Skip to main content

Microwave Processing of Fruits

  • Chapter
  • First Online:
Fruit Preservation

Abstract

Microwave heating, also known as dielectric heating, is a direct process, that is, energy is transferred directly to the food by molecular interaction with the electromagnetic field. Thus a greater penetration is achieved resulting in faster reaching of the temperature of interest and more uniform heat distribution. To correctly design processing equipment, it is essential to understand and determine the dielectric properties of the food and so ensure microwave incidence to obtain the required processing conditions. In order to obtain the dielectric properties of the food, it is important to consider its shape, moisture content, specific gravity, conductivity, and diffusivity, as well as process variables like maximum temperature and frequency. In this chapter, application of microwaves in various conservation methods applied to fruits will be presented such as blanching, drying, pasteurization, and sterilization. The advantages and disadvantages of employing microwaves to perform these processes when compared to conventional methods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibas, I. 2007. Microwave, air and combined microwave-air-drying parameters of pumpkin slices. LWT - Food Science and Technology 48: 1445–1451.

    Article  Google Scholar 

  • Andrés, A., C. Bilbao, and P. Fito. 2004. Drying kinetics of apple cylinders under combined hot air–microwave dehydration. Journal of Food Engineering 63: 71–78.

    Article  Google Scholar 

  • Askari, G.S., Z. Emam-Djomeh, and S.M. Mousavi. 2006. Effects of combined coating and microwave assisted hot-air drying on the texture, microstructure and rehydration characteristics of apple slices. Food Science and Technology International 12: 39–46.

    Article  Google Scholar 

  • Beaudry, C., G.S.V. Raghavan, C. Ratti, and T.J. Rennie. 2004. Effect of four drying methods on the quality of osmotically dehydrated cranberries. Drying Technology 22(3): 521–539.

    Article  Google Scholar 

  • Bilbao-Sáinz, C., A. Andrés, A. Chiralt, and P. Fito. 2006. Microwaves phenomena during drying of apple cylinders. Journal of Food Engineering 74: 160–167.

    Article  Google Scholar 

  • Botha, G.E., J.C. Oliveira, and L. Ahrné. 2012. Microwave assisted air drying of osmotically treated pineapple with variable power programmes. Journal of Food Engineering 108: 304–311.

    Article  Google Scholar 

  • Brewer, M. 2005. Microwave processing, nutritional and sensory quality. In The microwave processing of foods, ed. H. Schubert and M. Regier, 76–101. Cambridge, England: Woodhead.

    Chapter  Google Scholar 

  • Buffler, C.R. 1993. Introduction to microwaves. In Microwave cooking and processing: Engineering fundamentals for the food scientist, ed. C.R. Buffler, 1–13. New York: Van Nostrand Reinhold.

    Chapter  Google Scholar 

  • Cano, M.P., M.A. Marin, and C. Fúster. 1990. Effects of some thermal treatments on polyphenoloxidase and peroxidase activities of banana (Musa cavendishii, var enana). Journal of Science Food and Agriculture 51: 223–231.

    Article  CAS  Google Scholar 

  • Cañumir, J.A., J.E. Celis, J. de Bruijn, and L.V. Vidal. 2002. Pasteurisation of apple juice by using microwaves. LWT - Food Science and Technology 35: 389–392.

    Article  Google Scholar 

  • Cendres, A., C. Farid, J.F. Maingonnat, and C.M.G.C. Renard. 2011. An innovative process for extraction of fruit juice using microwave heating. LWT - Food Science and Technology 44: 1035–1041.

    Article  CAS  Google Scholar 

  • Cinquanta, L., D. Albanese, G. Cuccurullo, and M. Di Matteo. 2010. Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven. Journal of Food Science 75: E46–E50.

    Article  CAS  Google Scholar 

  • De Ancos, B., M.P. Cano, A. Hernandez, and M. Monreal. 1999. Effects of microwave heating on pigment composition and colour of fruit purees. Journal of the Science of Food and Agriculture 79: 663–670.

    Article  Google Scholar 

  • Devece, C., J.N. Rodriguez-Lopez, L.G. Fenoll, J. Tudela, J.M. Catala, E. de Los Reyes, and F. Garcia-Canovas. 1999. Enzyme inactivation analysis for industrial blanching applications: comparison of microwave, conventional, and combination heat treatments on mushroom polyphenoloxidase activity. Journal Agriculture and Food Chemistry 47(11):4506–4511.

    Article  CAS  Google Scholar 

  • Díaz, G.R., J. Martínez-Monzó, P. Fito, and A. Chiralt. 2003. Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science & Emerging Technologies 4: 203–209.

    Article  Google Scholar 

  • Dorantes-Alvarez, L., and L. Parada-Dorantes. 2005. Blanching using microwave processing. In The microwave processing of foods, ed. H. Schubert and M. Regier, 153–173. Cambridge, England: Woodhead.

    Chapter  Google Scholar 

  • Drouzas, A.E., and H. Schubert. 1996. Microwave application in vacuum drying of fruits. Journal of Food Engineering 28: 203–209.

    Article  Google Scholar 

  • Erle, U. 2005. Drying using microwave processing. In The microwave processing of foods, ed. H. Schubert and M. Regier, 142–152. Cambridge, England: Woodhead.

    Chapter  Google Scholar 

  • Erle, U., and H. Schubert. 2001. Combined osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering 49: 193–199.

    Article  Google Scholar 

  • Feng, H., and J. Tang. 1998. Microwave finish drying of diced apples in a spouted bed. Journal of Food Science 63(4): 679–683.

    Article  CAS  Google Scholar 

  • Gentry, T.S., and J.S. Roberts. 2004. Formation kinetics and application of 5-hydroxymethylfurfural as a time–temperature indicator of lethality for continuous pasteurization of apple cider. Innovative Food Science & Emerging Technologies 5: 327–333.

    Article  CAS  Google Scholar 

  • ———. 2005. Design and evaluation of a continuous flow microwave pasteurization system for apple cider. LWT - Food Science and Technology 38(3): 227–238

    Article  CAS  Google Scholar 

  • Gerard, K.A., and J.S. Roberts. 2004. Microwave heating of apple mash to improve juice yield and quality. LWT - Food Science and Technology 37: 551–557.

    Article  CAS  Google Scholar 

  • Guzmán, G.R., A.L. Dorantes, U.H. Hernández, S.H. Hernández, A. Ortiz, and E.R. Mora. 2002. Effect of zinc and copper chloride on the color of avocado puree heated with microwaves. Innovative Food Science & Emerging Technologies 3: 47–53.

    Article  Google Scholar 

  • Guzmán-Geronimo, R.I., M.G. López, and L. Dorantes-Alvarez. 2008. Microwave processing of avocado: Volatile flavor profiling and olfactometry. Innovative Food Science & Emerging Technologies 9: 501–506.

    Article  Google Scholar 

  • Igual, M., M.M. García-Martínez, and N. Martínez-Navarrete. 2010. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry 118: 291–299.

    Article  CAS  Google Scholar 

  • Jiménez-Vieyra, M.E., M.L. Zambrano-Zaragoza, M.R. Aguillar-Rodríguez. 2004, Mar. Effect of treatment with microwave energy on polyphenoloxidase and peroxidase activity in fruits. In: International Congress on Engineering and Food, ICEF 9, Montpellier, France.

    Google Scholar 

  • Kassem, A.S., A.Z. Shokr, A.R. El-Mahdy, A.M. Aboukarina, and E.Y. Hamed. 2011. Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of the Saudi Society of Agricultural Sciences 10: 33–40.

    Article  Google Scholar 

  • Kouchalzadeth, A., and S. Shafeei. 2010. Modeling of microwave-convective drying of pistachios. Energy Conversion and Management 51: 2012–2015.

    Article  Google Scholar 

  • Kratchanova, M., E. Pavlova, and I. Panchev. 2004. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydrate Polymers 56: 181–185.

    Article  CAS  Google Scholar 

  • Leusink, G.J., D.D. Kitts, P. Yaghmaee, and T. Durance. 2010. Retention of antioxidant capacity of vacuum microwave dried cranberry. Journal of Food Science 75(3): C311–C316.

    Article  CAS  Google Scholar 

  • Li, Z., G.S.V. Raghavan, and N. Wang. 2010. Apple volatiles monitoring and control in microwave drying. LWT - Food Science and Technology 43: 684–689.

    Article  CAS  Google Scholar 

  • Maskan, M. 2000. Microwave/air and microwave finish drying of banana. Journal of Food Engineering 44: 71–78.

    Article  Google Scholar 

  • ———. 2001. Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering 48: 169–175.

    Article  Google Scholar 

  • ———. 2006. Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: Colour degradation and kinetics. Journal of Food Engineering 72: 218–224.

    Article  Google Scholar 

  • Matsui, K.N., J.A.W. Gut, P.V. de Oliveira, and C.C. Tadini. 2008. Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering 88(2): 169–176.

    Article  CAS  Google Scholar 

  • Meredith, R. 1998. Engineer’s handbook of industrial microwave heating. London: The Institution of Electrical Engineers.

    Book  Google Scholar 

  • Moreno, J., A. Chiralt, I. Escriche, and J.A. Serra. 2000. Effect of blanching/osmotic dehydration combined methods on quality and stability of minimally processed strawberries. Food Research International 33: 609–616.

    Article  Google Scholar 

  • Mousa, M., and M. Farid. 2002. Microwave vacuum drying of banana slices. Drying Technology 20(10): 2055–2066.

    Article  Google Scholar 

  • Mui, W.W.Y., T.D. Durance, and C.H. Scaman. 2002. Flavor and texture of banana chips dried by combinations of hot air, vacuum, and microwave processing. Journal of Agricultural and Food Chemistry 50: 1883–1889.

    Article  CAS  Google Scholar 

  • Nikdel, S., C.S. Chen, M.E. Parish, D.G. Mackellar, and L.M. Friedrich. 1993. Pasteurization of citrus juice with microwave energy in continuous flow unit. Journal of Agricultural and Food Chemistry 41: 2116–2119.

    Article  CAS  Google Scholar 

  • Picouet, P.A., A. Landl, M. Abadias, M. Castellari, and I. Viñas. 2009. Minimal processing of a Granny Smith apple puree by microwave heating. Innovative Food Science & Emerging Technologies 10: 545–550.

    Article  CAS  Google Scholar 

  • Premakumar, K., and D.S. Khurdiya. 2002. Effect of microwave blanching on the nutritional qualities of banana puree. Journal of Food Science and Technology 39(3): 258–260.

    Google Scholar 

  • Raghavan, G.S.V., and A.M. Silveira. 2001. Shrinkage characteristics of strawberries osmotically dehydrated in combination with microwave drying. Drying Technology 19(2): 405–414.

    Article  CAS  Google Scholar 

  • Salazar-González, C., M.F. San Martín-González, A. López-Malo, and M.E. Sosa-Morales. 2012. Recent studies related to microwave processing of fluid foods. Food and Bioprocess Technology 5: 31–46.

    Article  Google Scholar 

  • Sham, P.W.Y., C.H. Scaman, and T.D. Durance. 2001. Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple variety. Journal of Food Science 66(9): 1341–1347.

    Article  CAS  Google Scholar 

  • Silva, F.A., A. Marsaioli Jr., G.J. Maximo, M.A.A.P. Silva, and L.A. Gonçalves. 2006. Microwave assisted drying of macadamia nuts. Journal of Food Engineering 77: 550–558.

    Article  Google Scholar 

  • Sosa-Morales, M.E., G. Tiwari, S. Wang, J. Tang, H.S. Garcia, and A. Lopez-Malo. 2009. Dielectric heating as a potential post-harvest treatment of disinfesting mangoes. Part II: Development of RF-based protocols and quality evaluation of treated fruits. Biosystems Engineering 103(3): 287–296.

    Article  Google Scholar 

  • Sosa-Morales, M.E., L. Valerio-Junco, A. López-Malo, and H.S. García. 2010. Dielectric properties of foods: Reported data in the 21st century and their potential applications. LWT - Food Science and Technology 43: 1169–1179.

    Article  CAS  Google Scholar 

  • Summu, G., and S. Sahin. 2005. Recent developments in microwave heating. In Emerging technologies for food processing, ed. D.-W. Sun, 419–444. San Diego, CA: Elsevier.

    Google Scholar 

  • Swain, M., and S. James. 2005. Thawing and tempering using microwave processing. In The microwave processing of foods, ed. H. Schubert and M. Regier, 175–191. Cambridge, England: Woodhead.

    Google Scholar 

  • Tajchakavit, S., and H.S. Ramaswamy. 1997a. Continuous-flow microwave inactivation kinetics of pectin methyl esterase in orange juice. Journal of Food Processing and Preservation 21: 365–378.

    Article  CAS  Google Scholar 

  • ———. 1997b. Thermal vs. microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions. LWT - Food Science and Technology 30: 85–93.

    Article  CAS  Google Scholar 

  • Tajchakavit, S., H.S. Ramaswamy, and P. Fustier. 1998. Enhanced destruction of spoilage microorganisms in apple juice during continuous flow microwave heating. Food Research International 31(10): 713–722.

    Article  Google Scholar 

  • Tang, J. 2005. Dielectric properties of food. In The microwave processing of foods, ed. H. Schubert and M. Regier, 22–38. Cambridge, England: Woodhead.

    Chapter  Google Scholar 

  • Venkatesh, M.S., and G.S.V. Raghavan. 2004. An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering 88(1): 1–18.

    Article  Google Scholar 

  • Vikram, V.B., M.N. Ramesh, and S.G. Prapulla. 2005. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering 69: 31–40.

    Article  Google Scholar 

  • Wang, Y., et al. 2003a. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering 85: 201–212.

    Article  Google Scholar 

  • Wang, Y., T. Wig, J. Tang, and L. Hallberg. 2003b. Dielectric properties of food relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering 57: 257–268.

    Article  Google Scholar 

  • Wang, S., M. Monzon, Y. Gazit, J. Tang, E. J. Mitcham, and J. W. Armstrong. 2005. Temperature-dependent dielectric properties of selected subtropical and tropical fruits and associated insect pests. Transactions of the ASAE 48(5):1873–1881.

    Article  Google Scholar 

  • Wojdylo, A., A. Figiel, and J. Oszmiański. 2009. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Journal of Agricultural and Food Chemistry 57: 1337–1343.

    Article  CAS  Google Scholar 

  • Wrolstad, R.E., D.D. Lee, and M.S. Poei. 1980. Effect of microwave blanching on the color and composition of strawberry concentrate. Journal of Food Science 45: 1573–1577.

    Article  CAS  Google Scholar 

  • Yongsawatdigul, J., and S. Gunasekaran. 1996. Microwave-vacuum drying of cranberries: Part I. Energy use and efficiency. Journal of Food Processing and Preservation 20: 121–143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsui, K.N., Ditchfield, C., Tadini, C.C. (2018). Microwave Processing of Fruits. In: Rosenthal, A., Deliza, R., Welti-Chanes, J., Barbosa-Cánovas, G. (eds) Fruit Preservation. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3311-2_15

Download citation

Publish with us

Policies and ethics