Biomedical Advances in Three Dimensions: An Overview of Human Cellular Studies in Space and Spaceflight Analogues

  • Cheryl A. Nickerson
  • C. Mark Ott


Many of the underlying causes of human disease result from the effects of physical/mechanical forces acting on living cells. However, the constant overriding force of gravity precludes our ability to identify the full spectrum of cellular responses to mechanical forces that dictate the transition between homeostasis and disease. Cell and tissue culture studies in true spaceflight or in the Rotating Wall Vessel (RWV) spaceflight analogue bioreactor offer dynamic approaches to engineer high fidelity, physiologically relevant 3-D tissue models with a vast array of biomedical applications. These organotypic models have furthered our understanding of structure–function relationships and design principles of the cellular microenvironment and cellular biomechanics that are critical in establishment of in vitro models that better recapitulate in vivo responses as compared to conventional flat 2-D cultures, and have complemented and advanced the knowledge being gained from other 3-D cell culture approaches.

The applications of tissue engineering research in true spaceflight and the RWV are as diverse as the number of cell types that can be cultured using these platforms, and hold the potential to help us better understand organogenesis and normal tissue development using cell lines, stem cells, and primary cells, as well as disease pathologies, including infectious disease, immunological disorders, and cancer. Accordingly, these studies have shown tremendous potential to accelerate our understanding of human physiology and susceptibility to disease and hold translational promise to benefit mankind on Earth. In addition, studying the response of mammalian cells to culture under microgravity and microgravity analogue conditions provides the opportunity to unveil underpinning mechanisms regulating spaceflight-induced alterations in human physiology, adaptation during long duration missions, and associated clinical problems for astronauts.


Spaceflight cell culture Spaceflight analogue cell culture Tissue engineering Cellular biomechanics Three-dimensional (3-D) tissue models Organotypic models Organoids 


  1. 1.
    Cogoli, A., Tschopp, A., & Fuchs-Bislin, P. (1984). Cell sensitivity to gravity. Science, 225(4658), 228–230.CrossRefPubMedGoogle Scholar
  2. 2.
    Freed, L. E., Hollander, A. P., Martin, I., Barry, J. R., Langer, R., & Vunjak-Novakovic, G. (1998). Chondrogenesis in a cell-polymer-bioreactor system. Experimental Cell Research, 240(1), 58–65.CrossRefPubMedGoogle Scholar
  3. 3.
    Freed, L. E., Langer, R., Martin, I., Pellis, N. R., & Vunjak-Novakovic, G. (1997). Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13885–13890.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Freed, L. E., & Vunjak-Novakovic, G. (1995). Cultivation of cell-polymer tissue constructs in simulated microgravity. Biotechnology and Bioengineering, 46(4), 306–313.CrossRefPubMedGoogle Scholar
  5. 5.
    Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., et al. (1999). Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 64(5), 580–589.CrossRefPubMedGoogle Scholar
  6. 6.
    Molnar, G., Schroedl, N. A., Gonda, S. R., & Hartzell, C. R. (1997). Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cellular & Developmental Biology Animal, 33(5), 386–391.CrossRefGoogle Scholar
  7. 7.
    Pellis, N. R., Goodwin, T. J., Risin, D., McIntyre, B. W., Pizzini, R. P., Cooper, D., et al. (1997). Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cellular & Developmental Biology Animal, 33(5), 398–405.CrossRefGoogle Scholar
  8. 8.
    Cooper, D., & Pellis, N. R. (1998). Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. Journal of Leukocyte Biology, 63(5), 550–562.PubMedGoogle Scholar
  9. 9.
    Vandenburgh, H., Chromiak, J., Shansky, J., Del Tatto, M., & Lemaire, J. (1999). Space travel directly induces skeletal muscle atrophy. FASEB Journal, 13(9), 1031–1038.PubMedGoogle Scholar
  10. 10.
    Alcantara Warren, C., Destura, R. V., Sevilleja, J. E., Barroso, L. F., Carvalho, H., Barrett, L. J., et al. (2008). Detection of epithelial-cell injury, and quantification of infection, in the HCT-8 organoid model of cryptosporidiosis. Journal of Infectious Diseases, 198(1), 143–149.CrossRefPubMedGoogle Scholar
  11. 11.
    Long, J. P., Pierson, S., & Hughes, J. H. (1998). Rhinovirus replication in HeLa cells cultured under conditions of simulated microgravity. Aviation, Space, and Environmental Medicine, 69(9), 851–856.PubMedGoogle Scholar
  12. 12.
    Nickerson, C. A., Goodwin, T. J., Terlonge, J., Ott, C. M., Buchanan, K. L., Uicker, W. C., et al. (2001). Three-dimensional tissue assemblies: Novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infection and Immunity, 69(11), 7106–7120.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., Freed, L. E., et al. (2000). Modulation of the mechanical properties of tissue engineered cartilage. Biorheology, 37(1–2), 141–147.PubMedGoogle Scholar
  14. 14.
    Rhee, H. W., Zhau, H. E., Pathak, S., Multani, A. S., Pennanen, S., Visakorpi, T., et al. (2001). Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cellular & Developmental Biology Animal, 37(3), 127–140.CrossRefGoogle Scholar
  15. 15.
    Obradovic, B., Martin, I., Padera, R. F., Treppo, S., Freed, L. E., & Vunjak-Novakovic, G. (2001). Integration of engineered cartilage. Journal of Orthopaedic Research, 19(6), 1089–1097.CrossRefPubMedGoogle Scholar
  16. 16.
    Lappa, M. (2003). Organic tissues in rotating bioreactors: Fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnology and Bioengineering, 84(5), 518–532.CrossRefPubMedGoogle Scholar
  17. 17.
    Levenberg, S., Rouwkema, J., Macdonald, M., Garfein, E. S., Kohane, D. S., Darland, D. C., et al. (2005). Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 23(7), 879–884.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang, R., Xu, J., Juliette, L., Castilleja, A., Love, J., Sung, S. Y., et al. (2005). Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Seminars in Cancer Biology, 15(5), 353–364.CrossRefPubMedGoogle Scholar
  19. 19.
    Boonyaratanakornkit, J. B., Cogoli, A., Li, C. F., Schopper, T., Pippia, P., Galleri, G., et al. (2005). Key gravity-sensitive signaling pathways drive T cell activation. FASEB Journal, 19(14), 2020–2022.PubMedGoogle Scholar
  20. 20.
    Marolt, D., Augst, A., Freed, L. E., Vepari, C., Fajardo, R., Patel, N., et al. (2006). Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 27(36), 6138–6149.CrossRefPubMedGoogle Scholar
  21. 21.
    Ohyabu, Y., Kida, N., Kojima, H., Taguchi, T., Tanaka, J., & Uemura, T. (2006). Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Biotechnology and Bioengineering, 95(5), 1003–1008.CrossRefPubMedGoogle Scholar
  22. 22.
    Wu, X., Li, S. H., Lou, L. M., & Chen, Z. R. (2013). The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Molecular Biotechnology, 54(2), 331–336.CrossRefPubMedGoogle Scholar
  23. 23.
    Sakai, S., Mishima, H., Ishii, T., Akaogi, H., Yoshioka, T., Ohyabu, Y., et al. (2009). Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage. Journal of Orthopaedic Research, 27(4), 517–521.CrossRefPubMedGoogle Scholar
  24. 24.
    Sung, S. Y., Hsieh, C. L., Law, A., Zhau, H. E., Pathak, S., Multani, A. S., et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: Implications for cancer growth and metastasis. Cancer Research, 68(23), 9996–10003.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Crabbe, A., Sarker, S. F., Van Houdt, R., Ott, C. M., Leys, N., Cornelis, P., et al. (2010). Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cellular Microbiology, 13, 469–481.CrossRefPubMedGoogle Scholar
  26. 26.
    Brinley, A. A., Theriot, C. A., Nelman-Gonzalez, M., Crucian, B., Stowe, R. P., Barrett, A. D., et al. (2013). Characterization of Epstein-Barr virus reactivation in a modeled spaceflight system. Journal of Cellular Biochemistry, 114(3), 616–624.CrossRefPubMedGoogle Scholar
  27. 27.
    David, J., Sayer, N. M., & Sarkar-Tyson, M. (2014). The use of a three-dimensional cell culture model to investigate host-pathogen interactions of Francisella tularensis in human lung epithelial cells. Microbes and Infection, 16(9), 735–745.CrossRefPubMedGoogle Scholar
  28. 28.
    Barrila, J., Sarkar, S. F., Hansmeier, N., Briones, N., Park, J., Ott, C. M., et al. (2015). Microgravity uniquely alters the host-pathogen interaction between human intestinal epithelial cells and Salmonella enterica serovar Typhimurium. In 115th American Society for Microbiology General Meeting. New Orleans, LA.Google Scholar
  29. 29.
    Nelson, C. M., & Bissell, M. J. (2005). Modeling dynamic reciprocity: Engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Seminars in Cancer Biology, 15(5), 342–352.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Xu, R., Boudreau, A., & Bissell, M. J. (2009). Tissue architecture and function: Dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Reviews, 28(1–2), 167–176.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ingber, D. E. (2003). Mechanobiology and diseases of mechanotransduction. Annals of Medicine, 35(8), 564–577.CrossRefPubMedGoogle Scholar
  32. 32.
    Ingber, D. (1999). How cells (might) sense microgravity. FASEB Journal, 13(Suppl), S3–S15.PubMedGoogle Scholar
  33. 33.
    Barrila, J., Radtke, A. L., Crabbe, A., Sarker, S. F., Herbst-Kralovetz, M. M., Ott, C. M., et al. (2010). Organotypic 3D cell culture models: Using the rotating wall vessel to study host-pathogen interactions. Nature Reviews Microbiology, 8(11), 791–801.CrossRefPubMedGoogle Scholar
  34. 34.
    Duray, P. H., Hatfill, S. J., & Pellis, N. R. (1997). Tissue culture in microgravity. Science and Medicine, 4(3), 46–55.PubMedGoogle Scholar
  35. 35.
    Radtke, A. L., Wilson, J. W., Sarker, S., & Nickerson, C. A. (2010). Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One, 5(12), e15750.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    De Weirdt, R., Crabbe, A., Roos, S., Vollenweider, S., Lacroix, C., van Pijkeren, J. P., et al. (2012). Glycerol supplementation enhances L. reuteri’s protective effect against S. Typhimurium colonization in a 3-D model of colonic epithelium. PLoS One, 7(5), e37116.Google Scholar
  37. 37.
    O’Connor, K. C. (1999). Three-dimensional cultures of prostatic cells: Tissue models for the development of novel anti-cancer therapies. Pharmaceutical Research, 16(4), 486–493.CrossRefPubMedGoogle Scholar
  38. 38.
    Margolis, L., Hatfill, S., Chuaqui, R., Vocke, C., Emmert-Buck, M., Linehan, W. M., et al. (1999). Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor. Journal of Urology, 161(1), 290–297.CrossRefPubMedGoogle Scholar
  39. 39.
    O’Connor, K. C., Enmon, R. M., Dotson, R. S., Primavera, A. C., & Clejan, S. (1997). Characterization of autocrine growth factors, their receptors and extracellular matrix present in three-dimensional cultures of DU 145 human prostate carcinoma cells grown in simulated microgravity. Tissue Engineering, 3(2), 161–171.CrossRefGoogle Scholar
  40. 40.
    Zhau, H. E., Goodwin, T. J., Chang, S. M., Baker, T. L., & Chung, L. W. (1997). Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: Evaluation of androgen-induced growth and PSA expression. In Vitro Cellular & Developmental Biology Animal, 33(5), 375–380.CrossRefGoogle Scholar
  41. 41.
    Sambandam, Y., Townsend, M. T., Pierce, J. J., Lipman, C. M., Haque, A., Bateman, T. A., et al. (2014). Microgravity control of autophagy modulates osteoclastogenesis. Bone, 61, 125–131.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Capulli, M., Rufo, A., Teti, A., & Rucci, N. (2009). Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a “mechanoresponsive osteoblast gene signature”. Journal of Cellular Biochemistry, 107(2), 240–252.CrossRefPubMedGoogle Scholar
  43. 43.
    Qiu, Q. Q., Ducheyne, P., & Ayyaswamy, P. S. (2001). 3D bone tissue engineered with bioactive microspheres in simulated microgravity. In Vitro Cellular & Developmental Biology Animal, 37(3), 157–165.CrossRefGoogle Scholar
  44. 44.
    Martin, I., Shastri, V. P., Padera, R. F., Yang, J., Mackay, A. J., Langer, R., et al. (2001). Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. Journal of Biomedical Materials Research, 55(2), 229–235.CrossRefPubMedGoogle Scholar
  45. 45.
    Gueguinou, N., Huin-Schohn, C., Bascove, M., Bueb, J. L., Tschirhart, E., Legrand-Frossi, C., et al. (2009). Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? Journal of Leukocyte Biology, 86(5), 1027–1038.CrossRefPubMedGoogle Scholar
  46. 46.
    Unsworth, B. R., & Lelkes, P. I. (1998). Growing tissues in microgravity. Nature Medicine, 4(8), 901–907.CrossRefPubMedGoogle Scholar
  47. 47.
    Freed, L. E., & Vunjak-Novakovic, G. (2002). Spaceflight bioreactor studies of cells and tissues. Advances in Space Biology and Medicine, 8, 177–195.CrossRefPubMedGoogle Scholar
  48. 48.
    Vunjak-Novakovic, G., Searby, N., De Luis, J., & Freed, L. E. (2002). Microgravity studies of cells and tissues. Annals of the New York Academy of Sciences, 974, 504–517.CrossRefPubMedGoogle Scholar
  49. 49.
    Wolf, D. A., & Schwarz, R. P. (1991). Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head space tissue culture vessel. Google Scholar
  50. 50.
    Nickerson, C. A., & Ott, C. M. (2004). A new dimension in modeling infectious disease. ASM News, 70(4), 169–175.Google Scholar
  51. 51.
    Hjelm, B. E., Berta, A. N., Nickerson, C. A., Arntzen, C. J., & Herbst-Kralovetz, M. M. (2010). Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biology of Reproduction, 82(3), 617–627.CrossRefPubMedGoogle Scholar
  52. 52.
    Durand, R. E., & Olive, P. L. (2001). Resistance of tumor cells to chemo- and radiotherapy modulated by the three-dimensional architecture of solid tumors and spheroids. Methods in Cell Biology, 64, 211–233.CrossRefPubMedGoogle Scholar
  53. 53.
    Carterson, A. J., Honer zu Bentrup, K., Ott, C. M., Clarke, M. S., Pierson, D. L., Vanderburg, C. R., et al. (2005). A549 lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infection and Immunity, 73(2), 1129–1140.Google Scholar
  54. 54.
    Carvalho, H. M., Teel, L. D., Goping, G., & O’Brien, A. D. (2005). A three-dimensional tissue culture model for the study of attach and efface lesion formation by enteropathogenic and enterohaemorrhagic Escherichia coli. Cellular Microbiology, 7(12), 1771–1781.CrossRefPubMedGoogle Scholar
  55. 55.
    Duray, P. H., Yin, S. R., Ito, Y., Bezrukov, L., Cox, C., Cho, M. S., et al. (2005). Invasion of human tissue ex vivo by Borrelia burgdorferi. Journal of Infectious Diseases, 191(10), 1747–1754.CrossRefPubMedGoogle Scholar
  56. 56.
    Goodwin, T. J., Jessup, J. M., & Wolf, D. A. (1992). Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. Vitro Cellular & Developmental Biology, 28A(1), 47–60.CrossRefGoogle Scholar
  57. 57.
    Guo, P., Weinstein, A. M., & Weinbaum, S. (2000). A hydrodynamic mechanosensory hypothesis for brush border microvilli. American Journal of Physiology Renal Physiology, 279(4), F698–F712.PubMedGoogle Scholar
  58. 58.
    Hughes, J. H., & Long, J. P. (2001). Simulated microgravity impairs respiratory burst activity in human promyelocytic cells. In Vitro Cellular & Developmental Biology Animal, 37(4), 209–215.CrossRefGoogle Scholar
  59. 59.
    Ingram, M., Techy, G. B., Saroufeem, R., Yazan, O., Narayan, K. S., Goodwin, T. J., et al. (1997). Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology Animal, 33(6), 459–466.CrossRefGoogle Scholar
  60. 60.
    Jessup, J. M., Frantz, M., Sonmez-Alpan, E., Locker, J., Skena, K., Waller, H., et al. (2000). Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line. In Vitro Cellular & Developmental Biology Animal, 36(6), 367–373.CrossRefGoogle Scholar
  61. 61.
    Long, J. P., Pierson, S., & Hughes, J. H. (1999). Suppression of Epstein-Barr virus reactivation in lymphoblastoid cells cultured in simulated microgravity. In Vitro Cellular & Developmental Biology Animal, 35(1), 49–54.CrossRefGoogle Scholar
  62. 62.
    Margolis, L. B., Fitzgerald, W., Glushakova, S., Hatfill, S., Amichay, N., Baibakov, B., et al. (1997). Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor. AIDS Research and Human Retroviruses, 13(16), 1411–1420.CrossRefPubMedGoogle Scholar
  63. 63.
    Pei, M., He, F., Kish, V. L., & Vunjak-Novakovic, G. (2008). Engineering of functional cartilage tissue using stem cells from synovial lining: A preliminary study. Clinical Orthopaedics and Related Research, 466(8), 1880–1889.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sainz, B., Jr., TenCate, V., & Uprichard, S. L. (2009). Three-dimensional Huh7 cell culture system for the study of hepatitis C virus infection. Virology Journal, 6, 103.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Schwarz, R. P., Goodwin, T. J., & Wolf, D. A. (1992). Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. Journal of Tissue Culture Methods, 14(2), 51–57.CrossRefPubMedGoogle Scholar
  66. 66.
    Smith, Y. C., Grande, K. K., Rasmussen, S. B., & O’Brien, A. D. (2006). Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infection and Immunity, 74(1), 750–757.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Straub, T. M., Honer zu Bentrup, K., Orosz-Coghlan, P., Dohnalkova, A., Mayer, B. K., Bartholomew, R. A., et al. (2007). In vitro cell culture infectivity assay for human noroviruses. Emerging Infectious Diseases, 13(3), 396–403.Google Scholar
  68. 68.
    Honer zu Bentrup, K., Ramamurthy, R., Ott, C. M., Emami, K., Nelman-Gonzalez, M., Wilson, J. W., et al. (2006). Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes and Infection, 8(7), 1813–1825.Google Scholar
  69. 69.
    Lamarca, H. L., Ott, C. M., Honer Zu Bentrup, K., Leblanc, C. L., Pierson, D. L., Nelson, A. B., et al. (2005). Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta, 26(10), 709–720.CrossRefPubMedGoogle Scholar
  70. 70.
    Myers, T. A., Nickerson, C. A., Kaushal, D., Ott, C. M., Honer zu Bentrup, K., Ramamurthy, R., et al. (2008). Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons. Journal of Neuroscience Methods, 174(1), 31–41.Google Scholar
  71. 71.
    Schmeichel, K. L., & Bissell, M. J. (2003). Modeling tissue-specific signaling and organ function in three dimensions. Journal of Cell Science, 116(Pt 12), 2377–2388.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7(3), 211–224.CrossRefPubMedGoogle Scholar
  73. 73.
    Weigelt, B., & Bissell, M. J. (2008). Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Seminars in Cancer Biology, 18(5), 311–321.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ingber, D. E. (1998). The architecture of life. Scientific American, 278(1), 48–57.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Life Sciences, The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State UniversityTempeUSA
  2. 2.Biomedical Research and Environmental Sciences DivisionNASA/Johnson Space CenterHoustonUSA

Personalised recommendations