M, et al. Therapeutic radiation at a young age is linked to secondary thyroid cancer. Cancer Res. 1991;51:2885–8.

    CAS  PubMed  Google Scholar 

  38. Hancock SL, Cox RS, McDougall IR. Thyroid diseases after treatment of Hodgkin’s disease. N Engl J Med. 1991;325:599–605.

    Article  CAS  PubMed  Google Scholar 

  39. Boice JD, Day NE, Andersen A, Brinton LA, Brown R, Choi NW, et al. Second cancers following radiation treatment for cervical cancer: an international collaboration among cancer registries. J Natl Cancer Inst. 1985;74:955–75.

    PubMed  Google Scholar 

  40. Boice JD, Engholm G, Klienerman RA, Blettner M, Stovall M, Lisco H, et al. Radiation dose and second cancer risk in patients treated for cancer of the cervix. Radiat Res. 1988;116:3–55.

    Article  PubMed  Google Scholar 

  41. Arai T, Nakano T, Fukuhisa K, Kasamatsu T, Tsunematsu R, Masubuchi K, et al. Second cancer after radiation therapy for cancer of the uterine cervix. Cancer. 1991;67:398–405.

    Article  CAS  PubMed  Google Scholar 

  42. Hay JH, Duncan W, Kerr GR. Subsequent malignancies in patients irradiated for testicular tumours. Br J Radiol. 1984;57:597–602.

    Article  CAS  PubMed  Google Scholar 

  43. Fossa SD, Langmark F, Aass N, Andersen A, Lothe R, Borrasen AL. Second non-germ cell malignancies after radiotherapy of testicular cancer with or without chemotherapy. Br J Cancer. 1990;61:639–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kendall GM, Muirhead CR, MacGibbon BH, O’Hagan JA, Conquest AJ, Goodill AA, et al. Mortality and occupational exposure to radiation: first analysis of the National Registry for Radiation Workers. BMJ. 1992;304:220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beral V, Inskip H, Fraser P, Booth M, Coleman D, Rose G. Mortality of employees of the United Kingdom Atomic Energy Authority, 19461979. BMJ. 1985;291:440–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilkinson GS, Tietjen GL, Wiggs LD, Galke WA, Acquavella JF, Reyes M, et al. Mortality among plutonium and other radiation workers at a plutonium weapons facility. Am J Epidemiol. 1987;125:231–50.

    CAS  PubMed  Google Scholar 

  47. Checkoway H, Pearce N, Crawford-Brown DJ, Cragle DL. Radiation doses and cause-specific mortality among workers at a nuclear materials fabrication plant. Am J Epidemiol. 1988;127:255–66.

    CAS  PubMed  Google Scholar 

  48. Wing S, Shy CM, Wood JL, Wolf S, Cragle DL, Frame EL. Mortality among workers at Oak Ridge Nationaal Laboratory: evidence of radiation effects in follow-up through 1984. JAMA. 1991;265:1397–402.

    Article  CAS  PubMed  Google Scholar 

  49. Wang J-X, Boice JD, Li B-X, Zhang J-Y, Fraumeni JF. Cancer among medical diagnostic x-ray workers in China. J Natl Cancer Inst. 1988;80:344–50.

    Article  CAS  PubMed  Google Scholar 

  50. Boice JD, Mandel JS, Doody MM, Yoder RC, McGowan R. A health survey of radiologic technologists. Cancer. 1992;69:586–98.

    Article  PubMed  Google Scholar 

  51. Smith PG, Doll R. Mortality from cancer and all causes among British radiologists. Br J Radiol. 1981;54:187–94.

    Article  CAS  PubMed  Google Scholar 

  52. Mátanosla GM, Seltser R, Sartwell PE, Diamond EL, Elliott EA. The current mortality rates of radiologists and other physician specialists: specific causes of death. Am J Epidemiol. 1975;101:199–210.

    Google Scholar 

  53. Stewart A, Kneale GW. Radiation dose effects in relation to obstetric x-rays and childhood cancers. Lancet. 1970;1:1185–8.

    Article  CAS  PubMed  Google Scholar 

  54. Mole RH. Childhood cancer after prenatal exposure to diagnostic x-ray examinations in Britain. Br J Cancer. 1990;62:152–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oppenheim BE, Griem ML, Meier P. Effects of low-dose prenatal irradiation in humans: analysis of Chicago Lying-in data and comparison with other studies. Radiat Res. 1974;57:508–44.

    Article  CAS  PubMed  Google Scholar 

  56. Harvey EB, Boice JD, Honeyman M, Flannery JT. Prenatal x-ray exposure and childhood cancer in twins. N Engl J Med. 1985;312:541–5.

    Article  CAS  PubMed  Google Scholar 

  57. Rodvall Y, Pershagen G, Hrubec Z, Ahlbom A, Pedersen NL, Boice JD. Prenatal x-ray exposure and childhood cancer in Swedish twins. Int J Cancer. 1990;46:362–5.

    Article  CAS  PubMed  Google Scholar 

  58. Yoshimoto Y, Kato H, Schull WJ. Risk of cancer among children exposed in útero to A-bomb radiations, 1950–1984. Lancet. 1988;2:665–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lee W, Chiacchierini RP, Shleien B, Telles NC. Thyroid tumors following I-131 or localized X irradiation to the thyroid and pituitary glands in rats. Radiat Res. 1982;92:307–19.

    Article  CAS  PubMed  Google Scholar 

  60. Forman D, Cook-Mozaffari P, Darby S, Davey G, Sratton I, Doll R, Pike M. Cancer near nuclear installations. Nature. 1987;329:499–505.

    Article  CAS  PubMed  Google Scholar 

  61. Jablon S, Urubec Z, Boice JD. Cancer in populations living near nuclear facilities: a survey of mortality nationwide and incidence in two states. JAMA. 1991;265:1403–8.

    Article  CAS  PubMed  Google Scholar 

  62. Davis S, Kopecky KJ, Hamilton T. Hanford thyroid disease final report. Seattle: Fred Hutchinson Cancer Research Center; 2002.

    Google Scholar 

  63. Committee on an Assessment of Centers for Disease Control and Prevention Radiation Studies from DOE Contractor Sites: Subcommittee to Review the Hanford Thyroid Disease Study Final Results and Report, National Academy of Sciences. Review of the Hanford thyroid disease study draft final report. Washington, DC: National Academies Press; 2000.

    Google Scholar 

  64. Holm L-E, Wiklund KE, Lundell GE, Bergman NA, Bjelkengren G, Cederquist ES, et al. Thyroid cancer after diagnostic doses of iodine 131: a retrospective cohort study. J Natl Cancer Inst. 1988;80:1132–8.

    Article  CAS  PubMed  Google Scholar 

  65. Ron E, Doody MM, Becker DV, Brill AB, Curtis RE, Goldman MB, et al. Cancer mortality following treatment for adult hyperthyroidism. JAMA. 1998;280:347–55.

    Article  CAS  PubMed  Google Scholar 

  66. Holm L-E. Malignant disease following iodine-131 therapy in Sweden. Prog Cancer Res Ther. 1984;26:263–71.

    Google Scholar 

  67. Hoffman DA, McConahey WM, Fraumeni JF, Kurland LT. Cancer incidence following treatment of hyperthyroidism. Int J Epidemiol. 1982;11:218–24.

    Article  CAS  PubMed  Google Scholar 

  68. Holm L-E, Dahlqvist I, Israelsson A, Lundell G. Malignant thyroid tumors after iodine-131 therapy: a retrospective cohort study. N Engl J Med. 1980;303:188–91.

    Article  CAS  PubMed  Google Scholar 

  69. Hoffman DA, McConahey WM, Diamond EL, Kurland LT. Mortality in women treated for hyperthyroidism. Am J Epidemiol. 1982;115:243–54.

    CAS  PubMed  Google Scholar 

  70. Goldman MB, Maloof F, Monson RR, Aschengrau A, Cooper DS, Ridgway EC. Radioactive iodine therapy and breast cancer: a follow-up study of hyperthyroid women. Am J Epidemiol. 1988;127:969–80.

    CAS  PubMed  Google Scholar 

  71. Safa AM, Schumacher OP, Rodriguez-Antunez A. Long-term follow-up results in children and adolescents treated with radioactive iodine (I-131) for hyperthyroidism. N Engl J Med. 1975;292:167–71.

    Article  CAS  PubMed  Google Scholar 

  72. Johnson CJ. Cancer incidence in an area of radioactive fallout downwind from the Nevada test site. JAMA. 1984;251:230–6.

    Article  CAS  PubMed  Google Scholar 

  73. Rallison ML, Dobyns BM, Keating PR, Rail JE, Tyler FH. Thyroid disease in children: a survey of subjects potentially exposed to fallout radiation. Am J Med. 1974;56:457–63.

    Article  CAS  PubMed  Google Scholar 

  74. Machado SG, Land CE, McKay FW. Cancer mortality and radioactive fallout in southwestern Utah. Am J Epidemiol. 1987;125:44–61.

    CAS  PubMed  Google Scholar 

  75. National Cancer Institute. Estimated exposures and thyroid doses received by the American People from Iodine-131 in fallout following Nevada atmospheric nuclear bomb tests: a report from the National Cancer Institute. Washington, DC: U.S. Department of Health and Human Services; 1997.

    Google Scholar 

  76. Gilbert ES, Tarone R, Bouville A, Ron E. Thyroid cancer rates and 131-I doses from Nevada atmospheric nuclear bomb tests. J Natl Cancer Inst. 1998;90:1654–60.

    Article  CAS  PubMed  Google Scholar 

  77. Committee on Thyroid Screening Related to I-131 Exposure, Institute of Medicine, and Committee on Exposure of the American People to I-131 from the Nevada Atomic Bomb Tests, National Research Council. Exposure of the American people to Iodine-131 from Nevada nuclear-bomb tests: review of the National Cancer Institute Report and Public Health Implications. Washington, DC: National Academies Press; 1999.

    Google Scholar 

  78. Conard RA, Paglia DE, Larsen PR, Sutow WW, Dobyns BM, Robbins J, et al. Review of medical findings in a Marshallese population twenty-six years after accidental exposure to radioactive fallout. Brookhaven National Laboratory Report 1980; BNL 51261.

    Google Scholar 

  79. Conard RA. Late radiation effects in Marshall Islanders exposed to fallout 28 years ago. Prog Cancer Res Ther. 1984;26:57–71.

    Google Scholar 

  80. Hamilton TE, van Belle G, LoGerfo JP. Thyroid neoplasia in Marshall Islanders exposed to nuclear fallout. JAMA. 1987;258:629–36.

    Article  CAS  PubMed  Google Scholar 

  81. Wiklund K, Holm L-E, Eklund G. Cancer risks in Swedish Lapps who breed reindeer. Am J Epidemiol. 1990;132:1078–82.

    CAS  PubMed  Google Scholar 

  82. Shore RE. Human thyroid cancer induction by ionizing radiation: summary of studies based on external irradiation and radioactive iodines. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl Accident. Brussels: European Commission; 1996. p. 669–75.

    Google Scholar 

  83. Shore RE. Issues and epidemiological evidence regarding radiation-induced thyroid cancer. Radiat Res. 1992;131:98–111.

    Article  CAS  PubMed  Google Scholar 

  84. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141:259–77.

    Article  CAS  PubMed  Google Scholar 

  85. Shore RE, Woodard E, Hildreth N, Dvoretsky P, Hempelmann L, Pasternack B. Thyroid tumors following thymus irradiation. J Natl Cancer Inst. 1985;74:1177–84.

    CAS  PubMed  Google Scholar 

  86. National Academy of Sciences. Committee on the biological effects of ionizing radiations: health effects of exposure to low level of ionizing radiation (BEIR V). Washington, DC: National Academy Press; 1990.

    Google Scholar 

  87. Shakhtarin VV, Tsyb AF, Stepanenko VF, Orlov MY, Kopecky KJ, Davis S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol. 2003;32:584–91.

    Article  CAS  PubMed  Google Scholar 

  88. Niedziela M, Korman E, Breborowicz D, et al. A prospective study of thyroid nodular disease in children and adolescents in western Poland from 1996 to 2000 and the incidence of thyroid carcinoma relative to iodine deficiency and the Chernobyl disaster. Pediatr Blood Cancer. 2004;42:84–92.

    Article  PubMed  Google Scholar 

  89. Ron E, Lubin J, Schneider AB. Thyroid cancer incidence. Nature. 1992;360:113.

    Article  CAS  PubMed  Google Scholar 

  90. USSR State Committee on the Utilization of Atomic Energy. The accident at the Chernobyl nuclear power plant and its consequences. Information compiled for the International Atomic Energy Agency Experts Meeting, August 25–29, 1986, Vienna. Moscow: USSR State Committee on the Utilization of Atomic Energy; 1986.

    Google Scholar 

  91. Travis J. Chernobyl explosion. Inside look confirms more radiation. Science. 1994;263:750.

    CAS  PubMed  Google Scholar 

  92. Warman EA. Paper presented at the New York Chapter Health Physics Society symposium on the effects of the nuclear reactor accident at Chernobyl. Upton: Brookhaven National Laboratory; 1987.

    Google Scholar 

  93. Sich AR. Chernobyl thesis. Science. 1994;266:1627–8.

    Article  CAS  PubMed  Google Scholar 

  94. Stone R. The explosions that shook the world. Science. 1996;272:352–4.

    Article  CAS  Google Scholar 

  95. Sobotovich E, Bondarenko G, Petriaev E. Geochemistry of Chernobyl radionuclides. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 477–83.

    Google Scholar 

  96. Izrael YA, De Cort M, Jones AR, et al. The atlas of caesium-137 contamination of Europe after the Chernobyl accident. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 1–10.

    Google Scholar 

  97. Balonov M, Jacob P, Likhtarev I, Minenko V. Pathways, levels and trends of population exposure after the Chernobyl accident. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 235–49.

    Google Scholar 

  98. Tsaturov YS, De Cort M, Dubois G, Izrael YA, Stukin ED, Fridman SD, et al. The need for standardization in the analysis, sampling and measurement of deposited radionuclides. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 425–33.

    Google Scholar 

  99. Kazakov VS, Demidchik EP, Astakhova LN. Thyroid cancer after Chernobyl. Nature. 1992;359:21.

    Article  CAS  PubMed  Google Scholar 

  100. World Health Organization. International programme on the health effects of the Chernobyl accident. Geneva: World Health Organization; 1993.

    Google Scholar 

  101. Stsjazhko VA, Tsyb AF, Tronko ND, Souchkevitch G, Baverstock KF. Childhood thyroid cancer since accident at Chernobyl. BMJ. 1995;310:801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Williams N, Balter M. Chernobyl research becomes international growth industry. Science. 1996;272:355–6.

    Article  CAS  PubMed  Google Scholar 

  103. Balter M. Children become the first victims of fallout. Science. 1996;272:357–60.

    Article  CAS  PubMed  Google Scholar 

  104. Goldman M, Catlin R, Anspaugh L. Health and environmental consequences of the Chernobyl nuclear power plant accident. Washington, DC: U.S. Department of Energy Report DOE/ER 0332; 1987.

    Google Scholar 

  105. Lange R, Dickerson MH, Gudiksen PH. Dose estimates from the Chernobyl accident. Nucl Technol. 1988;82:311–23.

    CAS  Google Scholar 

  106. Nauman J, Wolff J. Iodine prophylaxis in Poland after the Chernobyl reactor accident: benefits and risks. Am J Med. 1993;94:524–32.

    Article  CAS  PubMed  Google Scholar 

  107. Dubina YV, Schekin YK, Guskina LN. Systematisation and verification of the spectrometrical analysis data of soil, grass, milk and milk products samples with results of 131-iodine measurements. Minsk Belarus Institute of Nuclear Physics; 1990, In Russian.

    Google Scholar 

  108. Becker DV, Robbins J, Beebe GW, Bouville AC, Wachholz BW. Childhood thyroid cancer following the Chernobyl accident. Endocrinol Metab Clin North Am. 1996;25:197–211.

    Article  CAS  PubMed  Google Scholar 

  109. Mityukova T, Astakhova L, Asenchyk L, Orlov M, Van Middlesworth L. Urinary iodine excretion in Belarus children. Eur J Endocrinol. 1995;133:216–7.

    Article  CAS  PubMed  Google Scholar 

  110. Gerasimov G, Alexandrova G, Arbuzova M, Butrova S, Kenzhibaeva M, Kotova G, et al. Iodine deficiency disorders (IDD) in regions of Russia affected by Chernobyl. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 813–5.

    Google Scholar 

  111. Gavrilin Y, Khrouch V, Shinkarev S, Drozdovitch V, Minenko V, Shemyakina E, et al. Estimation of thyroid doses received by the population of Belarus as a result of the Chernobyl accident. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 1011–20.

    Google Scholar 

  112. Jacob P, Kenigsberg Y, Zvonova I, Goulko G, Buglova E, Heidenreich WF, et al. Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia. Br J Cancer. 1999;80:1461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gavrilin YI, Gordeev KI, Ivanov VK, Ilyin LA, Kondrusev AI, Margulis UY, et al. The process and results of the reconstruction of internal thyroid doses for the population of contaminated areas of the Republic of Belarus. Vestn Acad Med Sci. 1992;2:35–43. In Russian.

    Google Scholar 

  114. Ilyin LA, Balonov MI, Buldakov LA, et al. Radiocontamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. J Radiol Prot. 1990;10:13–29.

    Article  Google Scholar 

  115. Gavrilin YI, Gordeev KI, Ilyin LA, et al. Results of thyroid dose assessment for contaminated territories of Belarussia. Bull Acad Med Sci USSR. 1991;8:35. In Russian.

    Google Scholar 

  116. Gavrilin YI, Khrouch VT, Shinkarev SM. Internal thyroid exposure of the residents in several contaminated areas of Belarus. J Med Radiol. 1993;6:15–20. In Russian.

    Google Scholar 

  117. Khrouch VT, Gavrilin YI, Shinkarev SM, et al. Generalization of results of individual thyroid dose reconstruction: determination of connections between parameters of contamination of people residences and levels of irradiation on thyroid glands. (In Russian) Minsk: Final Report of Institute of Biophysics, Moscow Contract N 7-17/93 with the Ministry of Public Health; 1994.

    Google Scholar 

  118. Stepanenko V, Gavrilin Y, Khrousch V, et al. The reconstruction of thyroid dose following Chernobyl. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 937–48.

    Google Scholar 

  119. Tsyb AF, Parshkov EM, Shakhtarin VV, Stepanenko VF, Skvortsov VF, Chebotareva IV. Thyroid cancer in children and adolescents of Bryansk and Kaluga regions. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 691–7.

    Google Scholar 

  120. Zvonova I, Balonov MI. Radioiodine dosimetry and prediction of thyroid effects on inhabitants of Russia following the Chernobyl accident. In: Merwin SE, Balonov MI, editors. The Chernobyl papers, vol. I: doses to the Soviet population and early health effects studies. Richland: Research Enterprises; 1993. p. 71–126.

    Google Scholar 

  121. Sobolev B, Likhtarev I, Kairo I, Tronko N, Oleynik V, Bogdanova T. Radiation risk assessment of the thyroid cancer in Ukrainian children exposed due to Chernobyl. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 741–8.

    Google Scholar 

  122. Likhtarev IA, Sobolev BG, Kairo IA, Tronko ND, Bogdanova TI, Oleinic VA, et al. Thyroid cancer in the Ukraine. Nature. 1995;375:365.

    Article  CAS  PubMed  Google Scholar 

  123. Likhtarev IA, Shandala NK, Gulko GM, Kairo IA, Chepurny NI. Ukrainian thyroid doses after the Chernobyl accident. Health Phys. 1993;64:594–9.

    Article  CAS  PubMed  Google Scholar 

  124. Likhtarev I, Sobolev B, Kairo I, et al. Results of large scale thyroid dose reconstruction in Ukraine. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 1021–34.

    Google Scholar 

  125. Likhtarev IA, Gulko GM, Sobolev BG, et al. Thyroid dose assessment for the Chernigov region (Ukraine): estimation based on 131I thyroid measurements and extrapolation of the results to districts without monitoring. Radiat Environ Biophys. 1994;33:149–66.

    Article  CAS  PubMed  Google Scholar 

  126. Prisyazhiuk A, Pjatak OA, Buzanov VA, Reeves GK, Beral V. Cancer in the Ukraine, post-Chernobyl. Lancet. 1991;338:1334–5.

    Article  CAS  PubMed  Google Scholar 

  127. Oleynic VA, Cheban AK. Thyroid cancer in children of Ukraine from 1981 to 1992. In: Robbins J, editor. Treatment of thyroid cancer in childhood. Proceedings of a workshop on September 10–11, 1992, at the National Institutes of Health. Publication No. DOE/EH-0406; 1992. p. 35.

    Google Scholar 

  128. Astakhova LN. Condition of the thyroid system and peculiarity of forming its pathology in the BSSR population under influence of the iodine-radionuclides in connection with Chernobyl nuclear accident. Zdravoohranenie Belorussi. 1990;6:11–5. In Russian.

    Google Scholar 

  129. Astakhova LN, Demidchuk EP, Davydova EV, et al. Health status of Byelorussian children and adolescents exposed to radiation as consequence of the Chernobyl atomic energy station accident. Vestn Akad Med Nauk USSR. 1991;11:25–7. In Russian.

    Google Scholar 

  130. Okeanov AE, Averkin YI. Analysis of malignant neoplasms in population of the Republic of Belarus before and after the Chernobyl accident. In: Matyukhin VA, Astakhova LN, Konigsberg YE, Nalivko SN, editors. Catastrophe at the Chernobyl atomic energy station and estimation of health state of population of the Republic of Belarus. Minsk: Research Institute of Radiation Medicine; 1991. p. 25–33.

    Google Scholar 

  131. Astakhova LN, Vorontsova TV, Drozd VM. Thyroid nodule pathology in children of Belarus following the Chernobyl accident. In: Robbins J, editor. Treatment of thyroid cancer in childhood. Proceedings of a workshop on September 10–11, 1992, at the National Institutes of Health. Publication No. DOE/EH-0406; 1992. p. 35.

    Google Scholar 

  132. Baverstock K, Egloff B, Finchera A, Ruchti C, Williams D. Thyroid cancer after Chernobyl. Nature. 1992;359:21–2.

    Article  CAS  PubMed  Google Scholar 

  133. Demidchik EP, Kazakov VS, Astakhova LN, et al. Thyroid cancer in children after the Chernobyl accident: clinical and epidemiological evaluation of 251 cases in the Republic of Belarus. In: Nagataki S, editor. Nagasaki symposium on Chernobyl: update and future. Amsterdam: Elsevier; 1994. p. 21.

    Google Scholar 

  134. Demidchik EP, Drobyshevskaya IM, Cherstvoy ED, et al. Thyroid cancer in children in Belarus. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 677–82.

    Google Scholar 

  135. Abelin T, Averkin JI, Egger M, et al. Thyroid cancer in Belarus post-Chernobyl: improved detection or increased incidence? Soz Praventivmed. 1994;39:189–97.

    Article  CAS  PubMed  Google Scholar 

  136. Averkin JI, Abelin T, Bleuer JP. Thyroid cancer in children in Belarus: ascertainment bias? Lancet. 1995;346:1223–4.

    Article  CAS  PubMed  Google Scholar 

  137. Abelin T, Egger M, Ruchti C. Belarus increase was probably caused by Chernobyl. BMJ. 1994;309:1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Williams ED, Cherstvoy E, Egloff B, et al. Interaction of pathology and molecular characterization of thyroid cancers. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 699–714.

    Google Scholar 

  139. Abelin T, Averkin JI, Okeanov AE, Bleuer JP. Thyroid cancer in Belarus: the epidemiologic situation. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 727–30.

    Google Scholar 

  140. Malko M. Chernobyl radiation induced thyroid cancers in Belarus. Joint Institute of Power and Nuclear Research, National Academy of Science of Belarus, pp. 240–55. Available on: http://www.rri.kyoto-u.ac.jp/NSRG/reports/kr79/kr79pdf/Malko2.pdf. Retrieved on 15 Jan 2012.

  141. Demidchik YE, Demidchik EP. Thyroid carcinomas in Belarus 16 years after the Chernobyl disaster. In: Proceedings of symposium of Chernobyl-related health effects. Tokyo: Radiation Effects Association; 2002.

    Google Scholar 

  142. Tsyb AF, Parshkov EM, Ivanov VK, Stepanenko VF, Matveenko EG, Skoropad YD. Disease indices of thyroid and their dose dependence in children and adolescents affected as a result of the Chernobyl accident. In: Nagataki S, editor. Amsterdam: Elsevier Science; 1994. p. 9–19.

    Google Scholar 

  143. Remennik LV, Starinsky VV, Mokina VD, et al. Malignant neoplasms on the territories of Russia damaged owing to the Chernobyl accident. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 825–8.

    Google Scholar 

  144. Tronko N, Bogdanova T, Komissarenko I, et al. Thyroid cancer in children and adolescents in Ukraine after the Chernobyl accident. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 683–90.

    Google Scholar 

  145. Tronko N, Epstein Y, Oleinik V, et al. Thyroid gland in children after the Chernobyl accident (yesterday and today). In: Nagataki S, editor. Nagasaki symposium on Chernobyl: update and future. Amsterdam: Elsevier; 1994. p. 31–46.

    Google Scholar 

  146. Williams ED, Tronko ND. Molecular, cellular, biological characterization of childhood thyroid cancer. Brussels: European Commission; 1996.

    Google Scholar 

  147. Cherstvoy E, Pozcharskaya V, Harach HR, Thomas GA, Williams ED. The pathology of childhood thyroid carcinoma in Belarus. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 779–84.

