Skip to main content

Abstract

Spaceflight and spaceflight-analogue studies reveal that microgravity or aspects of the microgravity environment impact the physiology, stress resistance, and molecular biology of microbes. Escherichia coli is an ideal model bacterium for microgravity and microgravity analogue investigations, as it is the most well-characterized organism, and has pathogenic strains that could cause infections during spaceflight. It is also a key player in ecosystems critical for sustaining life in space, such as renewal of resources like oxygen and water, as well as waste recycling. This chapter reviews the current literature on the effect of microgravity and modeled microgravity systems on E. coli physiology and molecular biology, with implications for risk assessment and astronaut health as well as beneficial applications for the general public.

Spaceflight experiments suggest that culture in the microgravity environment alters E. coli growth parameters and antibiotic resistance. Studies on Earth under simulated microgravity, referred to as low shear modeled microgravity (LSMMG), indicate that LSMMG affects gene expression, protein synthesis, secondary metabolite production, cellular protein composition, and biofilm formation in this bacterium. An important outcome is that E. coli grown under LSMMG becomes markedly more resistant to antimicrobials like ethanol, salt, and low pH, as well as to some antibiotics, like gentamicin. The increased resistance is dependent on the elevated levels of the general stress response regulator, Sigma S (RpoS), under LSMMG conditions. Significantly, the mechanism underlying this increase in Sigma S implies that LSMMG may alter the folding pattern of macromolecules. The increased general resistance under LSMMG and its dependence on Sigma S indicate that E. coli perceives LSMMG as a stress, and responds to it in a manner similar to that observed for stresses experienced under normal gravity conditions. However, whether these responses are due to a direct effect of microgravity remains to be determined.

Contradictory findings with respect to several of the characteristics mentioned above for E. coli cultured under microgravity and LSMMG have been reported. These findings emphasize the need for a thorough examination of the effect of microgravity on the virulence and stress resistance of bacteria in various stages of growth and development, so as to counter the potential health hazards of space travel that bacteria may pose, for better exploitation in establishing sustainable space habitats, and to gain knowledge in how bacteria cause disease on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tixador, R., Richoilley, G., Gasset, G., Planel, H., Moatti, N., Lapchine, L., et al. (1985). Acta Astronautica, 12, 131.

    Article  CAS  PubMed  Google Scholar 

  2. Ciferri, O., Tiboni, O., Di Pasquale, G., Orlandoni, A. M., & Marchesi, M. L. (1986). Naturwissenschaften, 73, 418.

    Article  CAS  PubMed  Google Scholar 

  3. Thevenet, D., D’Ari, R., & Bouloc, P. (1996). Journal of Biotechnology, 47, 89.

    Article  CAS  PubMed  Google Scholar 

  4. Klaus, D., Simske, S., Todd, P., & Stodieck, L. (1997). Microbiology, 143(Pt 2), 449.

    Article  CAS  PubMed  Google Scholar 

  5. Fang, A., Pierson, D. L., Koenig, D. W., Mishra, S. K., & Demain, A. L. (1997). Applied and Environmental Microbiology, 63, 4090.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lynch, S. V., Brodie, E. L., & Matin, A. (2004). Journal of Bacteriology, 186, 8207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lynch, S. V., Mukundakrishnan, K., Benoit, M. R., Ayyaswamy, P. S., & Matin, A. (2006). Applied and Environmental Microbiology, 72, 7701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tucker, D. L., Ott, C. M., Huff, S., Fofanov, Y., Pierson, D. L., Willson, R. C., et al. (2007). BMC Microbiology, 7, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Allen, C. A., Niesel, D. W., & Torres, A. G. (2008). Environmental Microbiology, 10, 1512.

    Article  CAS  PubMed  Google Scholar 

  10. Nickerson, C. A., Ott, C. M., Mister, S. J., Morrow, B. J., Burns-Keliher, L., & Pierson, D. L. (2000). Infection and Immunity, 68, 3147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sonnenfeld, G., & Shearer, W. T. (2002). Nutrition, 18, 899.

    Article  CAS  PubMed  Google Scholar 

  12. Martinelli, L. K., Russomano, T., Dos Santos, M. A., Falcao, F. P., Bauer, M. E., Machado, A., et al. (2009). IEEE Engineering in Medicine and Biology Magazine, 28, 85.

    Article  PubMed  Google Scholar 

  13. Barratt, M. R., & Pool, S. L. (Eds.). (2008). Principles of clinical medicine for space flight (1st ed.). New York: Springer.

    Google Scholar 

  14. Horneck, G., Klaus, D. M., & Mancinelli, R. L. (2010). Microbiology and Molecular Biology Reviews, 74, 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horneck, G., Bucker, H., Reitz, G., Requardt, H., Dose, K., Martens, K. D., et al. (1984). Science, 225, 226.

    Article  CAS  PubMed  Google Scholar 

  16. Horneck, G., Bucker, H., Dose, K., Martens, K. D., Bieger, A., Mennigmann, H. D., et al. (1984). Advances in Space Research, 4, 19.

    Article  CAS  PubMed  Google Scholar 

  17. Rettberg, P., Eschweiler, U., Strauch, K., Reitz, G., Horneck, G., Wanke, H., et al. (2002). Advances in Space Research, 30, 1539.

    Article  CAS  PubMed  Google Scholar 

  18. Pollard, E. C. (1965). Journal of Theoretical Biology, 8, 113.

    Article  CAS  PubMed  Google Scholar 

  19. Benoit, M., & Klaus, D. (2005). Microbiology, 151, 69.

    Article  CAS  PubMed  Google Scholar 

  20. Fux, C. A., Costerton, J. W., Stewart, P. S., & Stoodley, P. (2005). Trends in Microbiology, 13, 34.

    Article  CAS  PubMed  Google Scholar 

  21. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Nature Reviews. Microbiology, 2, 95.

    Article  CAS  PubMed  Google Scholar 

  22. Koenig, D. W., & Pierson, D. L. (1997). Water Science and Technology, 35, 59.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, W., Tengra, F. K., Young, Z., Shong, J., Marchand, N., Chan, H. K., et al. (2013). PLoS One, 8, e62437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McLean, R. J., Cassanto, J. M., Barnes, M. B., & Koo, J. H. (2001). FEMS Microbiology Letters, 195, 115.

    Article  CAS  PubMed  Google Scholar 

  25. Gao, H., Ayyaswamy, P. S., & Ducheyne, P. (1997). Microgravity Science and Technology, 10, 154.

    CAS  PubMed  Google Scholar 

  26. Kacena, M. A., Smith, E. E., & Todd, P. (1999). Applied Microbiology and Biotechnology, 52, 437.

    Article  CAS  PubMed  Google Scholar 

  27. Kacena, M. A., Merrell, G. A., Manfredi, B., Smith, E. E., Klaus, D. M., & Todd, P. (1999). Applied Microbiology and Biotechnology, 51, 229.

    Article  CAS  PubMed  Google Scholar 

  28. Vukanti, R., Model, M. A., & Leff, L. G. (2012). BMC Microbiology, 12, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kacena, M. A., Manfredi, B., & Todd, P. (1999). Microgravity Science and Technology, 12, 74.

    CAS  PubMed  Google Scholar 

  30. Baker, P. W., Meyer, M. L., & Leff, L. G. (2004). Microgravity Science and Technology, 15, 39.

    Article  PubMed  Google Scholar 

  31. Brown, R. B., Klaus, D., & Todd, P. (2002). Microgravity Science and Technology, 13, 24.

    Article  PubMed  Google Scholar 

  32. Bouloc, P., & D’Ari, R. (1991). Journal of General Microbiology, 137, 2839.

    Article  CAS  PubMed  Google Scholar 

  33. Gasset, G., Tixador, R., Eche, B., Lapchine, L., Moatti, N., Toorop, P., et al. (1994). Research in Microbiology, 145, 111.

    Article  CAS  PubMed  Google Scholar 

  34. Kacena, M. A., Leonard, P. E., Todd, P., & Luttges, M. W. (1997). Aviation, Space, and Environmental Medicine, 68, 1104.

    CAS  PubMed  Google Scholar 

  35. Wilson, J. W., Ott, C. M., Ramamurthy, R., Porwollik, S., McClelland, M., Pierson, D. L., et al. (2002). Applied and Environmental Microbiology, 68, 5408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matin, A. (2009). In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 485–500). Oxford: Academic Press.

    Google Scholar 

  37. Adnan, M., Morton, G., & Hadi, S. (2011). Molecular and Cellular Biochemistry, 357, 275.

    Article  CAS  PubMed  Google Scholar 

  38. Huitema, C., Beaudette, L. A., & Trevors, J. T. (2002). Rivista di Biologia, 95, 497.

    PubMed  Google Scholar 

  39. England, L. S., Gorzelak, M., & Trevors, J. T. (2003). Biochimica et Biophysica Acta, 1624, 76.

    Article  CAS  PubMed  Google Scholar 

  40. Pross, H. D., Kost, M., & Kiefer, J. (1994). Advances in Space Research, 14, 125.

    Article  CAS  PubMed  Google Scholar 

  41. Pross, H. D., Casares, A., & Kiefer, J. (2000). Radiation Research, 153, 521.

    Article  CAS  PubMed  Google Scholar 

  42. Harada, K., Sugahara, T., Ohnishi, T., Ozaki, Y., Obiya, Y., Miki, S., et al. (1998). International Journal of Molecular Medicine, 1, 817.

    CAS  PubMed  Google Scholar 

  43. Horneck, G., Rettberg, P., Kozubek, S., Baumstark-Khan, C., Rink, H., Schafer, M., et al. (1997). Radiation Research, 147, 376.

    Article  CAS  PubMed  Google Scholar 

  44. Horneck, G., Rettberg, P., Baumstark-Khan, C., Rink, H., Kozubek, S., Schafer, M., et al. (1996). Journal of Biotechnology, 47, 99.

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi, A., Ohnishi, K., Takahashi, S., Masukawa, M., Sekikawa, K., Amano, T., et al. (2001). Advances in Space Research, 28, 555.

    Article  CAS  PubMed  Google Scholar 

  46. Cogoli, A., & Gmunder, F. K. (1991). Advances in Space Biology and Medicine, 1, 183.

    Article  CAS  PubMed  Google Scholar 

  47. Mattoni, R. (1968). Bioscience, 18, 602.

    Article  Google Scholar 

  48. Wilson, J. W., Ott, C. M., Honer zu Bentrup, K., Ramamurthy, R., Quick, L., Porwollik, S., et al. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104, 16299.

    Google Scholar 

  49. Alpatov, A. M., I’Lin, E. A., Antipov, V. V., & Tairbekov, M. G. (1989, September–October). Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina, 23, 26.

    Google Scholar 

  50. Demain, A. L., & Fang, A. (2001). Chemical Record, 1, 333.

    Article  CAS  PubMed  Google Scholar 

  51. Duquesne, S., Petit, V., Peduzzi, J., & Rebuffat, S. (2007). Journal of Molecular Microbiology and Biotechnology, 13, 200.

    Article  CAS  PubMed  Google Scholar 

  52. Xiang, L., Qi, F., Dai, D., Li, C., & Jiang, Y. (2010). Applied Biochemistry and Biotechnology, 162, 654.

    Article  CAS  PubMed  Google Scholar 

  53. Matsui, S., Matsumoto, H., Sonoda, Y., Ando, K., Aizu-Yokota, E., Sato, T., et al. (2004). International Immunopharmacology, 4, 1633.

    Article  CAS  PubMed  Google Scholar 

  54. ***Zhang, Y., Lai, C., Duan, J., Guan, N., Ullah, K., & Deng, Y. 55. Tixador, R., Gasset, G., Eche, B., Moatti, N., Lapchine, L., Woldringh, C., et al. (2012). Applied Microbiology and Biotechnology, 94, 809.

    Google Scholar 

  55. Tixador, R., et al. (1994). Aviation, Space, and Environmental Medicine, 65, 551.

    CAS  PubMed  Google Scholar 

  56. Marchin, G. L., Silverstein, J., & Brion, G. M. (1997). Acta Astronautica, 40, 65.

    Article  CAS  PubMed  Google Scholar 

  57. Leys, N. M., Hendrickx, L., De Boever, P., Baatout, S., & Mergeay, M. (2004). Journal of Biological Regulators and Homeostatic Agents, 18, 193.

    CAS  PubMed  Google Scholar 

  58. Juergensmeyer, M. A., Juergensmeyer, E. A., & Guikema, J. A. (1999). Microgravity Science and Technology, 12, 41.

    CAS  PubMed  Google Scholar 

  59. Gao, Q., Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2001). Applied Microbiology and Biotechnology, 56, 384.

    Article  CAS  PubMed  Google Scholar 

  60. Crabbe, A., Pycke, B., Van Houdt, R., Monsieurs, P., Nickerson, C., Leys, N. et al. (2010). Environmental Microbiology, 12, 1545.

    Google Scholar 

  61. Castro, S. L., Nelman-Gonzalez, M., Nickerson, C. A., & Ott, C. M. (2011). Applied and Environmental Microbiology, 77, 6368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo, P., Weinstein, A. M., & Weinbaum, S. (2000). American Journal of Physiology. Renal Physiology, 279, F698.

    CAS  PubMed  Google Scholar 

  63. Cai, Z., Xin, J., Pollock, D. M., & Pollock, J. S. (2000). American Journal of Physiology. Renal Physiology, 279, F270.

    CAS  PubMed  Google Scholar 

  64. Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbiology and Molecular Biology Reviews, 68, 345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barth, M., Marschall, C., Muffler, A., Fischer, D., & Hengge-Aronis, R. (1995). Journal of Bacteriology, 177, 3455.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hengge-Aronis, R. (2000). In G. Storz & R. Hengge-Aronis (Eds.), Bacterial stress responses (pp. 161–178). Washington, DC: ASM Press.

    Google Scholar 

  67. Coleman, C., Baker, C., & Nickerson, C. A. (2006). In C. A. Nickerson & M. J. Schurr (Eds.), Molecular paradigms of infectious disease: A bacterial perspective (pp. 438–501). New York: Springer Science & Business Media.

    Google Scholar 

  68. Anderl, J. N., Zahller, J., Roe, F., & Stewart, P. S. (2003). Antimicrobial Agents and Chemotherapy, 47, 1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vukanti, R., & Leff, L. G. (2012). Microgravity Science and Technology, 24, 267.

    Article  CAS  Google Scholar 

  70. Baker, T. A., & Sauer, R. T. (2012). Biochimica et Biophysica Acta, 1823, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. King, T., Ishihama, A., Kori, A., & Ferenci, T. (2004). Journal of Bacteriology, 186, 5614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Battesti, A., Majdalani, N., & Gottesman, S. (2011). Annual Review of Microbiology, 65, 189.

    Article  CAS  PubMed  Google Scholar 

  73. Hirsch, M., & Elliott, T. (2005). Journal of Bacteriology, 187, 7204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hirsch, M., & Elliott, T. (2005). Journal of Bacteriology, 187, 1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mukhopadhyay, S., Audia, J. P., Roy, R. N., & Schellhorn, H. E. (2000). Molecular Microbiology, 37, 371.

    Article  CAS  PubMed  Google Scholar 

  76. McCann, M. P., Fraley, C. D., & Matin, A. (1993). Journal of Bacteriology, 175, 2143.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cunning, C., Brown, L., & Elliott, T. (1998). Journal of Bacteriology, 180, 4564.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Majdalani, N., Hernandez, D., & Gottesman, S. (2002). Molecular Microbiology, 46, 813.

    Article  CAS  PubMed  Google Scholar 

  79. Resch, A., Vecerek, B., Palavra, K., & Blasi, U. (2010). RNA Biology, 7, 796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Phadtare, S., & Inouye, M. (2001). Journal of Bacteriology, 183, 1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cohen-Or, I., Shenhar, Y., Biran, D., & Ron, E. Z. (2010). Research in Microbiology, 161, 694.

    Article  CAS  PubMed  Google Scholar 

  82. Hussein, R., & Lim, H. N. (2011). Proceedings of the National Academy of Sciences of the United States of America, 108, 1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McCullen, C. A., Benhammou, J. N., Majdalani, N., & Gottesman, S. (2010). Journal of Bacteriology, 192, 5559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schweder, T., Lee, K. H., Lomovskaya, O., & Matin, A. (1996). Journal of Bacteriology, 178, 470.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gottesman, S., Roche, E., Zhou, Y., & Sauer, R. T. (1998). Genes & Development, 12, 1338.

    Article  CAS  Google Scholar 

  86. Moore, S. D., & Sauer, R. T. (2007). Annual Review of Biochemistry, 76, 101.

    Article  CAS  PubMed  Google Scholar 

  87. Becker, G., Klauck, E., & Hengge-Aronis, R. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 6439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Georgellis, D., Kwon, O., & Lin, E. C. (2001). Science, 292, 2314.

    Article  CAS  PubMed  Google Scholar 

  89. Malpica, R., Franco, B., Rodriguez, C., Kwon, O., & Georgellis, D. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 13318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bougdour, A., & Gottesman, S. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104, 12896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gentry, D. R., Hernandez, V. J., Nguyen, L. H., Jensen, D. B., & Cashel, M. (1993). Journal of Bacteriology, 175, 7982.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamashino, T., Ueguchi, C., & Mizuno, T. (1995). The EMBO Journal, 14, 594.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Battesti, A., Tsegaye, Y. M., Packer, D. G., Majdalani, N., & Gottesman, S. (2012). Journal of Bacteriology, 194, 2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lorber, B. (2002). Biochimica et Biophysica Acta, 1599, 1.

    Article  CAS  PubMed  Google Scholar 

  95. Rosadoa, H., Doylea, M., Hindsb, J., & Taylor, P. W. (2010). Acta Astronautica, 66, 408.

    Article  Google Scholar 

  96. Matin, A., & Lynch, S. V. (2005). ASM News, 71, 235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Matin PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, R., Matin, A.C. (2016). Cellular Response of Escherichia coli to Microgravity and Microgravity Analogue Culture. In: Nickerson, C., Pellis, N., Ott, C. (eds) Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3277-1_13

Download citation

Publish with us

Policies and ethics