Advertisement

Vascular Overgrowth

  • Kelly J. DuffyEmail author
  • Michael E. Kelly
  • David Bick
Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

Blood and lymphatic vessel formation is a vital and dynamic process that when dysregulated can lead to excessive or abnormal formation of the vasculature. Vascular malformations can occur in isolation or in association with other clinical phenotypes, such as bony and/or soft tissue hypertrophy (overgrowth) that may occur regionally or involve the entire body. These overgrowth syndromes are often classified based on the type of vascular malformations they are associated with; slow-flow lesions of lymphatic, venous, or capillary origin; or fast-flow lesions such as arteriovenous malformations and arteriovenous fistulas. Most overgrowth syndromes associated with vascular malformations are sporadic and demonstrate mosaic distribution of lesions, suggesting that post-zygotic somatic mutation may be responsible. Though primarily sporadic in nature, a few syndromes demonstrating inheritance patterns have facilitated identification of the responsible molecular defects. Those defects that have been characterized tend to occur within the PI3K/AKT pathway, a pathway that regulates cellular growth and survival. While intriguing to speculate on the potential role of this pathway in the various disease processes within the overgrowth syndrome spectrum, sporadic occurrence, unclear clinical delineation, and small patient populations make molecular characterization an ongoing challenge.

Keywords

Vascular overgrowth Proteus syndrome Klippel-Trenaunay syndrome (KTS) CMTC MCAP Beckwith-Wiedemann syndrome PHTS CM-AVM PKWS 

References

  1. 1.
    Sapp JC, Turner JT, van de Kamp JM, van Dijk FS, Lowry RB, Biesecker LG. Newly delineated syndrome of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome) in seven patients. Am J Med Genet A. 2007;143A(24):2944–58.CrossRefPubMedGoogle Scholar
  2. 2.
    Alomari AI. Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol. 2009;18(1):1–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Gucev ZS, Tasic V, Jancevska A, Konstantinova MK, Pop-Jordanova N, Trajkovski Z, et al. Congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE) syndrome: CNS malformations and seizures may be a component of this disorder. Am J Med Genet A. 2008;146A(20):2688–90. PMCID: 2819374.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, Mulliken JB, Bowen ME, Yamamoto GL, Kozakewich HP, Warman ML. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90(6):1108–15.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Happle R. Cutaneous manifestation of lethal genes. Hum Genet. 1986;72(3):280.CrossRefPubMedGoogle Scholar
  6. 6.
    Happle R. Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin. J Am Acad Dermatol. 1987;16(4):899–906.CrossRefPubMedGoogle Scholar
  7. 7.
    Happle R. Klippel-Trenaunay syndrome: is it a paradominant trait? Br J Dermatol. 1993;128(4):465–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.CrossRefPubMedGoogle Scholar
  9. 9.
    Biesecker LG, Happle R, Mulliken JB, Weksberg R, Graham Jr JM, Viljoen DL, et al. Proteus syndrome: diagnostic criteria, differential diagnosis, and patient evaluation. Am J Med Genet. 1999;84(5):389–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med. 2011;365(7):611–9.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Gloviczki P, Hollier LH, Telander RL, Kaufman B, Bianco AJ, Stickler GB. Surgical implications of Klippel-Trenaunay syndrome. Ann Surg. 1983;197(3):353–62. PMCID: 1352741.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Garzon MC, Huang JT, Enjolras O, Frieden IJ. Vascular malformations. Part II: associated syndromes. J Am Acad Dermatol. 2007;56(4):541–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Timur AA, Driscoll DJ, Wang Q. Biomedicine and diseases: the Klippel-Trenaunay syndrome, vascular anomalies and vascular morphogenesis. Cell Mol Life Sci. 2005;62(13):1434–47.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Vikkula M, Boon LM, Mulliken JB. Molecular genetics of vascular malformations. Matrix Biol. 2001;20(5–6):327–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Aelvoet GE, Jorens PG, Roelen LM. Genetic aspects of the Klippel-Trenaunay syndrome. Br J Dermatol. 1992;126(6):603–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Whelan AJ, Watson MS, Porter FD, Steiner RD. Klippel-Trenaunay-Weber syndrome associated with a 5:11 balanced translocation. Am J Med Genet. 1995;59(4):492–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang Q, Timur AA, Szafranski P, Sadgephour A, Jurecic V, Cowell J, et al. Identification and molecular characterization of de novo translocation t(8;14)(q22.3;q13) associated with a vascular and tissue overgrowth syndrome. Cytogenet Cell Genet. 2001;95(3–4):183–8. PMCID: 1579861.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Timur AA, Sadgephour A, Graf M, Schwartz S, Libby ED, Driscoll DJ, et al. Identification and molecular characterization of a de novo supernumerary ring chromosome 18 in a patient with Klippel-Trenaunay syndrome. Ann Hum Genet. 2004;68(Pt 4):353–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Picascia DD, Esterly NB. Cutis marmorata telangiectatica congenita: report of 22 cases. J Am Acad Dermatol. 1989;20(6):1098–104.CrossRefPubMedGoogle Scholar
  20. 20.
    South DA, Jacobs AH. Cutis marmorata telangiectatica congenita (congenital generalized phlebectasia). J Pediatr. 1978;93(6):944–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Kienast AK, Hoeger PH. Cutis marmorata telangiectatica congenita: a prospective study of 27 cases and review of the literature with proposal of diagnostic criteria. Clin Exp Dermatol. 2009;34(3):319–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Wroblewski I, Joannard A, Francois P, Baudain P, Beani JC, Beaudoing A. Cutis marmorata telangiectatica congenita with body asymmetry. Pediatrie. 1988;43(2):117–20.PubMedGoogle Scholar
  23. 23.
    Rogers M, Poyzer KG. Cutis marmorata telangiectatica congenita. Arch Dermatol. 1982;118(11):895–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Lapunzina P, Gairi A, Delicado A, Mori MA, Torres ML, Goma A, et al. Macrocephaly-cutis marmorata telangiectatica congenita: report of six new patients and a review. Am J Med Genet A. 2004;130A(1):45–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Kennedy C, Oranje AP, Keizer K, van den Heuvel MM, Catsman-Berrevoets CE. Cutis marmorata telangiectatica congenita. Int J Dermatol. 1992;31(4):249–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Danarti R, Happle R, Konig A. Paradominant inheritance may explain familial occurrence of Cutis marmorata telangiectatica congenita. Dermatology. 2001;203(3):208–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Wright DR, Frieden IJ, Orlow SJ, Shin HT, Chamlin S, Schaffer JV, et al. The misnomer “macrocephaly-cutis marmorata telangiectatica congenita syndrome”: report of 12 new cases and support for revising the name to macrocephaly-capillary malformations. Arch Dermatol. 2009;145(3):287–93.CrossRefPubMedGoogle Scholar
  28. 28.
    Robertson SP, Gattas M, Rogers M, Ades LC. Macrocephaly – cutis marmorata telangiectatica congenita: report of five patients and a review of the literature. Clin Dysmorphol. 2000;9(1):1–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Rivière JB, Mirzaa GM, O’Roak BJ, Beddaoui M, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44(8):934–40.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Wu NF, Kushnick T. The Beckwith-Wiedemann syndrome. The exomphalos-macroglossia-gigantism syndrome. Clin Pediatr (Phila). 1974;13(5):452–7.CrossRefGoogle Scholar
  31. 31.
    Weksberg R, Shuman C, Smith AC. Beckwith-Wiedemann syndrome. Am J Med Genet C: Semin Med Genet. 2005;137C(1):12–23.CrossRefGoogle Scholar
  32. 32.
    Weksberg R, Smith AC, Squire J, Sadowski P. Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet. 2003;12(Spec No 1):R61–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet C: Semin Med Genet. 2010;154C(3):343–54.CrossRefGoogle Scholar
  34. 34.
    Huang H, Potter CJ, Tao W, Li DM, Brogiolo W, Hafen E, et al. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development. 1999;126(23):5365–72.PubMedGoogle Scholar
  35. 35.
    Eng C, Marsh D, Liaw D, Dahia P, et al., editors. Germline mutations of the PTEN gene in Cowden disease and Bannayan-Zonana syndrome. 47th Annual American Society of Human Genetics meeting; 1997; Baltimore.Google Scholar
  36. 36.
    Gao X, Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 2001;15(11):1383–92. PMCID: 312704.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ, et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet. 1997;16(4):333–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Eng C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J Med Genet. 2000;37(11):828–30. PMCID: 1734465.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, et al. Inherited mutations in PTEN that are associated with breast cancer, Cowden disease, and juvenile polyposis. Am J Hum Genet. 1997;61(6):1254–60. PMCID: 1716102.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Arch EM, Goodman BK, Van Wesep RA, Liaw D, Clarke K, Parsons R, et al. Deletion of PTEN in a patient with Bannayan-Riley-Ruvalcaba syndrome suggests allelism with Cowden disease. Am J Med Genet. 1997;71(4):489–93.CrossRefPubMedGoogle Scholar
  42. 42.
    Nelen MR, van Staveren WC, Peeters EA, Hassel MB, Gorlin RJ, Hamm H, et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet. 1997;6(8):1383–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Lok C, Viseux V, Avril MF, Richard MA, Gondry-Jouet C, Deramond H, et al. Brain magnetic resonance imaging in patients with Cowden syndrome. Medicine (Baltimore). 2005;84(2):129–36.CrossRefGoogle Scholar
  44. 44.
    Turnbull MM, Humeniuk V, Stein B, Suthers GK. Arteriovenous malformations in Cowden syndrome. J Med Genet. 2005;42(8), e50. PMCID: 1736111.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Tan WH, Baris HN, Burrows PE, Robson CD, Alomari AI, Mulliken JB, et al. The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet. 2007;44(9):594–602. PMCID: 2597949.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Caux F, Plauchu H, Chibon F, Faivre L, Fain O, Vabres P, et al. Segmental overgrowth, lipomatosis, arteriovenous malformation and epidermal nevus (SOLAMEN) syndrome is related to mosaic PTEN nullizygosity. Eur J Hum Genet. 2007;15(7):767–73.CrossRefPubMedGoogle Scholar
  47. 47.
    Lachlan KL, Lucassen AM, Bunyan D, Temple IK. Cowden syndrome and Bannayan Riley Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: results of a clinical study of PTEN mutation carriers. J Med Genet. 2007;44(9):579–85. PMCID: 2597943.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Boon LM, Mulliken JB, Vikkula M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr Opin Genet Dev. 2005;15(3):265–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet. 2003;73(6):1240–9.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29(7):959–65.CrossRefPubMedGoogle Scholar
  51. 51.
    Coelho CM, Leevers SJ. Do growth and cell division rates determine cell size in multicellular organisms? J Cell Sci. 2000;113(Pt 17):2927–34.PubMedGoogle Scholar
  52. 52.
    Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G. Drosophila S6 kinase: a regulator of cell size. Science. 1999;285(5436):2126–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A. 1998;95(26):15587–91. PMCID: 28087.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Potter CJ, Huang H, Xu T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell. 2001;105(3):357–68.CrossRefPubMedGoogle Scholar
  56. 56.
    Barker KT, Houlston RS. Overgrowth syndromes: is dysfunctional PI3-kinase signalling a unifying mechanism? Eur J Hum Genet. 2003;11(9):665–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kelly J. Duffy
    • 1
    Email author
  • Michael E. Kelly
    • 2
  • David Bick
    • 3
  1. 1.Department of RadiologyMedical College of WisconsinMilwaukeeUSA
  2. 2.Pediatrics Department, Division of Pediatric Hematology, Oncology, Bone Marrow TransplantationChildren’s Hospital of WisconsinMilwaukeeUSA
  3. 3.Pediatrics DepartmentMedical College of WisconsinMilwaukeeUSA

Personalised recommendations