Skip to main content

Pressure Shift Freezing and Thawing

  • Chapter
  • First Online:
High Pressure Processing of Food

Part of the book series: Food Engineering Series ((FSES))

  • 3757 Accesses

Abstract

This chapter focuses on the basic principles that are involved in using high pressure for freezing and thawing purposes. Some emphasis will be given to the equipment used and on the effect of high-pressure freezing and thawing on the growth of microorganisms. The impact of pressure treatment on the quality of foods is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alizadeh E, Chapleau N, De Lamballerie M, Le-Bail A (2007) Effect of different freezing processes on the microstructure of Atlantic salmon (Salmo salar) fillets. Innov Food Sci Emerg Technol 8(4):493–499

    Article  Google Scholar 

  • Barry H, Dumay EM, Cheftel JC (1998) Influence of pressure-assisted freezing on the structure, hydration and mechanical properties of a protein gel. Spec Pub R Soc Chem 222:343–353

    CAS  Google Scholar 

  • Black EP, Stewart CM, Hoover DG, Zhang H, Barbosa-Cánovas GV, Balasubramaniam VM, Yuan JTC (2011) Microbiological aspects of high-pressure food processing. In: Nonthermal processing technologies for food, vol 45, p 49

    Google Scholar 

  • Boillereaux L, Chourot JM, Havet M (1999) Nonlinear trajectory control of high pressure thawing. J Process Control 9:351–356

    Article  CAS  Google Scholar 

  • Bridgman PW (1912) Water in the liquid and five solid forms under pressure. Proc Am Acad Arts Sci 47:441–558

    Article  Google Scholar 

  • Burke MJ, George MF, Bryant RG (1975) Water in plant tissues and frost hardiness. Water relations of foods. Academic, New York, pp 111–135

    Google Scholar 

  • Cheftel JC (1995) Review: high pressure, microbial inactivation and food preservation. Food Sci Technol Int 1:75–90

    Article  Google Scholar 

  • Cheftel JC, Culioli J (1997) Effects of high pressure on meat: a review. Meat Sci 46(3):211–236

    Article  CAS  Google Scholar 

  • Chevalier D, LeBail A, Chourot JM, Chantreau P (1999) High pressure thawing of fish (whiting): influence of the process parameters on drip losses. Lebensm Wiss Technol 32:25–31

    Article  CAS  Google Scholar 

  • Chevalier D, Sentissi M, Havet M, LeBail A (2000a) Comparison of air‐blast and pressure shift freezing on Norway lobster quality. J Food Sci 65(2):329–333

    Article  CAS  Google Scholar 

  • Chevalier D, Sequeira-Munoz A, LeBail A, Simpson BK, Ghoul M (2000b) Effect of freezing conditions and storage on ice crystal and drip volume in turbot (Scophthalmus maximus)—evaluation of pressure shift freezing vs. air-blast freezing. Innov Food Sci Emerg Technol 1(3):193–201

    Article  Google Scholar 

  • Chourot JM (1997) Contribution a` l’e´tude de la de´conge´lation par haute pression. The`se de doctorat, Universite´ de Nantes, France, 151p

    Google Scholar 

  • Deuchi T, Hayashi R (1992) High pressure treatments at subzero temperature: application to preservation, rapid freezing and rapid thawing of foods. In: Balny C (ed) High pressure and biotechnology, vol 224. John Libbey Eurotext Ltd., ColloqueInserm, pp 353–355

    Google Scholar 

  • Eshtiaghi M, Knorr D (1996) High hydrostatic pressure thawing for the processing of fruit preparations from frozen strawberries. Food Technol 10(2):143–148

    Google Scholar 

  • Fennema OR, Powrie WD, Marth EH (1973) Low temperature preservation of foods and living matter. Marcel Dekker, New York

    Google Scholar 

  • Fernandez-Martin F, Otero L, Solas MT, Sanz PD (2000) Protein denaturation and structural damage during high-pressure-shift freezing of porcine and bovine muscle. J Food Sci 65:1002–1008

    Article  CAS  Google Scholar 

  • Fernandez PP, Otero L, Guignon B, Sanz PD (2006) High-pressure shift freezing versus high-pressure assisted freezing: effects on the microstructure of a food model. Food Hydrocolloids 20(4):510–522 (Part Special issue, Wcfs Food Summit)

    Article  CAS  Google Scholar 

  • Fuchigami M, Teramoto AI (1997) Structural and textural changes in Kinu-Tofu due to high-pressure-freezing. J Food Sci 62(4):828–837

    Article  CAS  Google Scholar 

  • Fuchigami M, Teramoto A, Ogawa N (1998) Structural and textural quality of Kinu-Tofu frozen-then-thawed at high-pressure. J Food Sci 63(6):1054–1057

    Article  CAS  Google Scholar 

  • Fuchigami M, Kato N, Teramoto AI (2006) High‐pressure‐freezing effects on textural quality of carrots. J Food Sci 62(4):804–808

    Article  Google Scholar 

  • Galazka VB, Ledward DA (1995) Developments in high pressure food processing. Food Technology International Europe, pp. 123–125

    Google Scholar 

  • Garcia-Graells C, Masschalck B, Michiels CW (1999) Inactivation of Escherichia coli in milk by high-hydrostaticpressure treatment in combination with antimicrobial peptides. J Food Prot 62(11):1248–1254

    CAS  Google Scholar 

  • Grujic R, Petrovic L, Pikula B, Amidzic L (1993) Definition of the optimum freezing rate. 1. Investigation of structure and ultrastructure of beef M. longissimus dorsi frozen at different freezing rates. Meat Sci 33(3):301–318

    Article  CAS  Google Scholar 

  • Haard NF (1997) Product composition and the quality of frozen foods. In: Erickson MC, Hung YC (eds) Quality in frozen food. Chapman and Hall, New York, pp 275–289

    Chapter  Google Scholar 

  • Hashizume C, Kimura K, Hayashi R (1995) Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures. Biosci Biotechnol Biochem 59(8):1455–1458

    Article  CAS  Google Scholar 

  • Hiremath ND, Ramaswamy HS (2012) High pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. J Food Process Preserv 36(2):113–125

    Article  Google Scholar 

  • Hite BH (1899) The effect of pressure in the preservation of milk. Bull W Virginia Agric Exp Station Morgantown 54:15–35

    Google Scholar 

  • Hurling R, McArthur H (1996) Thawing, refreezing and frozen storage effects on muscle functionality and sensory attributes of frozen cod (Gadus morhua). J Food Sci 61(6):1289–1296

    Article  Google Scholar 

  • Johnston DE (2000) The effects of freezing at high pressure on the rheology of cheddar and mozzarella cheeses. Milchwissenschaft 55:559–562

    CAS  Google Scholar 

  • Kalichevsky MT, Knorr D, Lillford PJ (1995) Potential food applications of high-pressure effects on ice-water transitions. Trends Food Sci Technol 6:253–258

    Article  CAS  Google Scholar 

  • Kalichevsky‐Dong MT, Ablett S, Lillford PJ, Knorr D (2000) Effects of pressure‐shift freezing and conventional freezing on model food gels. Int J Food Sci Technol 35(2):163–172

    Article  Google Scholar 

  • Kanda Y, Aoki M, Kosugi T (1992) Studies on pressure-shift freezing. 1: Freezing of tofu (Soybean curd) by pressure-shift freezing and its structure. J Jpn Soc Food Sci Technol 39:608

    Article  Google Scholar 

  • Karino S, Hane H, Makita T (1994) Behavior of water and ice at low temperature and high pressure. In: Hayashi R, Kunugi S, Shimada S, Suzuki A (eds) High pressure bioscience. San-EiSuppan Co., Kyoto, pp 2–9

    Google Scholar 

  • Knorr D, Schlueter O, Heinz V (1998) Impact of high hydrostatic pressure on phase transitions of foods. Food Technol 52(9):42–45

    Google Scholar 

  • Koch H, Seyderhelm I, Wille P, Kalichevsky MT, Knorr D (1996) Pressure‐shift freezing and its influence on texture, colour, microstructure and rehydration behaviour of potato cubes. Food Nahrung 40(3):125–131

    Article  Google Scholar 

  • LeBail A, Chourot JM, Barillot P, Lebas JM (1997) Congelation-decongelation par haute pression. Rev Gen Froid 972:51–57

    Google Scholar 

  • LeBail A, Chevalier D, Mussa DM, Ghoul M (2002a) High pressure freezing and thawing of foods: a review. Int J Refrig 25:504–513

    Article  CAS  Google Scholar 

  • LeBail A, Mussa D, Rouille J, Ramaswamy HS, Chapleau N, Anton M, Hayert M, Boillereaux L, Chevalier D (2002b) High pressure thawing. Application to selected sea-foods. In: Hayashi R (ed) Trends in high pressure bioscience and biotechnology. Elsevier, Amsterdam, pp 563–570

    Google Scholar 

  • LeBail A, Boillereaux L, Davenel A, Hayert M, Lucas T, Monteau JY (2003) Phase transition in foods: effect of pressure and methods to assess or control phase transition. Innov Food Sci Emerg Technol 4(1):15–24

    Article  CAS  Google Scholar 

  • Lévy J, Dumay E, Kolodziejczyk E, Cheftel JC (1999) Freezing kinetics of a model oil-in-water emulsion under high pressure or by pressure release. Impact on ice crystals and oil droplets. LWT-Food Sci Technol 32(7):396–405

    Article  Google Scholar 

  • Li B, Sun DW (2002) Novel methods for rapid freezing and thawing of foods—a review. J Food Eng 54(3):175–182

    Article  Google Scholar 

  • Makita T (1992) Application of high pressure and thermophysical properties of water to biotechnology. Fluid Phase Equilibr 76:87–95

    Article  CAS  Google Scholar 

  • Martine Le M, Genevieve B (2004) Principles of frozen storage. In: Handbook of frozen foods. CRC Press, Boca Raton

    Google Scholar 

  • Martino MN, Otero L, Sanz PD, Zaritzky NE (1998) Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods. Meat Sci 50(3):303–313

    Article  CAS  Google Scholar 

  • Mascheroni RH (2012) Operations in food refrigeration. CRC Press, Boca Raton, pp 331–352

    Book  Google Scholar 

  • Massaux C, Bera F, Steyer B, Sindic M, Deroanne C (1999a) High hydrostatic pressure freezing and thawing of pork meat: quality preservation, processing times and high pressures treatment advantages. In: Ludwig H (ed) Advances in high pressure bioscience and biotechnology. Springer, Berlin, Heidelberg, pp 485–488

    Chapter  Google Scholar 

  • Massaux C, Bera F, Steyer B, Sindic M, Deroanne C (1999b) High hydrostatic pressure effects on freezing and thawing processes of pork meat. In: Ludwig H (ed) Advances in high pressure bioscience and biotechnology. Springer, Berlin, Heidelberg, pp 496–500

    Google Scholar 

  • Mertens B, Deplace G (1993) Engineering aspects of high pressure technology in the food industry. Food Technol 47(6):164–169

    Google Scholar 

  • Murakami T, Kimura I, Yamagishi T, Yamashita M, Sugimoto M, Satake M (1992) Thawing of frozen fish by hydrostatic pressure. In: Balny C, HayashI R, Heremans K, Masson P (eds) Proceedings of the first European seminar on high pressure and biotechnology, La Grande Motte, pp. 329–331

    Google Scholar 

  • Mussa DM, LeBail A (2000) High pressure thawing of fish: evaluation of the process impact on Listeria innocua. In: 2000 IFT annual meeting, Institute of Food Technologists

    Google Scholar 

  • North MF, Lovatt SJ (2005). Freezing methods and equipment. In: Handbook of frozen food processing and packaging, vol 155, p 199

    Google Scholar 

  • Norton T, Sun DW (2008) Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol 1(1):2–34

    Article  Google Scholar 

  • Okamoto A, Suzuki A (2002) Effects of high hydrostatic pressure-thawing on pork meat. In: Trends in high pressure bioscience and biotechnology, pp. 571–576

    Google Scholar 

  • Otero L, Solas MT, Sanz PD, de Elvira C, Carrasco JA (1998) Contrasting effects of high-pressure-assisted freezing and conventional air-freezing on eggplant tissue microstructure. Z Lebensm Unters Forsch A 206(5):338–342

    Article  CAS  Google Scholar 

  • Otero L, Sanz PD (2000) High‐pressure shift freezing. Part 1. Amount of ice instantaneously formed in the process. Biotechnol Prog 16(6):1030–1036

    Article  CAS  Google Scholar 

  • Otero L, Sanz PD (2003) High pressure-assisted and high pressure-induced thawing: two different processes. J Food Sci 68(8):2523–2528

    Article  CAS  Google Scholar 

  • Otero L, Martino M, Zaritzky N, Solas M, Sanz PD (2008) Preservation of microstructure in peach and mango during high‐pressure‐shift freezing. J Food Sci 65(3):466–470

    Article  Google Scholar 

  • Otero L, Sanz PD (2011) High-pressure shift freezing. In: Handbook of frozen food processing and packaging, 2nd edn. CRC Press, Boca Raton, pp. 667–684

    Google Scholar 

  • Park SH, Ryu HS, Hong GP, Min SG (2006) Physical properties of frozen pork thawed by high pressure assisted thawing process. Food Sci Technol Int 12:347

    Article  Google Scholar 

  • Pérez-Chabela ML, Mateo-Oyagüe J, Hui YH, Cornillon P, Legaretta IG, Lim MH, Nip WK (2004). Frozen meat: quality and shelf life. In: Handbook of frozen foods, pp. 201–214

    Google Scholar 

  • Picart L, Dumay E, Guiraud JP, Cheftel JC (2004) Microbial inactivation by pressure-shift freezing: effects on smoked salmon mince inoculated with Pseudomonas fluorescens, Micrococcus luteus and Listeria innocua. LWT-Food Sci Technol 37(2):227–238

    Article  CAS  Google Scholar 

  • Ponce E, Pla R, Capellas M, Guamis B, Mor-Mur M (1998) Inactivation of Escherichia coli inoculated in liquid whole egg by high hydrostatic pressure. Food Microbiol 15(3):265–272

    Article  Google Scholar 

  • Ramaswamy HS, Shao YW (2010) High pressure destruction kinetics of Clostridium sporogenes spores in salmon slurry at elevated temperatures. Int J Food Prop 13(5):1074–1091

    Article  Google Scholar 

  • Rouillé J, Lebail A, Ramaswamy HS, Leclerc L (2002) High pressure thawing of fish and shellfish. J Food Eng 53(1):83–88

    Article  Google Scholar 

  • Sanz PD, Otero L, de Elvira C, Carrasco JA (1997) Freezing processes in high-pressure domains. Int J Refrig 20(5):301–307

    Article  CAS  Google Scholar 

  • Schubring R, Meyer C, Schluter O, Boguslawski S, Knorr D (2003) Impact of high pressure assisted thawing on the quality of fillets from various fish species1. Innov Food Sci Emerg Technol 4:257–267

    Article  Google Scholar 

  • Sequeira-Munoz A, Chevalier D, Simpson BK, LeBail A, Ramaswamy HS (2005) Effect of pressure-shift freezing versus air-blast freezing of carp (Cyprinus carpio) fillets: a storage study. J Food Biochem 29(5):504–516

    Article  Google Scholar 

  • Sun DW, Zheng L (2006). Innovations in freezing process. In: Handbook of frozen food processing and packaging, pp. 175–195

    Google Scholar 

  • Swientek RJ (1992) High hydrostatic pressure for food preservation. Food Process 53:90–91

    Google Scholar 

  • Takahashi K (1992) Sterilization of microorganisms by hydrostatic pressure at low temperature. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology. Colloque INSERM. John Libbey Eurotext Ltd, London, pp 303–307

    Google Scholar 

  • Takai R, Kozhima T, Suzuki T (1991) Low temperature thawing by using high pressure. In: 17_eeme Congress International du Froid, Montreal, Quebec, vol 4, p 1951

    Google Scholar 

  • Taylor AC (1960) The physical state transition in the freezing of living cells. Ann N Y Acad Sci 85:595–609

    Article  CAS  Google Scholar 

  • Thiebaud M, Dumay EM, Cheftel JC (2002) Pressure-shift freezing of o/w emulsions: influence of fructose and sodium alginate on undercooling, nucleation, freezing kinetics and ice crystal size distribution. Food Hydrocolloids 16(6):527–545

    Article  CAS  Google Scholar 

  • Van Buggenhout S, Messagie I, Loey AV, Hendrickx M (2005) Influence of low‐temperature blanching combined with high‐pressure shift freezing on the texture of frozen carrots. J Food Sci 70(4):S304–S308

    Article  Google Scholar 

  • Van Buggenhout S, Lille M, Messagie I, Loey AV, Autio K, Hendrickx M (2006a) Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: quantification and relation to texture loss. Eur Food Res Technol 222(5):543–553

    Article  CAS  Google Scholar 

  • Van Buggenhout S, Messagie I, Maes V, Duvetter T, Van Loey A, Hendrickx M (2006b) Minimizing texture loss of frozen strawberries: effect of infusion with pectin methylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions. Eur Food Res Technol 223(3):395–404

    Article  CAS  Google Scholar 

  • Vickers ZM (1987) Crispness and crunchiness—textural attributes with auditory components. In: Food texture: instrumental and sensory measurement, pp. 145–166

    Google Scholar 

  • Volkert M, Ananta E, Luscher C, Knorr D (2008) Effect of air freezing, spray freezing, and pressure shift freezing on membrane integrity and viability of Lactobacillus rhamnosus GG. J Food Eng 87(4):532–540

    Article  Google Scholar 

  • Yoshioka K, Yamada A, Maki T (1996). Application of high pressurization to fish meat: changes in physical properties of carp skeletal muscle resulting from high pressure thawing. In: High pressure bioscience and biotechnology, pp. 369–374

    Google Scholar 

  • Zhao YY, Fores RA, Olson DG (1998) High hydrostatic pressure effects on rapid thawing of frozen beef. J Food Sci 63(2):272–275

    Article  CAS  Google Scholar 

  • Zhu S, LeBail A, Ramaswamy HS (2003) Ice crystal formation in pressure shift freezing of Atlantic salmon (Salmo salar) as compared to classical freezing methods. J Food Process Preserv 27(6):427

    Article  Google Scholar 

  • Zhu S, Ramaswamy HS, Simpson BK (2004a) Effect of high-pressure versus conventional thawing on color, drip loss and texture of Atlantic salmon frozen by different methods. LWT-Food Sci Technol 37(3):291–299

    Article  CAS  Google Scholar 

  • Zhu S, LeBail A, Chapleau N, Ramaswamy HS, De Lamballerie-Anton M (2004b) Pressure shift freezing of pork muscle: effect on color, drip loss, texture, and protein stability. Biotechnol Prog 20(3):939–945

    Article  CAS  Google Scholar 

  • Zhu S, Ramaswamy HS, Le Bail A (2005a) High-pressure calorimetric evaluation of ice crystal ratio formed by rapid depressurization during pressure-shift freezing of water and pork muscle. Food Res Int 38(2):193–201

    Article  CAS  Google Scholar 

  • Zhu S, Ramaswamy HS, LeBail A (2005b) Ice-crystal formation in gelatin gel during pressure shift versus conventional freezing. J Food Eng 66(1):69–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosahalli S. Ramaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

You, J., Habibi, M., Rattan, N., Ramaswamy, H.S. (2016). Pressure Shift Freezing and Thawing. In: Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H. (eds) High Pressure Processing of Food. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3234-4_8

Download citation

Publish with us

Policies and ethics