Skip to main content

New Approaches in Nuclear Medicine for Thyroid Cancer

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

When I wrote this chapter for the second edition of this textbook in 2006, I was not necessarily writing about the future developments of nuclear medicine in thyroid cancer within the next 6 years. Rather, I was attempting to communicate the spectrum of potential changes that might develop not only in the near future but also the distant future. Accordingly, the concepts that were the basis for my previous chapter in the second edition of this textbook have not changed significantly, and I have retained that chapter for this edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Nostrand D. New approaches in nuclear medicine for thyroid cancer. In: Wartofsky L, Van Nostrand D, editors. Thyroid cancer a comprehensive guide to clinical management. New York: Springer; 2006.

    Google Scholar 

  2. Millo C, Khorjekar G, Maass-Moreno R, Neumann R, Bluemke D. Comparison of PET images obtained with PET-CT vs PET-MR: a pilot study. J Nucl Med. 2012;53:551. abstract.

    Google Scholar 

  3. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F Fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78. 4.

    Article  PubMed  Google Scholar 

  4. Schneider MT, Garcia C, O’Neil J, Van Nostrand D, Wexler J, Burman K, Wartofsky L. Retrospective study of the utility of 18F sodium fluoride PET bone scans in patients with thyroid cancer. J Nucl Med (abstract) 2012;53(S):2067.

    Google Scholar 

  5. Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, Nicole A, Clarke PM, Franell K, McCready R, Smellie J, Frankly JA, John R, Nutting CM, Newbold K, Lemon C, Gerard G, Abdel-Hamid A, Hardman J, Macias E, Roques T, Whitaker S, Vijayn R, Alvarez P, Beare S, Forsyth S, Kadalayil L, Hackshaw A. Ablation with low-dose radioiodine and thyrotopin alfa in thyroid cancer. NEJM. 2012;366:1674–85.

    Article  CAS  PubMed  Google Scholar 

  6. Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, Bardet S, Leenhardt L, Bastie D, Schvartz C, Vera P, Morel O, Benisvy D, Bournaud C, Bonichon F, Dejax C, Toubert ME, Leboulleux S, Ricard M, Benhamou E. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. NEJM. 2012;366:1663–73.

    Article  CAS  PubMed  Google Scholar 

  7. Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, Wartofsky L. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. Thyroid. 2011;96:3217–25.

    CAS  Google Scholar 

  8. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. NEJM. 2013;368:623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Randall ES, editor. The Wizard of Menlo Park: how Thomas Alva Edison invented the modern world. New York: Broadway Publishers; 2008.

    Google Scholar 

  10. Wagner H. History of the role of nuclear medicine in the thyroid gland and its diseases: a personal perspective. In: Wartofsky L, Van Nostrand D, editors. Thyroid cancer: a comprehensive guide to clinical management. New York: Springer; 2006. Shao Y, Cherry SR, Farahani K. Simultaneous PET and MR imaging. Phys Med Biol. 1997;42:1965–1970.

    Google Scholar 

  11. Guy MJ, Castellano-Smith IA, Flower MA, et al. DETECT—dual energy transmission estimation CT—for improved attenuation correction in SPECT and PET. IEEE Trans Nucl Sci. 1998;45:1261–7.

    Article  Google Scholar 

  12. Wong WH, Uribe J, Hicks K, Hu G. An analog decoding GBO block detector using circular photomultipliers. IEEE Trans Nucl Sci. 1997;42:1095–101.

    Article  Google Scholar 

  13. Nahmias C, Nutt R, Hichwa RD, et al. PET tomograph designed for five minute routine whole-body studies. J Nucl Med. 2002;43:S36.

    Google Scholar 

  14. Ter-Pogossian MM, Mullani NA, Ficke DC, et al. Photon time of flight assisted positron emission tomography. J Comput Assist Tomogr. 1981;5:227–39.

    Article  CAS  PubMed  Google Scholar 

  15. Mäcke HR, Muller-Brand J. Receptor-targeted radiopeptide therapy. In: Ell PJ, Gambhir SS, editors. Nuclear medicine in clinical diagnosis and treatment, vol. 1. 3rd ed. New York: Churchill Livingstone; 2004. p. 459–72.

    Google Scholar 

  16. Teunissen JJM, Kwekkeboom DJ, Kooij PPM, et al. Peptide receptor radionuclide therapy for non-radioiodine-avid differentiated thyroid carcinoma. J Nucl Med. 2005;46:107S–14.

    CAS  PubMed  Google Scholar 

  17. Chang CH, Sharkey RM, Rossi EA, et al. Molecular advances in pre-targeting radioimmunotherapy with bispecific antibodies. Mol Cancer Ther. 2002;1:530–63.

    Article  Google Scholar 

  18. Reardon DT, Meares CF, Goodwin DA, et al. Antibodies against metal chelated. Nature. 1985;316:265–8.

    Article  Google Scholar 

  19. Khaw BA, Kilbanov A, O’Donnell SM, et al. Gamma imaging with negatively charge-modified monoclonal antibody; modification with synthetic polymers. J Nucl Med. 1991;32:1742–51.

    CAS  PubMed  Google Scholar 

  20. Peñuelas I, Boán JF, Martí-Climent MJ, et al. Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging. Mol Imaging Biol. 2004;6:225–38.

    Article  PubMed  Google Scholar 

  21. Anderson CJ, Dehdashti F, Cutler PD, et al. 64 Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med. 2001;42:213–21.

    CAS  PubMed  Google Scholar 

  22. Henze M, Schuhmacher J, Hipp P, et al. PET imaging of somatostatin receptors using 68Ga-DOTA-D-Phel-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med. 2001;42:1053–6.

    CAS  PubMed  Google Scholar 

  23. Zinn KR, Chaudhuri TR. The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med. 2002;29:388–99.

    Article  CAS  Google Scholar 

  24. Chen LB, Zhu RS, Lu HK, et al. Iodide uptake in medullary thyroid carcinoma cells after transfer of human sodium/iodide symporter gene. J Nucl Med. 2004; 5S:337P.

    Google Scholar 

  25. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med. 2002;43:1188–200.

    CAS  PubMed  Google Scholar 

  26. Pike VW SG. Radiopharmaceuticals for positron emission tomography. In: Cox P, editor. Methodological aspects. Developments in nuclear medicine. Dordrecht: Kluwer Academic Publishers; 1993. p. 24.

    Google Scholar 

  27. Pagani M, Stone-Elander S, Larsson SA. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications. Eur J Nucl Med. 1997;24:1031–327.

    Article  Google Scholar 

  28. Glaser M, Luthra M, Brady F. Applications of positron-emitting halogens in PET oncology (review). Int J Oncol. 2003;22:253–67.

    CAS  PubMed  Google Scholar 

  29. Newery GR. Cyclotron-produced isotopes in clinical and experimental medicine. Br J Radiol. 1959;32:633–41.

    Article  Google Scholar 

  30. Phillips AF, Haybittle JL, Newbery GR. Use of iodine-124 for the treatment of carcinoma of the thyroid. Acta Union Intern Contra Cancrum. 1960;16:1434–8.

    CAS  Google Scholar 

  31. Sgouros G, Kolbert KS, Sheikh A, et al. Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensional internal dosimetry (3D-ID) software. J Nucl Med. 2004;45:1366–72.

    CAS  PubMed  Google Scholar 

  32. Humm JL. Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med. 1986;27:1490–7.

    CAS  PubMed  Google Scholar 

  33. Ackery D. Principles of radionuclide therapy. In: Ell PJ, Gambhir SS, editors. Nuclear medicine in clinical diagnosis and treatment, vol. 1. 3rd ed. New York: Churchill Livingstone; 2004. p. 359–62.

    Google Scholar 

  34. Sisson JC, Jamadar DDA, Kazerooni EA, et al. Treatment of micro-nodular lung metastases of papillary thyroid cancer: are the tumors too small for effective irradiation from radioiodine? Thyroid. 1998;8:215–21.

    Article  CAS  PubMed  Google Scholar 

  35. Couturier O, Supiot S, Degraef-Mougin M, et al. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 2005;32:601–14.

    Article  CAS  PubMed  Google Scholar 

  36. Kassis AI, Adelstein SJ. Radiobiologic principles of radionuclide therapy. J Nucl Med. 2005;46:4S–12.

    PubMed  Google Scholar 

  37. Brown I. Astatine-211: its possible applications in cancer therapy. Appl Radiat Isot. 1986;37:789–98.

    Article  CAS  Google Scholar 

  38. Makrigiorgos GM, Kassis AI, Baranowska-Kortylewicz J, et al. Radiotoxicity of 5-{123I}iodo-2′-deoxyuridine in V79 cells: a comparison with 5-{125I}iodo-2′-deoxyuridine. Radiat Res. 1989;118:532–44.

    Article  CAS  PubMed  Google Scholar 

  39. Grunwald F, Pakos E, Bender H, et al. Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J Nucl Med. 1998;39:1555–8.

    CAS  PubMed  Google Scholar 

  40. Schmutzler C. Regulation of the sodium/iodide symporter by retinoids: a review. Exp Clin Endocrinol Diabetes. 2001;109:41–4.

    Article  CAS  PubMed  Google Scholar 

  41. Furuya F, Shimura H, Suzuki H, et al. Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin. Endocrinology. 2004;145:2865–75.

    Article  CAS  PubMed  Google Scholar 

  42. Chen LB, Zhu RS, Lu HK, et al. Iodide uptake in medullary thyroid carcinoma cells after transfer of human sodium/iodide symporter gene. J Nucl Med. 2004;5S:337P.

    Google Scholar 

  43. Misaki T, Miyamoto S, Alam MS, et al. Tumoricidal cytokines enhance radioiodine uptake in cultured thyroid cancer cells. J Nucl Med. 1996;37:646–8.

    CAS  PubMed  Google Scholar 

  44. Koong SS, Reynolds JC, Movius EG, et al. Lithium as a potential adjuvant to 131-I therapy of metastatic, well differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1999;84:912–6.

    CAS  PubMed  Google Scholar 

  45. Zarnegar R, Brunaud L, Kanauchi H, et al. Increasing the effectiveness of radioactive iodine therapy in the treatment of thyroid cancer using Trichostatin A, a histone deacetylase inhibitor. Surgery. 2002;132:984–90.

    Article  PubMed  Google Scholar 

  46. Kvols LK. Radiation sensitizers: a selective review of molecules targeting DNA and non-DNA targets. J Nucl Med. 2005;46:187S–90190.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Van Nostrand MD, FACP, FACNM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Nostrand, D. (2016). New Approaches in Nuclear Medicine for Thyroid Cancer. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_102

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_102

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics