The Genetic Basis and Molecular Diagnosis of Vascular Tumors and Developmental Malformations

  • Monte S. WillisEmail author
  • Tara Sander
Part of the Molecular and Translational Medicine book series (MOLEMED)


Vascular anomalies, although largely benign, can be clinically devastating and affect an astounding 5–10 % of children worldwide, many with lifelong affliction. Vascular anomalies fall into two main groups: (1) vascular tumors that are intrinsically proliferative and (2) vascular malformations that represent true errors in development of the embryonic vasculature. Diagnosis of vascular malformations and tumors can be challenging, because of overlapping histological and clinical features and poorly understood pathogenesis. Accurate diagnosis is essential for family planning and disease management and better targeted therapies. The recognition of genetic vascular disorders and molecular testing has provided better clarification of the classifications and a more precise diagnosis. Unfortunately, the etiology of many vascular anomalies remains unknown, and diagnosis is challenging even in the most knowledgeable multidisciplinary centers managing these patients. Molecular genetic testing offers almost immediate promise for accurate diagnosis. Mutations in specific genes have been identified in familial examples and more recently in some sporadic occurring examples. Although still largely unavailable commercially, molecular genetic testing is available for certain vascular anomalies (mostly on a research basis only) to aid the physician in diagnosis and treatment of the child. In this chapter, we strive to provide the most up-to-date information regarding gene mutations associated with vascular anomalies and molecular genetic testing currently available for diagnosis. It is recognized that clinical evaluation and histologic analysis play a large role in the accurate diagnosis of vascular anomalies; however, these topics are minimally addressed in this review.


Vascular anomalies Vascular malformations Vascular tumors Molecular diagnosis Genetic testing Gene mutation 


  1. 1.
    ISSVA. Causal genes of vascular anomalies. In: ISSVA classification for vascular anomalies: approved at the 20th ISSVA workshop, Melbourne. 2014; pp. Appendix 2a–2f.Google Scholar
  2. 2.
    Blatt J, Powell CM, Burkhart CN, Stavas J, Aylsworth AS. Genetics of hemangiomas, vascular malformations, and primary lymphedema. J Pediatr Hematol Oncol. 2014;36:587–93.PubMedCrossRefGoogle Scholar
  3. 3.
    Boon LM, Vikkula M. Molecular genetics of vascular malformations. In: Mulliken JB, Burrown PE, Fishman SJ, editors. Mulliken and Young’s vascular anomalies: hemangiomas and malformations. Oxford: Oxford University Press; 2013.Google Scholar
  4. 4.
    Nguyen HL, Boon LM, Vikkula M. Genetics of vascular malformations. Semin Pediatr Surg. 2014;23:221–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Legiehn GM, Heran MK. Classification, diagnosis, and interventional radiologic management of vascular malformations. Orthop Clin North Am. 2006;37:435–74, vii–viii.PubMedCrossRefGoogle Scholar
  6. 6.
    Spring MA, Bentz ML. Cutaneous vascular lesions. Clin Plast Surg. 2005;32:171–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Jacobs AH, Walton RG. The incidence of birthmarks in the neonate. Pediatrics. 1976;58:218–22.PubMedGoogle Scholar
  8. 8.
    Lanigan SW, Cotterill JA. Psychological disabilities amongst patients with port wine stains. Br J Dermatol. 1989;121:209–15.PubMedCrossRefGoogle Scholar
  9. 9.
    Comi AM. Presentation, diagnosis, pathophysiology, and treatment of the neurological features of Sturge-Weber syndrome. Neurologist. 2011;17:179–84.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, North PE, Marchuk DA, Comi AM, Pevsner J. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368:1971–9.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Eubanks LE, McBurney EI. Videomicroscopy of port-wine stains: correlation of location and depth of lesion. J Am Acad Dermatol. 2001;44:948–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Boon LM, Mulliken JB, Vikkula M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr Opin Genet Dev. 2005;15:265–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, Clapuyt P, Hammer F, Dubois J, Baselga E, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29:959–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, Vanwijck R, Vikkula M. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet. 2003;73:1240–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Boon LM, Mulliken JB, Vikkula M, Watkins H, Seidman J, Olsen BR, Warman ML. Assignment of a locus for dominantly inherited venous malformations to chromosome 9p. Hum Mol Genet. 1994;3:1583–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Guttmacher AE, Marchuk DA, White Jr RI. Hereditary hemorrhagic telangiectasia. N Engl J Med. 1995;333:918–24.PubMedCrossRefGoogle Scholar
  17. 17.
    McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet. 2015;6:1.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Gallione CJ, Richards JA, Letteboer TG, Rushlow D, Prigoda NL, Leedom TP, Ganguly A, Castells A, Ploos van Amstel JK, Westermann CJ, et al. SMAD4 mutations found in unselected HHT patients. J Med Genet. 2006;43:793–7.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13:189–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Shovlin CL, Hughes JM, Tuddenham EG, Temperley I, Perembelon YF, Scott J, Seidman CE, Seidman JG. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nat Genet. 1994;6:205–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Bayrak-Toydemir P, McDonald J, Akarsu N, Toydemir RM, Calderon F, Tuncali T, Tang W, Miller F, Mao R. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet A. 2006;140:2155–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Cole SG, Begbie ME, Wallace GM, Shovlin CL. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet. 2005;42:577–82.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Best DH, Vaughn C, McDonald J, Damjanovich K, Runo JR, Chibuk JM, Bayrak-Toydemir P. Mosaic ACVRL1 and ENG mutations in hereditary haemorrhagic telangiectasia patients. J Med Genet. 2011;48:358–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Wooderchak-Donahue WL, McDonald J, O’Fallon B, Upton PD, Li W, Roman BL, Young S, Plant P, Fulop GT, Langa C, et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 2013;93:530–7.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Benzinou M, Clermont FF, Letteboer TG, Kim JH, Espejel S, Harradine KA, Arbelaez J, Luu MT, Roy R, Quigley D, et al. Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat Commun. 2012;3:616.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kawasaki K, Freimuth J, Meyer DS, Lee MM, Tochimoto-Okamoto A, Benzinou M, Clermont FF, Wu G, Roy R, Letteboer TG, et al. Genetic variants of Adam17 differentially regulate TGFbeta signaling to modify vascular pathology in mice and humans. Proc Natl Acad Sci U S A. 2014;111:7723–8.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Brancati F, Valente EM, Tadini G, Caputo V, Di Benedetto A, Gelmetti C, Dallapiccola B. Autosomal dominant hereditary benign telangiectasia maps to the CMC1 locus for capillary malformation on chromosome 5q14. J Med Genet. 2003;40:849–53.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Molho-Pessach V, Agha Z, Libster D, Lerer I, Burger A, Jaber S, Abeliovich D, Zlotogorski A. Evidence for clinical and genetic heterogeneity in hereditary benign telangiectasia. J Am Acad Dermatol. 2007;57:814–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Calzavara-Pinton PG, Colombi M, Carlino A, Zane C, Gardella R, Clemente M, Facchetti F, Moro L, Zoppi N, Caimi L, et al. Angiokeratoma corporis diffusum and arteriovenous fistulas with dominant transmission in the absence of metabolic disorders. Arch Dermatol. 1995;131:57–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Fernandez-Acenero MJ, Rey Biel J, Renedo G. Solitary angiokeratoma of the tongue in adults. Rom J Morphol Embryol. 2010;51:771–3.PubMedGoogle Scholar
  31. 31.
    Ranjan N, Mahajan VK. Oral angiokeratomas: proposed clinical classification. Int J Dermatol. 2009;48:778–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Blinkenberg EO, Brendehaug A, Sandvik AK, Vatne O, Hennekam RC, Houge G. Angioma serpiginosum with oesophageal papillomatosis is an X-linked dominant condition that maps to Xp11.3-Xq12. Eur J Hum Genet. 2007;15:543–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Houge G, Oeffner F, Grzeschik KH. An Xp11.23 deletion containing PORCN may also cause angioma serpiginosum, a cosmetic skin disease associated with extreme skewing of X-inactivation. Eur J Hum Genet. 2008;16:1027–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Grzeschik KH, Bornholdt D, Oeffner F, Konig A, del Carmen Boente M, Enders H, Fritz B, Hertl M, Grasshoff U, Hofling K, et al. Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet. 2007;39:833–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang X, Reid Sutton V, Omar Peraza-Llanes J, Yu Z, Rosetta R, Kou YC, Eble TN, Patel A, Thaller C, Fang P, et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet. 2007;39:836–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, Spetzler RF. Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med. 1988;319:343–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Fritschi JA, Reulen HJ, Spetzler RF, Zabramski JM. Cavernous malformations of the brain stem. A review of 139 cases. Acta Neurochir (Wien). 1994;130:35–46.CrossRefGoogle Scholar
  38. 38.
    Del Curling Jr O, Kelly Jr DL, Elster AD, Craven TE. An analysis of the natural history of cavernous angiomas. J Neurosurg. 1991;75:702–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Robinson JR, Awad IA, Little JR. Natural history of the cavernous angioma. J Neurosurg. 1991;75:709–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Siegel AM. Familial cavernous angioma: an unknown, known disease. Acta Neurol Scand. 1998;98:369–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Siegel AM, Andermann E, Badhwar A, Rouleau GA, Wolford GL, Andermann F, Hess K. Anticipation in familial cavernous angioma: a study of 52 families from International Familial Cavernous Angioma Study. IFCAS Group. Lancet. 1998;352:1676–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Otten P, Pizzolato GP, Rilliet B, Berney J. 131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies. Neurochirurgie. 1989;35:82–3, 128–131.PubMedGoogle Scholar
  43. 43.
    Brunereau L, Levy C, Laberge S, Houtteville J, Labauge P. De novo lesions in familial form of cerebral cavernous malformations: clinical and MR features in 29 non-Hispanic families. Surg Neurol. 2000;53:475–82, discussion 482–473.PubMedCrossRefGoogle Scholar
  44. 44.
    Rigamonti D, Drayer BP, Johnson PC, Hadley MN, Zabramski J, Spetzler RF. The MRI appearance of cavernous malformations (angiomas). J Neurosurg. 1987;67:518–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg. 1994;80:422–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet. 2005;76:42–51.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Guclu B, Ozturk AK, Pricola KL, Bilguvar K, Shin D, O’Roak BJ, Gunel M. Mutations in apoptosis-related gene, PDCD10, cause cerebral cavernous malformation 3. Neurosurgery. 2005;57:1008–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Liquori CL, Berg MJ, Squitieri F, Ottenbacher M, Sorlie M, Leedom TP, Cannella M, Maglione V, Ptacek L, Johnson EW, et al. Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Hum Mutat. 2006;27:118.PubMedCrossRefGoogle Scholar
  49. 49.
    Verlaan DJ, Roussel J, Laurent SB, Elger CE, Siegel AM, Rouleau GA. CCM3 mutations are uncommon in cerebral cavernous malformations. Neurology. 2005;65:1982–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Gunel M, Awad IA, Finberg K, Anson JA, Steinberg GK, Batjer HH, Kopitnik TA, Morrison L, Giannotta SL, Nelson-Williams C, et al. A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med. 1996;334:946–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Johnson EW, Iyer LM, Rich SS, Orr HT, Gil-Nagel A, Kurth JH, Zabramski JM, Marchuk DA, Weissenbach J, Clericuzio CL, et al. Refined localization of the cerebral cavernous malformation gene (CCM1) to a 4-cM interval of chromosome 7q contained in a well-defined YAC contig. Genome Res. 1995;5:368–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Sahoo T, Johnson EW, Thomas JW, Kuehl PM, Jones TL, Dokken CG, Touchman JW, Gallione CJ, Lee-Lin SQ, Kosofsky B, et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet. 1999;8:2325–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Cave-Riant F, Denier C, Labauge P, Cecillon M, Maciazek J, Joutel A, Laberge-Le Couteulx S, Tournier-Lasserve E. Spectrum and expression analysis of KRIT1 mutations in 121 consecutive and unrelated patients with Cerebral Cavernous Malformations. Eur J Hum Genet. 2002;10:733–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Denier C, Goutagny S, Labauge P, Krivosic V, Arnoult M, Cousin A, Benabid AL, Comoy J, Frerebeau P, Gilbert B, et al. Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet. 2004;74:326–37.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Verlaan DJ, Davenport WJ, Stefan H, Sure U, Siegel AM, Rouleau GA. Cerebral cavernous malformations: mutations in Krit1. Neurology. 2002;58:853–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Verlaan DJ, Siegel AM, Rouleau GA. Krit1 missense mutations lead to splicing errors in cerebral cavernous malformation. Am J Hum Genet. 2002;70:1564–7.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Guzeloglu-Kayisli O, Amankulor NM, Voorhees J, Luleci G, Lifton RP, Gunel M. KRIT1/cerebral cavernous malformation 1 protein localizes to vascular endothelium, astrocytes, and pyramidal cells of the adult human cerebral cortex. Neurosurgery. 2004;54:943–9, discussion 949.PubMedCrossRefGoogle Scholar
  58. 58.
    Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development. 2004;131:1437–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Crose LE, Hilder TL, Sciaky N, Johnson GL. Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem. 2009;284:13301–5.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Stockton RA, Shenkar R, Awad IA, Ginsberg MH. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med. 2010;207:881–96.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Ma X, Zhao H, Shan J, Long F, Chen Y, Zhang Y, Han X, Ma D. PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway. Mol Biol Cell. 2007;18:1965–78.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W. Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal. 2010;3:ra26.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Tanriover G, Seval Y, Sati L, Gunel M, Demir N. CCM2 and CCM3 proteins contribute to vasculogenesis and angiogenesis in human placenta. Histol Histopathol. 2009;24:1287–94.PubMedGoogle Scholar
  64. 64.
    Zheng X, Xu C, Di Lorenzo A, Kleaveland B, Zou Z, Seiler C, Chen M, Cheng L, Xiao J, He J, et al. CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest. 2010;120:2795–804.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Lauenborg B, Kopp K, Krejsgaard T, Eriksen KW, Geisler C, Dabelsteen S, Gniadecki R, Zhang Q, Wasik MA, Woetmann A, et al. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis. APMIS. 2010;118:719–28.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Verlaan DJ, Laurent SB, Sure U, Bertalanffy H, Andermann E, Andermann F, Rouleau GA, Siegel AM. CCM1 mutation screen of sporadic cases with cerebral cavernous malformations. Neurology. 2004;62:1213–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Craig HD, Gunel M, Cepeda O, Johnson EW, Ptacek L, Steinberg GK, Ogilvy CS, Berg MJ, Crawford SC, Scott RM, et al. Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. Hum Mol Genet. 1998;7:1851–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP, et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet. 2003;73:1459–64.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Lucas M, Costa AF, Montori M, Solano F, Zayas MD, Izquierdo G. Germline mutations in the CCM1 gene, encoding Krit1, cause cerebral cavernous malformations. Ann Neurol. 2001;49:529–32.PubMedCrossRefGoogle Scholar
  70. 70.
    Johnson EW. Cerebral cavernous malformation, familial. In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews. Seattle: University of Washington; 2006.Google Scholar
  71. 71.
    Boon LM, Mulliken JB, Enjolras O, Vikkula M. Glomuvenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities. Arch Dermatol. 2004;140:971–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Boon LM, Ballieux F, Vikkula M. Pathogenesis of vascular anomalies. Clin Plast Surg. 2011;38:7–19.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Boon LM, Vikkula M. From blue jeans to blue genes. J Craniofac Surg. 2009;20 Suppl 1:703–6.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Dompmartin A, Vikkula M, Boon LM. Venous malformation: update on aetiopathogenesis, diagnosis and management. Phlebology. 2010;25:224–35.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Vikkula M, Boon LM, Carraway 3rd KL, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell. 1996;87:1181–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Calvert JT, Riney TJ, Kontos CD, Cha EH, Prieto VG, Shea CR, Berg JN, Nevin NC, Simpson SA, Pasyk KA, et al. Allelic and locus heterogeneity in inherited venous malformations. Hum Mol Genet. 1999;8:1279–89.PubMedCrossRefGoogle Scholar
  77. 77.
    Nobuhara Y, Onoda N, Fukai K, Hosomi N, Ishii M, Wakasa K, Nishihara T, Ishikawa T, Hirakawa K. TIE2 gain-of-function mutation in a patient with pancreatic lymphangioma associated with blue rubber-bleb nevus syndrome: report of a case. Surg Today. 2006;36:283–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Wouters V, Limaye N, Uebelhoer M, Irrthum A, Boon LM, Mulliken JB, Enjolras O, Baselga E, Berg J, Dompmartin A, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects. Eur J Hum Genet. 2010;18:414–20.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, Eklund L, Boon LM, Vikkula M. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41:118–24.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Boon LM, Vikkula M. Multiple cutaneous and mucosal venous malformations. In: GeneReviews – NCBI bookshelf [Internet]. Seattle: University of Washington; 2008.Google Scholar
  81. 81.
    Brouillard P, Ghassibe M, Penington A, Boon LM, Dompmartin A, Temple IK, Cordisco M, Adams D, Piette F, Harper JI, et al. Four common glomulin mutations cause two thirds of glomuvenous malformations (“familial glomangiomas”): evidence for a founder effect. J Med Genet. 2005;42, e13.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Boon LM, Brouillard P, Irrthum A, Karttunen L, Warman ML, Rudolph R, Mulliken JB, Olsen BR, Vikkula M. A gene for inherited cutaneous venous anomalies (“glomangiomas”) localizes to chromosome 1p21-22. Am J Hum Genet. 1999;65:125–33.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Irrthum A, Brouillard P, Enjolras O, Gibbs NF, Eichenfield LF, Olsen BR, Mulliken JB, Boon LM, Vikkula M. Linkage disequilibrium narrows locus for venous malformation with glomus cells (VMGLOM) to a single 1.48 Mbp YAC. Eur J Hum Genet. 2001;9:34–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Brouillard P, Boon LM, Mulliken JB, Enjolras O, Ghassibe M, Warman ML, Tan OT, Olsen BR, Vikkula M. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations (“glomangiomas”). Am J Hum Genet. 2002;70:866–74.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Brouillard P, Olsen BR, Vikkula M. High-resolution physical and transcript map of the locus for venous malformations with glomus cells (VMGLOM) on chromosome 1p21-p22. Genomics. 2000;67:96–101.PubMedCrossRefGoogle Scholar
  86. 86.
    Chambraud B, Radanyi C, Camonis JH, Shazand K, Rajkowski K, Baulieu EE. FAP48, a new protein that forms specific complexes with both immunophilins FKBP59 and FKBP12. Prevention by the immunosuppressant drugs FK506 and rapamycin. J Biol Chem. 1996;271:32923–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Goujon E, Cordoro KM, Barat M, Rousseau T, Brouillard P, Vikkula M, Frieden IJ, Vabres P. Congenital plaque-type glomuvenous malformations associated with fetal pleural effusion and ascites. Pediatr Dermatol. 2010;28:528–31.PubMedCrossRefGoogle Scholar
  88. 88.
    Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet. 2009;18:R65–74.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    O’Hagan AH, Moloney FJ, Buckley C, Bingham EA, Walsh MY, McKenna KE, McGibbon D, Hughes AE. Mutation analysis in Irish families with glomuvenous malformations. Br J Dermatol. 2006;154:450–2.PubMedCrossRefGoogle Scholar
  90. 90.
    Ostberg A, Moreno G, Su T, Trisnowati N, Marchuk D, Murrell DF. Genetic analysis of a family with hereditary glomuvenous malformations. Australas J Dermatol. 2007;48:170–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen AY, Eide M, Shwayder T. Glomuvenous malformation in a boy with transposition of the great vessels: a case report and review of literature. Pediatr Dermatol. 2009;26:70–4.PubMedCrossRefGoogle Scholar
  92. 92.
    McIntyre BA, Brouillard P, Aerts V, Gutierrez-Roelens I, Vikkula M. Glomulin is predominantly expressed in vascular smooth muscle cells in the embryonic and adult mouse. Gene Expr Patterns. 2004;4:351–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Kato N, Kumakiri M, Ohkawara A. Localized form of multiple glomus tumors: report of the first case showing partial involution. J Dermatol. 1990;17:423–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, Mulliken JB, Bowen ME, Yamamoto GL, Kozakewich HP, et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90:1108–15.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Luks VL, Kamitaki N, Vivero MP, Uller W, Rab R, Bovee JV, Rialon KL, Guevara CJ, Alomari AI, Greene AK, et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr. 2015;166(1048–1054):e1041–5.Google Scholar
  96. 96.
    Ghalamkarpour A, Holnthoner W, Saharinen P, Boon LM, Mulliken JB, Alitalo K, Vikkula M. Recessive primary congenital lymphoedema caused by a VEGFR3 mutation. J Med Genet. 2009;46:399–404.PubMedCrossRefGoogle Scholar
  97. 97.
    Irrthum A, Karkkainen MJ, Devriendt K, Alitalo K, Vikkula M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 2000;67:295–301.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Finegold DN, Kimak MA, Lawrence EC, Levinson KL, Cherniske EM, Pober BR, Dunlap JW, Ferrell RE. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet. 2001;10:1185–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, Fryns JP, Van Steensel MA, Vikkula M. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet. 2003;72:1470–8.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Ferrell RE, Baty CJ, Kimak MA, Karlsson JM, Lawrence EC, Franke-Snyder M, Meriney SD, Feingold E, Finegold DN. GJC2 missense mutations cause human lymphedema. Am J Hum Genet. 2010;86:943–8.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, Holmberg EE, Mannens MM, Mulder MF, Offerhaus GJ, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 2009;41:1272–4.PubMedCrossRefGoogle Scholar
  102. 102.
    Bull LN, Roche E, Song EJ, Pedersen J, Knisely AS, van Der Hagen CB, Eiklid K, Aagenaes O, Freimer NB. Mapping of the locus for cholestasis-lymphedema syndrome (Aagenaes syndrome) to a 6.6-cM interval on chromosome 15q. Am J Hum Genet. 2000;67:994–9.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27:277–85.PubMedCrossRefGoogle Scholar
  104. 104.
    Malik S, Grzeschik KH. Congenital, low penetrance lymphedema of lower limbs maps to chromosome 6q16.2-q22.1 in an inbred Pakistani family. Hum Genet. 2008;123:197–205.PubMedCrossRefGoogle Scholar
  105. 105.
    Jinnin M, Ishihara T, Boye E, Olsen BR. Recent progress in studies of infantile hemangioma. J Dermatol. 2010;37:283–98.PubMedCrossRefGoogle Scholar
  106. 106.
    Frieden IJ, Reese V, Cohen D. PHACE syndrome. The association of posterior fossa brain malformations, hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities. Arch Dermatol. 1996;132:307–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Schwartz RA, Sidor MI, Musumeci ML, Lin RL, Micali G. Infantile haemangiomas: a challenge in paediatric dermatology. J Eur Acad Dermatol Venereol. 2010;24:631–8.PubMedCrossRefGoogle Scholar
  108. 108.
    North PE, Waner M, Mizeracki A, Mihm Jr MC. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol. 2000;31:11–22.PubMedCrossRefGoogle Scholar
  109. 109.
    Walter JW, North PE, Waner M, Mizeracki A, Blei F, Walker JW, Reinisch JF, Marchuk DA. Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosom Cancer. 2002;33:295–303.PubMedCrossRefGoogle Scholar
  110. 110.
    Couto JA, Vivero MP, Kozakewich HP, Taghinia AH, Mulliken JB, Warman ML, Greene AK. A somatic MAP3K3 mutation is associated with verrucous venous malformation. Am J Hum Genet. 2015;96:480–6.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L, Chen CL, Chen HW, Pathan N, Krausz T, Dickson BC, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosom Cancer. 2013;52:775–84.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Flucke U, Vogels RJ, de Saint Aubain Somerhausen N, Creytens DH, Riedl RG, van Gorp JM, Milne AN, Huysentruyt CJ, Verdijk MA, van Asseldonk MM, et al. Epithelioid Hemangioendothelioma: clinicopathologic, immunhistochemical, and molecular genetic analysis of 39 cases. Diagn Pathol. 2014;9:131.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Antonescu C. Malignant vascular tumors – an update. Mod Pathol. 2014;27 Suppl 1:S30–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Amary MF, Damato S, Halai D, Eskandarpour M, Berisha F, Bonar F, McCarthy S, Fantin VR, Straley KS, Lobo S, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet. 2011;43:1262–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Amyere M, Dompmartin A, Wouters V, Enjolras O, Kaitila I, Docquier PL, Godfraind C, Mulliken JB, Boon LM, Vikkula M. Common somatic alterations identified in maffucci syndrome by molecular karyotyping. Mol Syndromol. 2014;5:259–67.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Couvineau A, Wouters V, Bertrand G, Rouyer C, Gerard B, Boon LM, Grandchamp B, Vikkula M, Silve C. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum Mol Genet. 2008;17:2766–75.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Kurek KC, Pansuriya TC, van Ruler MA, van den Akker B, Luks VL, Verbeke SL, Kozakewich HP, Sciot R, Lev D, Lazar AJ, et al. R132C IDH1 mutations are found in spindle cell hemangiomas and not in other vascular tumors or malformations. Am J Pathol. 2013;182:1494–500.PubMedCrossRefGoogle Scholar
  118. 118.
    Pansuriya TC, van Eijk R, d’Adamo P, van Ruler MA, Kuijjer ML, Oosting J, Cleton-Jansen AM, van Oosterwijk JG, Verbeke SL, Meijer D, et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet. 2011;43:1256–61.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Buckmiller LM, Munson PD, Dyamenahalli U, Dai Y, Richter GT. Propranolol for infantile hemangiomas: early experience at a tertiary vascular anomalies center. Laryngoscope. 2010;120:676–81.PubMedCrossRefGoogle Scholar
  120. 120.
    Chik KK, Luk CK, Chan HB, Tan HY. Use of propranolol in infantile haemangioma among Chinese children. Hong Kong Med J. 2010;16:341–6.PubMedGoogle Scholar
  121. 121.
    Leaute-Labreze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taieb A. Propranolol for severe hemangiomas of infancy. N Engl J Med. 2008;358:2649–51.PubMedCrossRefGoogle Scholar
  122. 122.
    Sans V, de la Roque ED, Berge J, Grenier N, Boralevi F, Mazereeuw-Hautier J, Lipsker D, Dupuis E, Ezzedine K, Vergnes P, et al. Propranolol for severe infantile hemangiomas: follow-up report. Pediatrics. 2009;124:e423–31.PubMedCrossRefGoogle Scholar
  123. 123.
    Truong MT, Perkins JA, Messner AH, Chang KW. Propranolol for the treatment of airway hemangiomas: a case series and treatment algorithm. Int J Pediatr Otorhinolaryngol. 2010;74:1043–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Zimmermann AP, Wiegand S, Werner JA, Eivazi B. Propranolol therapy for infantile haemangiomas: review of the literature. Int J Pediatr Otorhinolaryngol. 2010;74:338–42.PubMedCrossRefGoogle Scholar
  125. 125.
    Lawley LP, Siegfried E, Todd JL. Propranolol treatment for hemangioma of infancy: risks and recommendations. Pediatr Dermatol. 2009;26:610–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Daly AK. Pharmacogenetics and human genetic polymorphisms. Biochem J. 2010;429:435–49.PubMedCrossRefGoogle Scholar
  127. 127.
    Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem. 2008;392:1093–108.PubMedCrossRefGoogle Scholar
  128. 128.
    Johnson JA, Herring VL, Wolfe MS, Relling MV. CYP1A2 and CYP2D6 4-hydroxylate propranolol and both reactions exhibit racial differences. J Pharmacol Exp Ther. 2000;294:1099–105.PubMedGoogle Scholar
  129. 129.
    Walle T, Walle UK, Cowart TD, Conradi EC, Gaffney TE. Selective induction of propranolol metabolism by smoking: additional effects on renal clearance of metabolites. J Pharmacol Exp Ther. 1987;241:928–33.PubMedGoogle Scholar
  130. 130.
    Liggett SB. Pharmacogenomics of beta1-adrenergic receptor polymorphisms in heart failure. Heart Fail Clin. 2010;6:27–33.PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Litonjua AA, Gong L, Duan QL, Shin J, Moore MJ, Weiss ST, Johnson JA, Klein TE, Altman RB. Very important pharmacogene summary ADRB2. Pharmacogenet Genomics. 2010;20:64–9.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Tan WH, Baris HN, Burrows PE, Robson CD, Alomari AI, Mulliken JB, Fishman SJ, Irons MB. The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet. 2007;44:594–602.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Turnbull MM, Humeniuk V, Stein B, Suthers GK. Arteriovenous malformations in Cowden syndrome. J Med Genet. 2005;42, e50.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Hamada K, Sasaki T, Koni PA, Natsui M, Kishimoto H, Sasaki J, Yajima N, Horie Y, Hasegawa G, Naito M, et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 2005;19:2054–65.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Eng C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J Med Genet. 2000;37:828–30.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22:183–98.PubMedCrossRefGoogle Scholar
  137. 137.
    Gorlin RJ, Cohen Jr MM, Condon LM, Burke BA. Bannayan-Riley-Ruvalcaba syndrome. Am J Med Genet. 1992;44:307–14.PubMedCrossRefGoogle Scholar
  138. 138.
    Cohen Jr MM. Overgrowth syndromes: an update. Adv Pediatr. 1999;46:441–91.PubMedGoogle Scholar
  139. 139.
    Biesecker LG, Happle R, Mulliken JB, Weksberg R, Graham Jr JM, Viljoen DL, Cohen Jr MM. Proteus syndrome: diagnostic criteria, differential diagnosis, and patient evaluation. Am J Med Genet. 1999;84:389–95.PubMedCrossRefGoogle Scholar
  140. 140.
    Eng C. PTEN hamartoma tumor syndrome (PHTS). In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle: University of Washington; 2009.Google Scholar
  141. 141.
    Chung JH, Eng C. Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res. 2005;65:8096–100.PubMedCrossRefGoogle Scholar
  142. 142.
    Ginn-Pease ME, Eng C. Increased nuclear phosphatase and tensin homologue deleted on chromosome 10 is associated with G0-G1 in MCF-7 cells. Cancer Res. 2003;63:282–6.PubMedGoogle Scholar
  143. 143.
    Minaguchi T, Waite KA, Eng C. Nuclear localization of PTEN is regulated by Ca(2+) through a tyrosil phosphorylation-independent conformational modification in major vault protein. Cancer Res. 2006;66:11677–82.PubMedCrossRefGoogle Scholar
  144. 144.
    Chu EC, Tarnawski AS. PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit. 2004;10:RA235–41.PubMedGoogle Scholar
  145. 145.
    Weng LP, Smith WM, Brown JL, Eng C. PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum Mol Genet. 2001;10:605–16.PubMedCrossRefGoogle Scholar
  146. 146.
    Zhang S, Yu D. PI(3)king apart PTEN’s role in cancer. Clin Cancer Res. 2010;16:4325–30.PubMedCrossRefGoogle Scholar
  147. 147.
    Bonneau D, Longy M. Mutations of the human PTEN gene. Hum Mutat. 2000;16:109–22.PubMedCrossRefGoogle Scholar
  148. 148.
    Orloff MS, Eng C. Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene. 2008;27:5387–97.PubMedCrossRefGoogle Scholar
  149. 149.
    Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer. 2007;7:35–45.PubMedCrossRefGoogle Scholar
  150. 150.
    Marsh DJ, Coulon V, Lunetta KL, Rocca-Serra P, Dahia PL, Zheng Z, Liaw D, Caron S, Duboue B, Lin AY, et al. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet. 1998;7:507–15.PubMedCrossRefGoogle Scholar
  151. 151.
    Zhou XP, Waite KA, Pilarski R, Hampel H, Fernandez MJ, Bos C, Dasouki M, Feldman GL, Greenberg LA, Ivanovich J, et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet. 2003;73:404–11.PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Loffeld A, McLellan NJ, Cole T, Payne SJ, Fricker D, Moss C. Epidermal naevus in Proteus syndrome showing loss of heterozygosity for an inherited PTEN mutation. Br J Dermatol. 2006;154:1194–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Smith JM, Kirk EP, Theodosopoulos G, Marshall GM, Walker J, Rogers M, Field M, Brereton JJ, Marsh DJ. Germline mutation of the tumour suppressor PTEN in Proteus syndrome. J Med Genet. 2002;39:937–40.PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Zhou X, Hampel H, Thiele H, Gorlin RJ, Hennekam RC, Parisi M, Winter RM, Eng C. Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes. Lancet. 2001;358:210–1.PubMedCrossRefGoogle Scholar
  155. 155.
    Thiffault I, Schwartz CE, Der Kaloustian V, Foulkes WD. Mutation analysis of the tumor suppressor PTEN and the glypican 3 (GPC3) gene in patients diagnosed with Proteus syndrome. Am J Med Genet A. 2004;130A:123–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Chibon F, Primois C, Bressieux JM, Lacombe D, Lok C, Mauriac L, Taieb A, Longy M. Contribution of PTEN large rearrangements in Cowden disease: a multiplex amplifiable probe hybridisation (MAPH) screening approach. J Med Genet. 2008;45:657–65.PubMedCrossRefGoogle Scholar
  157. 157.
    Ni Y, Zbuk KM, Sadler T, Patocs A, Lobo G, Edelman E, Platzer P, Orloff MS, Waite KA, Eng C. Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet. 2008;83:261–8.PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Nizialek EA, Mester JL, Dhiman VK, Smiraglia DJ, Eng C. KLLN epigenotype-phenotype associations in Cowden syndrome. Eur J Hum Genet. 2015;23:1538–43.Google Scholar
  159. 159.
    Zhou XP, Marsh DJ, Morrison CD, Chaudhury AR, Maxwell M, Reifenberger G, Eng C. Germline inactivation of PTEN and dysregulation of the phosphoinositol-3-kinase/Akt pathway cause human Lhermitte-Duclos disease in adults. Am J Hum Genet. 2003;73:1191–8.PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, Miles JH, Wang CH, Stratton R, Pilarski R, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42:318–21.PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    Herman GE, Butter E, Enrile B, Pastore M, Prior TW, Sommer A. Increasing knowledge of PTEN germline mutations: two additional patients with autism and macrocephaly. Am J Med Genet A. 2007;143:589–93.CrossRefGoogle Scholar
  162. 162.
    Herman GE, Henninger N, Ratliff-Schaub K, Pastore M, Fitzgerald S, McBride KL. Genetic testing in autism: how much is enough? Genet Med. 2007;9:268–74.PubMedCrossRefGoogle Scholar
  163. 163.
    Orrico A, Galli L, Buoni S, Orsi A, Vonella G, Sorrentino V. Novel PTEN mutations in neurodevelopmental disorders and macrocephaly. Clin Genet. 2009;75:195–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Varga EA, Pastore M, Prior T, Herman GE, McBride KL. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med. 2009;11:111–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Marsh DJ, Kum JB, Lunetta KL, Bennett MJ, Gorlin RJ, Ahmed SF, Bodurtha J, Crowe C, Curtis MA, Dasouki M, et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet. 1999;8:1461–72.PubMedCrossRefGoogle Scholar
  166. 166.
    Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:289–320.PubMedCrossRefGoogle Scholar
  167. 167.
    Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008;92:255–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Pathology & Laboratory Medicine; McAllister Heart InstituteUniversity of North Carolina/UNC HospitalsChapel HillUSA
  2. 2.Department of Pathology and Laboratory MedicineChildren’s Hospital of WisconsinMilwaukeeUSA
  3. 3.Department of Pathology, Division of Pediatric PathologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations