Skip to main content

Using a Spaceflight Three-Dimensional Microenvironment to Probe Cancer–Stromal Interactions

  • Chapter
Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells

Abstract

The effects of microgravity and spaceflight on cancer development and progression have not been defined. We provide an introductory review of our studies of microgravity and spaceflight on human prostate cancer cell growth, with emphasis on the investigation of cancer–stromal interaction under 3-dimensional (3-D) rotary wall vessel (RWV) bioreactor and space flight conditions.

We used several 3-D co-culture models to mimic the in situ situation of tumor growth, which depends on constant interaction with resident mesenchymal stromal cells of the tumor microenvironment. Through co-culturing prostate cancer cells with mesenchymal stromal cells in 3-D in the RWV, we found 3-D cancer–stromal interaction facilitating cancer cells to acquire permanent and irreversible genotypic and phenotypic alterations. We further determined that under 3-D co-culture conditions, metastasis-initiating cells (MICs) could recruit and reprogram non-tumorigenic or bystander cells of the tumor microenvironment to mimic MICs. In a study in spaceflight, we found that cancer-stromal co-culture in 3-D in the RWV resulted in markedly accelerated cell proliferation.

Mechanistically, the tropism of 3-D culture in the RWV or microgravity on cancer growth and progression appeared to be mediated by increased communications between cancer and the interacting stromal cells via soluble and insoluble factors, although additional mechanisms may also be contributory. These factors should be further investigated as targets for inhibiting tumor growth and cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.

    Article  Google Scholar 

  2. Chung, L. W., & Cunha, G. R. (1983). Stromal-epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate, 4(5), 503–511.

    Article  CAS  PubMed  Google Scholar 

  3. Pathak, S., Nemeth, M. A., Multani, A. S., Thalmann, G. N., von Eschenbach, A. C., & Chung, L. W. (1997). Can cancer cells transform normal host cells into malignant cells? (Translated from eng). British Journal of Cancer, 76(9), 1134–1138 (in eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rhee, H. W., Zhau, H. E., Pathak, S., Multani, A. S., Pennanen, S., Visakorpi, T., et al. (2001). Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cellular & Developmental Biology. Animal, 37(3), 127–140.

    Article  CAS  Google Scholar 

  5. Wang, R., Xu, J., Juliette, L., Castilleja, A., Love, J., Sung, S. Y., et al. (2005). Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Seminars in Cancer Biology, 15(5), 353–364.

    Article  CAS  PubMed  Google Scholar 

  6. Sung, S. Y., Hsieh, C. L., Law, A., Zhau, H. E., Pathak, S., Multani, A. S., et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: Implications for cancer growth and metastasis. Cancer Research, 68(23), 9996–10003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parin, V. V., & Gazenko, O. G. (1963). Soviet experiments aimed at investigating the influence of space flight factors on the physiology of animals and man. Life Sciences and Space Research, 1, 113–127.

    CAS  PubMed  Google Scholar 

  8. Antipov, V. V., Delone, N. L., Parfyonov, G. P., & Vysotsky, V. G. (1965). Results of biological experiments carried out under conditions of “Vostok” flights with the participation of cosmonauts A.G. Nikolajev, P.R. Popovich and V.F. Bykovsky. Life Sciences and Space Research, 3, 215–229.

    CAS  PubMed  Google Scholar 

  9. Uri, J. J., & Haven, C. P. (2005). Accomplishments in bioastronautics research aboard International Space Station. Acta Astronautica, 56(9–12), 883–889.

    Article  PubMed  Google Scholar 

  10. Becker, J. L., & Souza, G. R. (2013). Using space-based investigations to inform cancer research on Earth. (Translated from eng). Nature Reviews Cancer, 13(5), 315–327 (in eng).

    Article  CAS  PubMed  Google Scholar 

  11. Taylor, G. R., Konstantinova, I., Sonnenfeld, G., & Jennings, R. (1997). Changes in the immune system during and after spaceflight. Advances in Space Biology and Medicine, 6, 1–32.

    Article  CAS  PubMed  Google Scholar 

  12. Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., de Geest, M., et al. (2013). Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. (Translated from eng). Astrobiology, 13(1), 1–17 (in eng).

    Article  PubMed  PubMed Central  Google Scholar 

  13. King, J. A., & Miller, W. M. (2007). Bioreactor development for stem cell expansion and controlled differentiation. Current Opinion in Chemical Biology, 11(4), 394–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Twombly, R. (2003). Prostate modeling experiment success becomes part of legacy of shuttle astronauts. Journal of the National Cancer Institute, 95(7), 505–507.

    Article  PubMed  Google Scholar 

  15. Alva, A., & Hussain, M. (2013). The changing natural history of metastatic prostate cancer. Cancer Journal, 19(1), 19–24.

    Article  Google Scholar 

  16. Eaton, C. L., & Coleman, R. E. (2003). Pathophysiology of bone metastases from prostate cancer and the role of bisphosphonates in treatment. Cancer Treatment Reviews, 29(3), 189–198.

    Article  CAS  PubMed  Google Scholar 

  17. Tu, S. M., Lopez, A., Leibovici, D., Bilen, M. A., Evliyaoglu, F., Aparicio, A., et al. (2009). Ductal adenocarcinoma of the prostate: Clinical features and implications after local therapy. Cancer, 115(13), 2872–2880.

    Article  PubMed  Google Scholar 

  18. Martinez-Outschoorn, U. E., Lisanti, M. P., & Sotgia, F. (2014). Catabolic cancer-associated fibroblasts (CAFs) transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Seminars in Cancer Biology, 25, 47–60.

    Article  CAS  PubMed  Google Scholar 

  19. Chu, G. C., Zhau, H. E., Wang, R., Rogatko, A., Feng, X., Zayzafoon, M., et al. (2014). RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocrine-Related Cancer, 21(2), 311–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhau, H. E., Goodwin, T. J., Chang, S. M., Baker, T. L., & Chung, L. W. (1997). Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: Evaluation of androgen-induced growth and PSA expression. In Vitro Cellular & Developmental Biology. Animal, 33(5), 375–380.

    Article  CAS  Google Scholar 

  21. Cunha, G. R., & Chung, L. W. (1981). Stromal-epithelial interactions—I. Induction of prostatic phenotype in urothelium of testicular feminized (Tfm/y) mice. Journal of Steroid Biochemistry, 14(12), 1317–1324.

    Article  CAS  PubMed  Google Scholar 

  22. Cunha, G. R., Hayward, S. W., & Wang, Y. Z. (2002). Role of stroma in carcinogenesis of the prostate. Differentiation, 70(9–10), 473–485.

    Article  PubMed  Google Scholar 

  23. Cunha, G. R., & Hom, Y. K. (1996). Role of mesenchymal-epithelial interactions in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 1(1), 21–35.

    Article  CAS  PubMed  Google Scholar 

  24. Ingber, D. E. (2002). Cancer as a disease of epithelial-mesenchymal interactions and extracellular matrix regulation. Differentiation, 70(9–10), 547–560.

    Article  PubMed  Google Scholar 

  25. Taylor, M. A., Parvani, J. G., & Schiemann, W. P. (2010). The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. Journal of Mammary Gland Biology and Neoplasia, 15(2), 169–190.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cunha, G. R., Shannon, J. M., Neubauer, B. L., Sawyer, L. M., Fujii, H., Taguchi, O., et al. (1981). Mesenchymal-epithelial interactions in sex differentiation. Human Genetics, 58(1), 68–77.

    Article  CAS  PubMed  Google Scholar 

  27. Neubauer, B. L., Chung, L. W., McCormick, K. A., Taguchi, O., Thompson, T. C., & Cunha, G. R. (1983). Epithelial-mesenchymal interactions in prostatic development. II. Biochemical observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. The Journal of Cell Biology, 96(6), 1671–1676.

    Article  CAS  PubMed  Google Scholar 

  28. Chung, L. W., Zhau, H. E., & Ro, J. Y. (1990). Morphologic and biochemical alterations in rat prostatic tumors induced by fetal urogenital sinus mesenchyme. The Prostate, 17(2), 165–174.

    Article  CAS  PubMed  Google Scholar 

  29. Goldstein, A. S., Stoyanova, T., & Witte, O. N. (2010). Primitive origins of prostate cancer: In vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Molecular Oncology, 4(5), 385–396.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hayward, S. W., Haughney, P. C., Rosen, M. A., Greulich, K. M., Weier, H. U., Dahiya, R., et al. (1998). Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation, 63(3), 131–140.

    Article  CAS  PubMed  Google Scholar 

  31. Cunha, G. R., Chung, L. W., Shannon, J. M., Taguchi, O., & Fujii, H. (1983). Hormone-induced morphogenesis and growth: Role of mesenchymal-epithelial interactions. Recent Progress in Hormone Research, 39, 559–598.

    CAS  PubMed  Google Scholar 

  32. Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.

    Article  CAS  PubMed  Google Scholar 

  33. Ricke, E. A., Williams, K., Lee, Y. F., Couto, S., Wang, Y., Hayward, S. W., et al. (2012). Androgen hormone action in prostatic carcinogenesis: Stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis, 33(7), 1391–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Camps, J. L., Chang, S. M., Hsu, T. C., Freeman, M. R., Hong, S. J., Zhau, H. E., et al. (1990). Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 75–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gleave, M. E., Hsieh, J. T., von Eschenbach, A. C., & Chung, L. W. (1992). Prostate and bone fibroblasts induce human prostate cancer growth in vivo: Implications for bidirectional tumor-stromal cell interaction in prostate carcinoma growth and metastasis. The Journal of Urology, 147(4), 1151–1159.

    CAS  PubMed  Google Scholar 

  36. Thalmann, G. N., Anezinis, P. E., Chang, S. M., Zhau, H. E., Kim, E. E., Hopwood, V. L., et al. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Research, 54(10), 2577–2581.

    CAS  PubMed  Google Scholar 

  37. Wu, H. C., Hsieh, J. T., Gleave, M. E., Brown, N. M., Pathak, S., & Chung, L. W. (1994). Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: Role of bone stromal cells. International Journal of Cancer, 57(3), 406–412.

    Article  CAS  PubMed  Google Scholar 

  38. Kang, Y., & Pantel, K. (2013). Tumor cell dissemination: Emerging biological insights from animal models and cancer patients. Cancer Cell, 23(5), 573–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cunha, G. R. (1994). Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer, 74(3 Suppl), 1030–1044.

    Article  CAS  PubMed  Google Scholar 

  40. Rucki, A. A., & Zheng, L. (2014). Pancreatic cancer stroma: Understanding biology leads to new therapeutic strategies. World Journal of Gastroenterology, 20(9), 2237–2246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.

    Article  CAS  PubMed  Google Scholar 

  42. Fidler, I. J. (2001). Seed and soil revisited: Contribution of the organ microenvironment to cancer metastasis. Surgical Oncology Clinics of North America, 10(2), 257–269. vii–viiii.

    CAS  PubMed  Google Scholar 

  43. Kerbel, R. S., Waghorne, C., Korczak, B., Lagarde, A., & Breitman, M. L. (1988). Clonal dominance of primary tumours by metastatic cells: Genetic analysis and biological implications. Cancer Surveys, 7(4), 597–629.

    CAS  PubMed  Google Scholar 

  44. Talmadge, J. E. (2007). Clonal selection of metastasis within the life history of a tumor. Cancer Research, 67(24), 11471–11475.

    Article  CAS  PubMed  Google Scholar 

  45. Polyak, K. (2007). Breast cancer: Origins and evolution. The Journal of Clinical Investigation, 117(11), 3155–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramel, C. (1992). Evolutionary aspects of human cancer. Pharmacogenetics, 2(6), 344–349.

    Article  CAS  PubMed  Google Scholar 

  47. Billaud, M., & Santoro, M. (2011). Is co-option a prevailing mechanism during cancer progression? Cancer Research, 71(21), 6572–6575.

    Article  CAS  PubMed  Google Scholar 

  48. Fidler, I. J. (2012). Biological heterogeneity of cancer: Implication to therapy. Human Vaccines & Immunotherapeutics, 8(8), 1141–1142.

    Article  CAS  Google Scholar 

  49. Huang, S. (2013). Genetic and non-genetic instability in tumor progression: Link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Reviews, 32(3–4), 423–448.

    Article  PubMed  CAS  Google Scholar 

  50. Nickerson, M. L., Im, K. M., Misner, K. J., Tan, W., Lou, H., Gold, B., et al. (2013). Somatic alterations contributing to metastasis of a castration-resistant prostate cancer. Human Mutation, 34(9), 1231–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J. B., Stein, R., & O’Hare, M. J. (2004). Three-dimensional in vitro tissue culture models of breast cancer—A review. Breast Cancer Research and Treatment, 85(3), 281–291.

    Article  PubMed  Google Scholar 

  52. Gray, J. W. (2003). Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors. Cancer Cell, 4(1), 4–6.

    Article  CAS  PubMed  Google Scholar 

  53. Harbst, K., Staaf, J., Måsbäck, A., Olsson, H., Ingvar, C., Vallon-Christersson, J., et al. (2010). Multiple metastases from cutaneous malignant melanoma patients may display heterogeneous genomic and epigenomic patterns. Melanoma Research, 20(5), 381–391.

    CAS  PubMed  Google Scholar 

  54. Langley, R. R., & Fidler, I. J. (2011). The seed and soil hypothesis revisited—The role of tumor-stroma interactions in metastasis to different organs. International Journal of Cancer, 128(11), 2527–2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Steinmetz, M. P., Mekhail, A., & Benzel, E. C. (2001). Management of metastatic tumors of the spine: Strategies and operative indications. Neurosurgical Focus, 11(6), e2.

    Article  CAS  PubMed  Google Scholar 

  56. Thalmann, G. N., Sikes, R. A., Wu, T. T., Degeorges, A., Chang, S. M., Ozen, M., et al. (2000). LNCaP progression model of human prostate cancer: Androgen-independence and osseous metastasis. The Prostate, 44(2), 91–103.

    Article  CAS  PubMed  Google Scholar 

  57. Xie, B. X., Zhang, H., Wang, J., Pang, B., Wu, R. Q., Qian, X. L., et al. (2011). Analysis of differentially expressed genes in LNCaP prostate cancer progression model. Journal of Andrology, 32(2), 170–182.

    Article  CAS  PubMed  Google Scholar 

  58. Spans, L., Helsen, C., Clinckemalie, L., Van den Broeck, T., Prekovic, S., Joniau, S., et al. (2014). Comparative genomic and transcriptomic analyses of LNCaP and C4-2B prostate cancer cell lines. PLoS One, 9(2), e90002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Liu, A. Y., Brubaker, K. D., Goo, Y. A., Quinn, J. E., Kral, S., Sorensen, C. M., et al. (2004). Lineage relationship between LNCaP and LNCaP-derived prostate cancer cell lines. The Prostate, 60(2), 98–108.

    Article  CAS  PubMed  Google Scholar 

  60. Barron, D. A., & Rowley, D. R. (2012). The reactive stroma microenvironment and prostate cancer progression. Endocrine-Related Cancer, 19(6), R187–R204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lisanti, M. P., Martinez-Outschoorn, U. E., Chiavarina, B., Pavlides, S., Whitaker-Menezes, D., Tsirigos, A., et al. (2010). Understanding the “lethal” drivers of tumor-stroma co-evolution: Emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biology & Therapy, 10(6), 537–542.

    Article  CAS  Google Scholar 

  62. Josson, S., Matsuoka, Y., Chung, L. W., Zhau, H. E., & Wang, R. (2010). Tumor-stroma co-evolution in prostate cancer progression and metastasis. Seminars in Cell & Developmental Biology, 21(1), 26–32.

    Article  CAS  Google Scholar 

  63. Alix-Panabieres, C., Riethdorf, S., & Pantel, K. (2008). Circulating tumor cells and bone marrow micrometastasis. Clinical Cancer Research, 14(16), 5013–5021.

    Article  CAS  PubMed  Google Scholar 

  64. Shao, C., Liao, C. P., Hu, P., Chu, C. Y., Zhang, L., Bui, M. H., et al. (2014). Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer. PLoS One, 9(2), e88967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Huang, W. C., Xie, Z., Konaka, H., Sodek, J., Zhau, H. E., & Chung, L. W. (2005). Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: Role of cAMP-dependent protein kinase A signaling pathway. Cancer Research, 65(6), 2303–2313.

    Article  CAS  PubMed  Google Scholar 

  66. Knerr, K., Ackermann, K., Neidhart, T., & Pyerin, W. (2004). Bone metastasis: Osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. International Journal of Cancer, 111(1), 152–159.

    Article  CAS  PubMed  Google Scholar 

  67. Nomura, T., Huang, W.-C., Zhau, H. E., Josson, S., Mimata, H., & Kaur, M. (2014). Beta2-Microglobulin-mediated signaling as a target for cancer therapy. Anti-Cancer Agents in Medicinal Chemistry, 14(3), 343–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rucci, N., & Teti, A. (2010). Osteomimicry: How tumor cells try to deceive the bone. Frontiers in Bioscience, 2, 907–915.

    Google Scholar 

  69. Hu, P., Chu, G. C., Zhu, G., Yang, H., Luthringer, D., Prins, G., et al. (2011). Multiplexed quantum dot labeling of activated c-Met signaling in castration-resistant human prostate cancer. PLoS One, 6(12), e28670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu, P., Chung, L. W., Berel, D., Frierson, H. F., Yang, H., Liu, C., et al. (2013). Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: An interracial comparative study. PLoS One, 8(9), e73081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhau, H. E., Li, Q., & Chung, L. W. (2013). Interracial differences in prostate cancer progression among patients from the United States, China and Japan. Asian Journal of Andrology, 15(6), 705–707.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Huang, W. C., Havel, J. J., Zhau, H. E., Qian, W. P., Lue, H. W., Chu, C. Y., et al. (2008). Beta2-microglobulin signaling blockade inhibited androgen receptor axis and caused apoptosis in human prostate cancer cells. Clinical Cancer Research, 14(17), 5341–5347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, W. C., Wu, D., Xie, Z., Zhau, H. E., Nomura, T., Zayzafoon, M., et al. (2006). Beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Research, 66(18), 9108–9116.

    Article  CAS  PubMed  Google Scholar 

  74. Huang, W. C., Zhau, H. E., & Chung, L. W. (2010). Androgen receptor survival signaling is blocked by anti-beta2-microglobulin monoclonal antibody via a MAPK/lipogenic pathway in human prostate cancer cells. The Journal of Biological Chemistry, 285(11), 7947–7956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Josson, S., Matsuoka, Y., Gururajan, M., Nomura, T., Huang, W. C., Yang, X., et al. (2013). Inhibition of beta2-microglobulin/hemochromatosis enhances radiation sensitivity by induction of iron overload in prostate cancer cells. PLoS One, 8(7), e68366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Josson, S., Nomura, T., Lin, J. T., Huang, W. C., Wu, D., Zhau, H. E., et al. (2011). Beta2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Research, 71(7), 2600–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bernal, M., Ruiz-Cabello, F., Concha, A., Paschen, A., & Garrido, F. (2012). Implication of the beta2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunology, Immunotherapy, 61(9), 1359–1371.

    Article  PubMed  CAS  Google Scholar 

  78. Cafri, G., Margalit, A., Tzehoval, E., Eisenbach, L., & Gross, G. (2013). Development of novel genetic cancer vaccines based on membrane-attached beta2 microglobulin. Annals of the New York Academy of Sciences, 1283, 87–90.

    Article  CAS  PubMed  Google Scholar 

  79. Yang, J., & Yi, Q. (2010). Killing tumor cells through their surface beta(2)-microglobulin or major histocompatibility complex class I molecules. Cancer, 116(7), 1638–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, J., & Yi, Q. (2011). Therapeutic monoclonal antibodies for multiple myeloma: An update and future perspectives. American Journal of Blood Research, 1(1), 22–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yi, Q. (2009). Novel immunotherapies. Cancer Journal, 15(6), 502–510.

    Article  CAS  Google Scholar 

  82. Chung, L. W., Li, W., Gleave, M. E., Hsieh, J. T., Wu, H. C., Sikes, R. A., et al. (1992). Human prostate cancer model: Roles of growth factors and extracellular matrices. Journal of Cellular Biochemistry. Supplement, 16H, 99–105.

    Article  CAS  PubMed  Google Scholar 

  83. Savorè, C., Zhang, C., Muir, C., Liu, R., Wyrwa, J., Shu, J., et al. (2005). Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clinical & Experimental Metastasis, 22(5), 377–390.

    Article  CAS  Google Scholar 

  84. Bisanz, K., Yu, J., Edlund, M., Spohn, B., Hung, M. C., Chung, L. W., et al. (2005). Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Molecular Therapy, 12(4), 634–643.

    Article  CAS  PubMed  Google Scholar 

  85. Edlund, M., Miyamoto, T., Sikes, R. A., Ogle, R., Laurie, G. W., Farach-Carson, M. C., et al. (2001). Integrin expression and usage by prostate cancer cell lines on laminin substrata. Cell Growth & Differentiation, 12(2), 99–107.

    CAS  Google Scholar 

  86. Josson, S., Anderson, C. S., Sung, S. Y., Johnstone, P. A., Kubo, H., Hsieh, C. L., et al. (2011). Inhibition of ADAM9 expression induces epithelial phenotypic alterations and sensitizes human prostate cancer cells to radiation and chemotherapy. The Prostate, 71(3), 232–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, C. M., Hsieh, C. L., He, Y. C., Lo, S. J., Liang, J. A., Hsieh, T. F., et al. (2013). In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression. PLoS One, 8(1), e53795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pen, C. C., Liu, C. M., Lin, C. C., Lin, C. C., Hsieh, T. F., Josson, S., et al. (2012). Combined dynamic alterations in urinary VEGF levels and tissue ADAM9 expression as markers for lethal phenotypic progression of prostate cancer. The Chinese Journal of Physiology, 55(6), 390–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shigemura, K., Sung, S. Y., Kubo, H., Arnold, R. S., Fujisawa, M., Gotoh, A., et al. (2007). Reactive oxygen species mediate androgen receptor- and serum starvation-elicited downstream signaling of ADAM9 expression in human prostate cancer cells. The Prostate, 67(7), 722–731.

    Article  CAS  PubMed  Google Scholar 

  90. Sung, S. Y., Kubo, H., Shigemura, K., Arnold, R. S., Logani, S., Wang, R., et al. (2006). Oxidative stress induces ADAM9 protein expression in human prostate cancer cells. Cancer Research, 66(19), 9519–9526.

    Article  CAS  PubMed  Google Scholar 

  91. Wang, R., Sun, X., Wang, C. Y., Hu, P., Chu, C.-Y., Liu, S., et al. (2012). Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression. PLoS One, 7(8), e42653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, E. H., Grote, E., Mohler, W., & Vignery, A. (2007). Cell-cell fusion. (Translated from eng). FEBS Letters, 581(11), 2181–2193 (in eng).

    Article  CAS  PubMed  Google Scholar 

  93. Larsson, L. I., Bjerregaard, B., & Talts, J. F. (2008). Cell fusions in mammals. (Translated from eng). Histochemistry and Cell Biology, 129(5), 551–561 (in eng).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oren-Suissa, M., & Podbilewicz, B. (2007). Cell fusion during development. (Translated from eng). Trends in Cell Biology, 17(11), 537–546 (in eng).

    Article  CAS  PubMed  Google Scholar 

  95. Pawelek, J. M. (2005). Tumour-cell fusion as a source of myeloid traits in cancer. (Translated from eng). Lancet Oncology, 6(12), 988–993 (in eng).

    Article  CAS  PubMed  Google Scholar 

  96. Cucinotta, F. A. (2014). Space radiation risks for astronauts on multiple International Space Station missions. (Translated from eng). PLoS One, 9(4), e96099 (in eng).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Buravkova, L., Romanov, Y., Rykova, M., Grigorieva, O., & Merzlikina, N. (2005). Cell-to-cell interactions in changed gravity: Ground-based and flight experiments. Acta Astronautica, 57(2–8), 67–74.

    Article  CAS  PubMed  Google Scholar 

  98. Kordyum, E. L., Shevchenko, G. V., Yemets, A. I., Nyporko, A. I., & Blume, Y. B. (2005). Application of GFP technique for cytoskeleton visualization onboard the International Space Station. Acta Astronautica, 56(6), 613–621.

    Article  CAS  PubMed  Google Scholar 

  99. Meloni, M. A., Galleri, G., Pani, G., Saba, A., Pippia, P., & Cogoli-Greuter, M. (2011). Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton, 68(2), 125–137.

    Article  CAS  PubMed  Google Scholar 

  100. Chang, T. T., Walther, I., Li, C. F., Boonyaratanakornkit, J., Galleri, G., Meloni, M. A., et al. (2012). The Rel/NF-kappaB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. Journal of Leukocyte Biology, 92(6), 1133–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tauber, S., Hauschild, S., Crescio, C., Secchi, C., Paulsen, K., Pantaleo, A., et al. (2013). Signal transduction in primary human T lymphocytes in altered gravity – Results of the MASER-12 suborbital space flight mission. Cell Communication and Signaling, 11(1), 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, C., Luo, H., Zhu, L., Yang, F., Chu, Z., Tian, H., et al. (2014). Microgravity inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha expression in macrophage cells. Inflammation Research, 63(1), 91–98.

    Article  PubMed  CAS  Google Scholar 

  103. Guo, F., Li, Y., Liu, Y., Huang, J., Zhang, Z., Wang, J., et al. (2012). Identification of genes associated with tumor development in CaSki cells in the cosmic space. Molecular Biology Reports, 39(6), 6923–6931.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruoxiang Wang or Leland W. K. Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, R., Chu, G.CY., Zhau, H.E., Chung, L.W.K. (2016). Using a Spaceflight Three-Dimensional Microenvironment to Probe Cancer–Stromal Interactions. In: Nickerson, C., Pellis, N., Ott, C. (eds) Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3277-1_7

Download citation

Publish with us

Policies and ethics