Skip to main content
  • 710 Accesses

Abstract

How microorganisms function in the microgravity environment associated with spaceflight had been an open question for 50 years. A variety of unique microbial responses have been observed in experiments throughout the spaceflight program; however, the impact of these responses on medical operations was never thoroughly investigated. Answers were slow coming for several reasons, including a low priority for microbial studies because of the perception that microbes have relatively small impact on short duration spaceflights on the Space Shuttle. However, as the goals of the National Aeronautics and Space Administration (NASA) have shifted to much longer exploration missions, the potential impact of microbes to human health and ultimately long term habitation in space became evident. Longer stays in space resulted in the realization of emerging microbial-based problems associated with human occupation of the relatively small, closed environments of spacecraft/habitats.

Studies of microorganisms in spaceflight analogues and true spaceflight began as simple investigations to understand the basic phenotypic characteristics of microorganisms when cultured in the spaceflight environment. However, the combination of intriguing discoveries and advances in technology has rapidly stimulated this field of research, especially those studies investigating novel molecular genetic and phenotypic responses relevant to how microbes maintain the balance between homeostasis and disease causing potential. The application of this research is extensive, including Gram positive and Gram negative bacteria (including gastrointestinal, respiratory tract, and skin pathogens) and eukaryotic yeast. Taken together, the study of microorganisms in the spaceflight environment should continue to provide unique, exciting findings that are important to both our space exploration efforts and scientific advances for the general public on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor, G. R. (1974). Space microbiology. Annual Review of Microbiology, 28, 121–137.

    Article  CAS  PubMed  Google Scholar 

  2. Ferguson, J. K., Taylor, G. R., & Mieszkuc, B. J. (1975). Microbiological investigations. In R. S. Johnson, L. F. Dietlein, & C. A. Berry (Eds.), Biomedical results of Apollo (pp. 83–103). Washington: Scientific and Technical Information Office, NASA.

    Google Scholar 

  3. Tixador, R., Richoilley, G., Gasset, G., Templier, J., Bes, J. C., Moatti, N., et al. (1985). Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviation, Space, and Environmental Medicine, 56(8), 748–751.

    CAS  PubMed  Google Scholar 

  4. Long, J. P., Pierson, S. S., & Hughes, J. H. (1998). Rhinovirus replication in HeLa cells cultured under conditions of simulated microgravity. Aviation, Space, and Environmental Medicine, 69, 851–856.

    CAS  PubMed  Google Scholar 

  5. Kacena, M. A., Leonard, P. E., Todd, P., & Luttges, M. W. (1997). Low gravity and inertial effects on the growth of E. coli and B. subtilis in semi-solid media. Aviation, Space, and Environmental Medicine, 68(12), 1104–1108.

    CAS  PubMed  Google Scholar 

  6. Nickerson, C. A., Ott, C. M., Mister, S. J., Morrow, B. J., Burns-Keliher, L., & Pierson, D. L. (2000). Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infection and Immunity, 68(6), 3147–3152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilson, J. W., Ramamurthy, R., Porwollik, S., McClelland, M., Hammond, T., Allen, P., et al. (2002). Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13807–13812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nauman, E. A., Ott, C. M., Sander, E., Tucker, D. L., Pierson, D., Wilson, J. W., et al. (2007). Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Applied and Environmental Microbiology, 73(3), 699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilson, J. W., Ott, C. M., Honer zu Bentrup, K., Ramamurthy, R., Quick, L., Porwollik, S., et al. (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16299–16304.

    Google Scholar 

  10. Wilson, J. W., Ott, C. M., Quick, L., Davis, R., Honer zu Bentrup, K., Crabbe, A., et al. (2008). Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS One, 3(12), e3923.

    Google Scholar 

  11. Brinley, A. A., Theriot, C. A., Nelman-Gonzalez, M., Crucian, B., Stowe, R. P., Barrett, A. D., et al. (2013). Characterization of Epstein-Barr virus reactivation in a modeled spaceflight system. Journal of Cellular Biochemistry, 114(3), 616–624.

    Article  CAS  PubMed  Google Scholar 

  12. Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., et al. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267.

    Article  CAS  PubMed  Google Scholar 

  13. Cerf-Bensussan, N., & Gaboriau-Routhiau, V. (2010). The immune system and the gut microbiota: Friends or foes? Nature Reviews Immunology, 10(10), 735–744.

    Article  CAS  PubMed  Google Scholar 

  14. Olszak, T., An, D., Zeissig, S., Vera, M. P., Richter, J., Franke, A., et al. (2012). Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 336(6080), 489–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balter, M. (2012). Taking stock of the human microbiome and disease. Science, 336(6086), 1246–1247.

    Article  CAS  PubMed  Google Scholar 

  16. Dickson, K. J. (1991). Summary of biological spaceflight experiments with cells. ASGSB Bulletin, 4(2), 151–260.

    CAS  PubMed  Google Scholar 

  17. Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbial responses to microgravity and other low-shear environments. Microbiology and Molecular Biology Reviews, 68(2), 345–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horneck, G., Klaus, D. M., & Mancinelli, R. L. (2010). Space microbiology. Microbiology and Molecular Biology Reviews, 74(1), 121–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., LeBlanc, C. L., Honer zu Bentrup, K., et al. (2003). Low-shear modeled microgravity: A global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. Journal of Microbiological Methods, 54(1), 1–11.

    Google Scholar 

  20. Wolf, D. A., & Schwarz, R. P. (1991). Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head space tissue culture vessel.

    Google Scholar 

  21. Unsworth, B. R., & Lelkes, P. I. (1998). Growing tissues in microgravity. Nature Medicine, 4(8), 901–907.

    Article  CAS  PubMed  Google Scholar 

  22. Fang, A., Pierson, D. L., Koenig, D. W., Mishra, S. K., & Demain, A. L. (1997). Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Applied and Environmental Microbiology, 63(10), 4090–4092.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Secondary metabolism in simulated microgravity: Beta-lactam production by Streptomyces clavuligerus. Journal of Industrial Microbiology and Biotechnology, 18(1), 22–25.

    Article  CAS  PubMed  Google Scholar 

  24. Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Gramicidin S production by Bacillus brevis in simulated microgravity. Current Microbiology, 34(4), 199–204.

    Article  CAS  PubMed  Google Scholar 

  25. Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2000). Relief from glucose interference in microcin B-17 biosynthesis by growth in a rotating-wall bioreactor. Letters in Applied Microbiology, 31, 39–41.

    Article  CAS  PubMed  Google Scholar 

  26. Gao, Q., Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2001). Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not. Applied Microbiology and Biotechnology, 56(3–4), 384–387.

    Article  CAS  PubMed  Google Scholar 

  27. Klaus, D. (2001). Clinostats and bioreactors. Gravitational and Space Biology Bulletin, 14(2), 55–64.

    CAS  PubMed  Google Scholar 

  28. Davies, D. G., & Geesey, G. G. (1995). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Applied and Environmental Microbiology, 61(3), 860–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Beeson, J. G., Rogerson, S. J., Cooke, B. M., Reeder, J. C., Chai, W., Lawson, A. M., et al. (2000). Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nature Medicine, 6(1), 86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai, Z., Xin, J., Pollock, D. M., & Pollock, J. S. (2000). Shear stress-mediated NO production in inner medullary collecting duct cells. American Journal of Physiology Renal Physiology, 279(2), F270–F274.

    CAS  PubMed  Google Scholar 

  31. Creasy, R. K., & Reznik, R. (1984). Maternal-fetal medicine: Principles and practice. Philadelphia: WB Saunders Company.

    Google Scholar 

  32. Guo, P., Weinstein, A. M., & Weinbaum, S. (2000). A hydrodynamic mechanosensory hypothesis for brush border microvilli. American Journal of Physiology Renal Physiology, 279(4), F698–F712.

    CAS  PubMed  Google Scholar 

  33. Stock, U. A., & Vacanti, J. P. (2001). Cardiovascular physiology during fetal development and implications for tissue engineering. Tissue Engineering, 7(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas, W. E., Nilsson, L. M., Forero, M., Sokurenko, E. V., & Vogel, V. (2004). Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology, 53(5), 1545–1557.

    Article  CAS  PubMed  Google Scholar 

  35. Thomas, W., Forero, M., Yakovenko, O., Nilsson, L., Vicini, P., Sokurenko, E., et al. (2006). Catch-bond model derived from allostery explains force-activated bacterial adhesion. Biophysical Journal, 90(3), 753–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crabbe, A., De Boever, P., Van Houdt, R., Moors, H., Mergeay, M., & Cornelis, P. (2008). Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environmental Microbiology, 10(8), 2098–2110.

    Article  CAS  PubMed  Google Scholar 

  37. Crabbe, A., Pycke, B., Van Houdt, R., Monsieurs, P., Nickerson, C., Leys, N., et al. (2010). Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environmental Microbiology, 12(6), 1545–1564.

    CAS  PubMed  Google Scholar 

  38. Crabbe, A., Schurr, M. J., Monsieurs, P., Morici, L., Schurr, J., Wilson, J. W., et al. (2011). Transcriptional and proteomic response of Pseudomonas aeruginosa PAO1 to spaceflight conditions involves Hfq regulation and reveals a role for oxygen. Applied and Environmental Microbiology, 77(4), 1221–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, W., Tengra, F. K., Young, Z., Shong, J., Marchand, N., Chan, H. K., et al. (2013). Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One, 8(4), e62437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, W., Tengra, F. K., Shong, J., Marchand, N., Chan, H. K., Young, Z., et al. (2013). Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiology, 13, 241.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sheehan, K. B., McInnerney, K., Purevdorj-Gage, B., Altenburg, S. D., & Hyman, L. E. (2007). Yeast genomic expression patterns in response to low-shear modeled microgravity. BMC Genomics, 8, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Altenburg, S. D., Nielsen-Preiss, S. M., & Hyman, L. E. (2008). Increased filamentous growth of Candida albicans in simulated microgravity. Genomics, Proteomics & Bioinformatics, 6(1), 42–50.

    Article  Google Scholar 

  43. Crabbe, A., Nielsen-Preiss, S. M., Woolley, C. M., Barrila, J., Buchanan, K., McCracken, J., et al. (2013). Spaceflight enhances cell aggregation and random budding in Candida albicans. PLoS One, 8(12), e80677.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yamazaki, T., Yoshimoto, M., Nishiyama, Y., Okubo, Y., & Makimura, K. (2012). Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat. Microbiology and Immunology, 56, 441–446.

    Article  CAS  PubMed  Google Scholar 

  45. Allen, C. A., Niesel, D. W., & Torres, A. G. (2008). The effects of low-shear stress on adherent-invasive Escherichia coli. Environmental Microbiology, 10(6), 1512.

    Article  CAS  PubMed  Google Scholar 

  46. Allen, C. A., Galindo, C. L., Pandya, U., Watson, D. A., Chopra, A. K., & Niesel, D. W. (2007). Transcription profiles of Streptococcus pneumoniae grown under different conditions of normal gravitation. Acta Astronautica, 60, 433–444.

    Article  Google Scholar 

  47. Castro, S. L., Nelman-Gonzalez, M., Nickerson, C. A., & Ott, C. M. (2011). Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureus. Applied and Environmental Microbiology, 77(18), 6368–6378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosado, H., Stapleton, P. D., & Taylor, P. W. (2006). Effect of simulated microgravity on the virulence properties of the opportunistic bacterial pathogen Staphylococcus aureus. In Proceedings of the 57th International Astronautical Congress.

    Google Scholar 

  49. Rosado, H., Doyle, M., Hinds, J., & Taylor, P. W. (2010). Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronautica, 66, 408–416.

    Article  CAS  Google Scholar 

  50. Rosado, H., O’Neill, A. J., Blake, K. L., Walther, M., Long, P. F., Hinds, J., et al. (2012). Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus. International Journal of Astrobiology, 11(2), 71–81.

    Article  CAS  Google Scholar 

  51. Pierson, D. L., Mehta, S. K., Magee, B. B., & Mishra, S. K. (1995). Person-to-person transfer of Candida albicans in the spacecraft environment. Journal of Medical and Veterinary Mycology, 33, 145–150.

    Article  CAS  PubMed  Google Scholar 

  52. Taylor, G. R. (1974). Recovery of medically important microorganisms from Apollo astronauts. Aerospace Medicine, 45(8), 824–828.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mark Ott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pierson, D.L., Mark Ott, C. (2016). Microbial Investigations: Overview. In: Nickerson, C., Pellis, N., Ott, C. (eds) Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3277-1_10

Download citation

Publish with us

Policies and ethics