    Google Scholar 

  148. Bogdanova T, Bragarnik M, Tronko ND, Harach HR, Thomas GA, William ED. The pathology of thyroid cancer in Ukraine post Chernobyl. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 785–9.

    Google Scholar 

  149. Abrosimov AY, Lushnikov EF, Tsyb AF, Harach HR, Thomas GA, Williams ED. The pathology of childhood thyroid tumours in the Russian Federation after Chernobyl. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 791–3.

    Google Scholar 

  150. Furmanchuk AW, Averkin JI, Egloff B, et al. Pathomorphological findings in thyroid cancers of children from the Republic of Belarus: a study of 86 cases occurring between 1986 (“post-Chernobyl”) and 1991. Histopathology. 1992;21:401–8.

    Article  CAS  PubMed  Google Scholar 

  151. Nikiforov Y, Gnepp DR. Pediatric thyroid cancer after the Chernobyl disaster. Cancer. 1994;74:748–66.

    Article  CAS  PubMed  Google Scholar 

  152. Williams ED. Thyroid cancer in United Kingdom children and in children exposed to fallout from Chernobyl. In: Nagataki S, editor. Nagasaki symposium on Chernobyl: update and future. Tokyo: Elsevier; 1994.

    Google Scholar 

  153. Nikiforov Y, Gnepp DR, Fagin JA. Thyroid lesions in children and adolescents after the Chernobyl disaster: implications for the study of radiation tumorigenesis. J Clin Endocrinol Metab. 1996;81:9–14.

    CAS  PubMed  Google Scholar 

  154. Pacini F, Vorontsova T, Demidchik EP, et al. Diagnosis, surgical treatment and follow-up of thyroid cancers. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 755–63.

    Google Scholar 

  155. Nikiforov YE, Heffess CS, Korzenko AV, Fagin JA, Gnepp DR. Characteristics of follicular tumors and nonneoplastic thyroid lesions in children and adolescents exposed to radiation as a result of the Chernobyl disaster. Cancer. 1995;76:900–9.

    Article  CAS  PubMed  Google Scholar 

  156. Sierk AE, Askin FB, Reddick RL, Thomas CG. Pediatric thyroid cancer. Pediatr Pathol. 1990;10:877–93.

    Article  CAS  PubMed  Google Scholar 

  157. Harness JK, Thompson NW, Nishiyama RH. Childhood thyroid carcinoma. Arch Surg. 1971;102:278–84.

    Article  CAS  PubMed  Google Scholar 

  158. Richardson JE, Beaugie JM, Brown CL, Doniach I. Thyroid cancer in young patients in Great Britain. Br J Surg. 1974;61:85–9.

    Article  CAS  PubMed  Google Scholar 

  159. Tallroth E, Backdahl M, Einhorn J, Lundell G, Lowhagen T, Silfversward C. Thyroid carcinoma in children and adolescents. Cancer. 1986;58:2329–32.

    Article  CAS  PubMed  Google Scholar 

  160. Mizukami Y, Michigishi T, Nonomura A, et al. Carcinoma of the thyroid at young age: a review of 23 patients. Histopathology. 1992;20:63–6.

    Article  CAS  PubMed  Google Scholar 

  161. Robbins J. Characteristics of spontaneous and radiation induced thyroid cancers in children. In: Nagataki S, editor. Nagasaki symposium on Chernobyl: update and future. Amsterdam: Elsevier; 1994. p. 81.

    Google Scholar 

  162. Williams ED. Radiation-induced thyroid cancer. Histopathology. 1993;23:387–9.

    Article  CAS  PubMed  Google Scholar 

  163. Willams ED. Chernobyl, eight years on. Nature. 1994;371:556.

    Article  Google Scholar 

  164. Williams D. Thyroid cancer and the Chernobyl accident. J Clin Endocrinol Metab. 1996;81:6–8.

    CAS  PubMed  Google Scholar 

  165. Ito T, Seyama T, Iwamoto KS, Mizuno T, Tronko ND, Komissarenko IV, et al. Activated RET oncogene in thyroid cancers of children from areas contaminated by Chernobyl accident. Lancet. 1994;344:259.

    CAS  PubMed  Google Scholar 

  166. Fugazzola L, Pilotti S, Pinchera A, et al. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res. 1995;55:5617–20.

    CAS  PubMed  Google Scholar 

  167. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57:1690–4.

    CAS  PubMed  Google Scholar 

  168. Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene. 1995;11:2459–67.

    CAS  PubMed  Google Scholar 

  169. Rabes HM, Klugbauer S. Radiation-induced thyroid carcinomas in children: high prevalence of RET rearrangement. Verh Dtsch Ges Pathol. 1997;81:139–44. German.

    CAS  PubMed  Google Scholar 

  170. Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM. A new form of RET rearrangement in thyroid carcinomas of children after the Chernobyl reactor accident. Oncogene. 1996;13:1099–102.

    CAS  PubMed  Google Scholar 

  171. Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene. 1998;16:671–5.

    Article  CAS  PubMed  Google Scholar 

  172. Fugazzola L, Pierotti M, Vigano E, Pacini F, Verontsova T, Bongarzone I. Molecular and biochemical analysis of RET/PTC4, a novel oncogeneic rearrangement between RET and ELE1 genes, in a post-Chernobyl papillary thyroid cancer. Oncogene. 1996;13:1093–7.

    CAS  PubMed  Google Scholar 

  173. Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res. 1998;58:198–203.

    CAS  PubMed  Google Scholar 

  174. Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene. 1999;18:4388–93.

    Article  CAS  PubMed  Google Scholar 

  175. Salassidis K, Bruch J, Zitzelsberger H, Lengfelder E, Kellerer AM, Bauchinger M. Translocation t(10;14)(q11.2:q22.1) fusing the kinectin to the RET gene creates a novel rearranged form (PTC8) of the RET proto-oncogene in radiation-induced childhood papillary thyroid carcinoma. Cancer Res. 2000;60:2786–9.

    CAS  PubMed  Google Scholar 

  176. Klugbauer S, Jauch A, Lengfelder E, Demidchik E, Rabes HM. A novel type of RET rearrangement (PTC8) in childhood papillary thyroid carcinomas and characterization of the involved gene (RFG8). Cancer Res. 2000;60:7028–32.

    CAS  PubMed  Google Scholar 

  177. Rabes HM, Demidchik EP, Sidorow JD, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res. 2000;6:1093–103.

    CAS  PubMed  Google Scholar 

  178. Rabes HM. Gene rearrangements in radiation-induced thyroid carcinogenesis. Med Pediatr Oncol. 2001;36:574–82.

    Article  CAS  PubMed  Google Scholar 

  179. Pisarchik AV, Ermak G, Fomicheva V, Kartel NA, Figge J. The ret/PTC1 rearrangement is a common feature of Chernobyl-associated papillary thyroid carcinomas from Belarus. Thyroid. 1998;8:133–9.

    Article  CAS  PubMed  Google Scholar 

  180. Pisarchik AV, Ermak G, Demidchik EP, Mikhalevich LS, Kartel NA, Figge J. Low prevalence of the ret/PTC3r1 rearrangement in a series of papillary thyroid carcinomas presenting in Belarus ten year post-Chernobyl. Thyroid. 1998;8:1003–8.

    Article  CAS  PubMed  Google Scholar 

  181. Pisarchik AV, Yarmolinskii DG, Demidchik YE, Ermak GZ, Kartel NA, Figge J. ret/PTC1 and ret/PTC3r1 rearrangement in thyroid cancer cells, arising in residents of Belarus in the period after the accident at the Chernobyl nuclear power plant. Genetika. 2000;36:959–64. In Russian.

    CAS  PubMed  Google Scholar 

  182. Smida J, Salassidis K, Hieber L, et al. Distinct frequency of ret rearrangements in papillary thyroid carcinomas of children and adults from Belarus. Int J Cancer. 1999;80:32–8.

    Article  CAS  PubMed  Google Scholar 

  183. Thomas GA, Bunnell H, Cook HA, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab. 1999;84:4232–8.

    CAS  PubMed  Google Scholar 

  184. Santoro M, Thomas GA, Vecchio G, et al. Gene rearrangement and Chernobyl related thyroid cancers. Br J Cancer. 2000;82:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Williams ED, Abrosimov A, Bogdanova T, et al. Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness. Br J Cancer. 2004;90:2219–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Elisei R, Romei C, Vorontsova T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86:3211–6.

    CAS  PubMed  Google Scholar 

  187. Jhiang SM, Sagartz JE, Tong Q, et al. Targeted expression of the RET/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996;137:375–8.

    CAS  PubMed  Google Scholar 

  188. Santoro M, Chiappetta G, Cerrato A, et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene. 1996;12:1821–6.

    CAS  PubMed  Google Scholar 

  189. Powell Jr DJ, Russell J, Nibu K, et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 1998;58:5523–8.

    CAS  PubMed  Google Scholar 

  190. Ito T, Seyama T, Iwamoto KS, et al. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res. 1993;53:2940–3.

    CAS  PubMed  Google Scholar 

  191. Bounacer A, Wicker R, Caillou B, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997;15:1263–73.

    Article  CAS  PubMed  Google Scholar 

  192. Collins BJ, Chiappetta G, Schneider AB, et al. RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. J Clin Endocrinol Metab. 2002;87:3941–6.

    Article  CAS  PubMed  Google Scholar 

  193. Elisei R, Romei C, Soldatenko PP, Cosci B, Vorontsova T, Vivaldi A, et al. New breakpoints in both the H4 and RET genes create a variant of PTC-1 in a post-Chernobyl papillary thyroid carcinoma. Clin Endocrinol. 2000;53:131–6.

    Article  CAS  Google Scholar 

  194. Corvi R, Berger N, Balczon R, Romeo G. RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene. 2000;19:4236–42.

    Article  CAS  PubMed  Google Scholar 

  195. Nakata T, Kitamura Y, Shimizu K, Tanaka S, Fujimori M, Yokoyama S, Ito K, Emi M. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer. 1999;25:97–103.

    Article  CAS  PubMed  Google Scholar 

  196. Giannini R, Salvatore G, Monaco C, Sferratore F, Pollina L, Pacini F, et al. Identification of a novel subtype of H4-RET rearrangement in a thyroid papillary carcinoma and lymph node metastasis. Int J Oncol. 2000;16:485–9.

    CAS  PubMed  Google Scholar 

  197. Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics. 1995;28:15–24.

    Article  CAS  PubMed  Google Scholar 

  198. Beimfohr C, Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer. 1999;80:842–7.

    Article  CAS  PubMed  Google Scholar 

  199. Nikiforov YE, Nikiforova MN, Gnepp DR, Fagin JA. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene. 1996;13:687–93.

    CAS  PubMed  Google Scholar 

  200. Hillebrandt S, Streffer C, Reiners C, Demidchik E. Mutations in the p53 tumor suppressor gene in thyroid tumors of children from areas contaminated by the Chernobyl accident. Int J Radial Biol. 1996;69:39–45.

    Article  CAS  Google Scholar 

  201. Hillebrandt S, Streffer C, Demidchik EP, Biko J, Reiners C. Polymorphisms in the p53 gene in thyroid tumors and blood samples of children from areas in Belarus. Mutat Res. 1997;381:201–7.

    Article  CAS  PubMed  Google Scholar 

  202. Smida J, Zitzelsberger H, Kellerer AM, et al. P53 mutations in childhood thyroid tumors from Belarus and in thyroid tumors without radiation history. Int J Cancer. 1997;73:802–7.

    Article  CAS  PubMed  Google Scholar 

  203. Suchy B, Waldmann V, Klugbauer S, Rabes HM. Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumors. Br J Cancer. 1998;77:952–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pisarchik AV, Ermak G, Kartel NA, Figge J. Molecular alterations involving p53 codons 167 and 183 in papillary thyroid carcinomas from Chernobyl-contaminated regions of Belarus. Thyroid. 2000;10:25–30.

    Article  CAS  PubMed  Google Scholar 

  205. Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN, Rabes HM, Fagin JA, Nikiforov YE. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115(1):94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Beral V, Reeves G. Childhood thyroid cancer in Belarus. Nature. 1992;359:680–1.

    Article  CAS  PubMed  Google Scholar 

  207. Shigematsu I, Thiessen JW. Childhood thyroid cancer in Belarus. Nature. 1992;359:681.

    Article  CAS  PubMed  Google Scholar 

  208. Beebe GW. Epidemiologic studies of thyroid cancer in the CIS. In: Karaoglou A, Desmet G, Kelly GN, Menzel HG, editors. The radiological consequences of the Chernobyl accident. Brussels: European Commission; 1996. p. 731–40.

    Google Scholar 

  209. Astakhova LN, Anspaugh LR, Beebe GW, Bouville A, Drozdovitch VV, Garber V, et al. Chernobyl-related thyroid cancer in children of Belarus: a case-control study. Radiat Res. 1998;150:349–56.

    Article  CAS  PubMed  Google Scholar 

  210. Jacob P, Goulko G, Heidenreich WF, et al. Thyroid cancer risk to children calculated. Nature. 1998;392:31–2.

    Article  CAS  PubMed  Google Scholar 

  211. Shibata Y, Yamashita S, Masyakin VB, Panasyuk GD, Nagataki S. 15 years after Chernobyl: new evidence of thyroid cancer. Lancet. 2001;358:1965–6.

    Article  CAS  PubMed  Google Scholar 

  212. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, Drozdovitch V, Maceika E, Zvonova I, Vlassov O, Bouville A, Goulko G, Hoshi M, Abrosimov A, Anoshko J, Astakhova L, Chekin S, Demidchik E, Galanti R, Ito M, Korobova E, Lushnikov E, Maksioutov M, Masyakin V, Nerovnia A, Parshin V, Parshkov E, Piliptsevich N, Pinchera A, Polyakov S, Shabeka N, Suonio E, Tenet V, Tsyb A, Yamashita S, Williams D. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97(10):724–32.

    Article  PubMed  Google Scholar 

  213. Davis S, Stepanenko V, Rivkind N, Kopecky KJ, Voillequé P, Shakhtarin V, Parshkov E, Kulikov S, Lushnikov E, Abrosimov A, Troshin V, Romanova G, Doroschenko V, Proshin A, Tsyb A. Risk of thyroid cancer in the Bryansk oblast of the Russian Federation after the Chernobyl power station accident. Radiat Res. 2004;162(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  214. Tronko MD, Howe GR, Bogdanova TI, Bouville AC, Epstein OV, Brill AB, Likhtarev IA, Fink DJ, Markov VV, Greenebaum E, Olijnyk VA, Masnyk IJ, Shpak VM, McConnell RJ, Tereshchenko VP, Robbins J, Zvinchuk OV, Zablotska LB, Hatch M, Luckyanov NK, Ron E, Thomas TL, Voillequé PG, Beebe GW. A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst. 2006;98:897–903.

    Article  PubMed  Google Scholar 

  215. Brenner AV, Tronko MD, Hatch M, Bogdanova TI, Oliynik VA, Lubin JH, Zablotska LB, Tereschenko VP, McConnell RJ, Zamotaeva GA, O’Kane P, Bouville AC, Chaykovskaya LV, Greenebaum E, Paster IP, Shpak VM, Ron E. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environ Health Perspect. 2011;119(7):933–9. Epub 2011 Mar 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Figge MD, MBA, FACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Figge, J.J., Jennings, T.A., Gerasimov, G., Kartel, N.A., Ermak, G. (2016). Radiation-Induced Thyroid Cancer. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics