Skip to main content

Spinal Cord Cellular Therapeutics Delivery: Device Design Considerations

  • Chapter
  • First Online:
  • 816 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Cell-based therapeutics are being increasingly trialed in both preclinical and clinical contexts for the treatment of multiple forms of intrinsic spinal cord pathology with either neuroprotective or neurorestorative intent. This therapeutic paradigm is being explored for the treatment of neurodegenerative (e.g., amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA)) and traumatic (e.g., spinal cord injury) indications. Cell-based therapies may also be considered for alternative indications such as multiple sclerosis and intramedullary neoplasms. Multiple delivery approaches may be considered to deliver a cellular therapy to the spinal cord. Preclinical and clinical studies have explored intravascular, intrathecal (e.g., subarachnoid), and intraparenchymal delivery approaches. In this chapter, we briefly describe the different cell delivery approaches and will primarily focus on the technical considerations encountered in the development of an intraparenchymal microinjection approach. An emphasis will be placed on areas of interest that continue to be investigated. The chapter concludes with an introduction of technologies that may augment next generation cell delivery approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Riley J et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery. 2012;71(2):405–16. discussion 416.

    Article  PubMed  Google Scholar 

  2. Glass JD et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells. 2012;30(6):1144–51.

    Article  CAS  PubMed  Google Scholar 

  3. Knoller N et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine. 2005;3(3):173–81.

    Article  PubMed  Google Scholar 

  4. Jones LA et al. A phase 2 autologous cellular therapy trial in patients with acute, complete spinal cord injury: pragmatics, recruitment, and demographics. Spinal Cord. 2010;48(11):798–807.

    Article  CAS  PubMed  Google Scholar 

  5. Lammertse DP et al. Autologous incubated macrophage therapy in acute, complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial. Spinal Cord. 2012;50(9):661–71.

    Article  CAS  PubMed  Google Scholar 

  6. Blanquer M et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells. 2012;30(6):1277–85.

    Article  CAS  PubMed  Google Scholar 

  7. Mazzini L et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy. 2012;14(1):56–60.

    Article  PubMed  Google Scholar 

  8. Mazzini L et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol. 2010;223(1):229–37.

    Article  CAS  PubMed  Google Scholar 

  9. Mazzini L et al. Mesenchymal stem cells for ALS patients. Amyotroph Lateral Scler. 2009;10(2):123–4.

    Article  PubMed  Google Scholar 

  10. Mazzini L et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4(3):158–61.

    Article  PubMed  Google Scholar 

  11. Chapman AR, Scala CC. Evaluating the first-in-human clinical trial of a human embryonic stem cell-based therapy. Kennedy Inst Ethics J. 2012;22(3):243–61.

    Article  PubMed  Google Scholar 

  12. Zhou XH et al. Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant. 2012;21 Suppl 1:S39–47.

    Article  PubMed  Google Scholar 

  13. Huang H et al. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant. 2012;21 Suppl 1:S23–31.

    Article  PubMed  Google Scholar 

  14. Wu J et al. Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury. Cell Transplant. 2012;21 Suppl 1:S33–7.

    Article  PubMed  Google Scholar 

  15. Attar A et al. An attempt to treat patients who have injured spinal cords with intralesional implantation of concentrated autologous bone marrow cells. Cytotherapy. 2011;13(1):54–60.

    Article  PubMed  Google Scholar 

  16. Lima C et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair. 2010;24(1):10–22.

    Article  PubMed  Google Scholar 

  17. Lima C et al. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med. 2006;29(3):191–203. discussion 204–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deda H et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy. 2009;11(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  19. Feron F et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005;128(Pt 12):2951–60.

    Article  CAS  PubMed  Google Scholar 

  20. Mackay-Sim A et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(Pt 9):2376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saberi H et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett. 2008;443(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  22. Saberi H et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine. 2011;15(5):515–25.

    Article  PubMed  Google Scholar 

  23. Yoon SH et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells. 2007;25(8):2066–73.

    Article  PubMed  Google Scholar 

  24. Chen L et al. Short-term outcome of olfactory ensheathing cells transplantation for treatment of amyotrophic lateral sclerosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007;21(9):961–6.

    PubMed  Google Scholar 

  25. Liu J et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy. 2013;15(2):185–91.

    Article  PubMed  Google Scholar 

  26. Sharma A et al. Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplant. 2012;21 Suppl 1:S79–90.

    Article  PubMed  Google Scholar 

  27. Frolov AA, Bryukhovetskiy AS. Effects of hematopoietic autologous stem cell transplantation to the chronically injured human spinal cord evaluated by motor and somatosensory evoked potentials methods. Cell Transplant. 2012;21 Suppl 1:S49–55.

    Article  PubMed  Google Scholar 

  28. Karamouzian S et al. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg. 2012;114(7):935–9.

    Article  PubMed  Google Scholar 

  29. Saito F et al. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci. 2012;30(2):127–36.

    PubMed  Google Scholar 

  30. Saito F et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008;64(1):53–9.

    Article  PubMed  Google Scholar 

  31. Karussis D et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar AA et al. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant. 2009;7(4):241–8.

    PubMed  Google Scholar 

  33. Pal R et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy. 2009;11(7):897–911.

    Article  CAS  PubMed  Google Scholar 

  34. Mehta T et al. Subarachnoid placement of stem cells in neurological disorders. Transplant Proc. 2008;40(4):1145–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ra JC et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20(8):1297–308.

    Article  CAS  PubMed  Google Scholar 

  36. Xu J et al. Clinical outcome of autologous peripheral blood stem cell transplantation in opticospinal and conventional forms of secondary progressive multiple sclerosis in a Chinese population. Ann Hematol. 2011;90(3):343–8.

    Article  PubMed  Google Scholar 

  37. Cristante AF et al. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord. 2009;47(10):733–8.

    Article  CAS  PubMed  Google Scholar 

  38. Moviglia GA et al. Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy. 2006;8(3):202–9.

    Article  CAS  PubMed  Google Scholar 

  39. Habisch HJ et al. Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J Neural Transm. 2007;114(11):1395–406.

    Article  PubMed  Google Scholar 

  40. Mothe AJ et al. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat. Spinal Cord. 2011;49(9):967–73.

    Article  CAS  PubMed  Google Scholar 

  41. Neuhuber B et al. Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. J Neurosurg Spine. 2008;9(4):390–9.

    Article  PubMed  Google Scholar 

  42. Takahashi Y et al. Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell Transplant. 2011;20(5):727–39.

    Article  PubMed  Google Scholar 

  43. Garcia S et al. Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res. 2010;316(9):1648–50.

    Article  CAS  PubMed  Google Scholar 

  44. Torsvik A et al. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track - letter. Cancer Res. 2010;70(15):6393–6.

    Article  CAS  PubMed  Google Scholar 

  45. Furlani D et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res. 2009;77(3):370–6.

    Article  CAS  PubMed  Google Scholar 

  46. Riley J et al. Intraspinal stem cell transplantation in ALS: a phase I safety trial, technical note & lumbar safety outcomes. Neurosurgery. 2012;71(2):405–16.

    Article  PubMed  Google Scholar 

  47. Riley J et al. Intraspinal stem cell transplantation in ALS: a phase I trial, cervical microinjection and final surgical safety outcomes. Neurosurgery. 2013;74(1):77–87.

    Article  Google Scholar 

  48. Safety Study of GRNOPC1 in Spinal Cord Injury. [cited 9 Jan 2011]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT01217008?term=Geron&rank=9

  49. Huang H et al. Safety of fetal olfactory ensheathing cell transplantation in patients with chronic spinal cord injury. A 38-month follow-up with MRI. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006;20(4):439–43.

    PubMed  Google Scholar 

  50. Huang H et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl). 2003;116(10):1488–91.

    Google Scholar 

  51. Dobkin BH, Curt A, Guest J. Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury. Neurorehabil Neural Repair. 2006;20(1):5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Blanquer M et al. Bone marrow stem cell transplantation in amyotrophic lateral sclerosis: technical aspects and preliminary results from a clinical trial. Methods Find Exp Clin Pharmacol. 2010;32(Suppl A):31–7.

    PubMed  Google Scholar 

  53. Blanquer M et al. A surgical technique of spinal cord cell transplantation in amyotrophic lateral sclerosis. J Neurosci Methods. 2010;191(2):255–7.

    Article  PubMed  Google Scholar 

  54. Casanova F, Carney PR, Sarntinoranont M. Influence of needle insertion speed on backflow for convection-enhanced delivery. J Biomech Eng. 2012;134(4):041006.

    Article  PubMed  Google Scholar 

  55. Krauze MT et al. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg. 2005;103(5):923–9.

    Article  PubMed  Google Scholar 

  56. Yin D, Forsayeth J, Bankiewicz KS. Optimized cannula design and placement for convection-enhanced delivery in rat striatum. J Neurosci Methods. 2010;187(1):46–51.

    Article  PubMed  Google Scholar 

  57. Vazquez LC et al. Polymer-coated cannulas for the reduction of backflow during intraparenchymal infusions. J Mater Sci Mater Med. 2012;23(8):2037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cunningham MG et al. Preclinical evaluation of a novel intracerebral microinjection instrument permitting electrophysiologically guided delivery of therapeutics. Neurosurgery. 2004;54(6):1497–507. discussion 1507.

    Article  PubMed  Google Scholar 

  59. Bjarkam CR et al. Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Gottingen minipig. Stereotact Funct Neurosurg. 2010;88(1):56–63.

    Article  PubMed  Google Scholar 

  60. Potts MB, Silvestrini MT, Lim DA. Devices for cell transplantation into the central nervous system: design considerations and emerging technologies. Surg Neurol Int. 2013;4 Suppl 1:S22–30.

    PubMed  PubMed Central  Google Scholar 

  61. Skuk D et al. Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation. 2007;84(10):1307–15.

    Article  PubMed  Google Scholar 

  62. Parsa S et al. Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication. 2010;2(2):025003.

    Article  PubMed  Google Scholar 

  63. Aguado BA et al. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A. 2012;18(7–8):806–15.

    Article  CAS  PubMed  Google Scholar 

  64. Lu P et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150(6):1264–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Riley J et al. Targeted spinal cord therapeutics delivery: stabilized platform and microelectrode recording guidance validation. Stereotact Funct Neurosurg. 2008;86(2):67–74.

    Article  PubMed  Google Scholar 

  66. Kang JH et al. Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med. 2005;46(3):479–83.

    CAS  PubMed  Google Scholar 

  67. MacLaren DC et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 1999;6(5):785–91.

    Article  CAS  PubMed  Google Scholar 

  68. Arena F et al. beta-Gal gene expression MRI reporter in melanoma tumor cells. Design, synthesis, and in vitro and in vivo testing of a Gd(III) containing probe forming a high relaxivity, melanin-like structure upon beta-Gal enzymatic activation. Bioconjug Chem. 2011;22(12):2625–35.

    Article  CAS  PubMed  Google Scholar 

  69. Bengtsson NE et al. lacZ as a genetic reporter for real-time MRI. Magn Reson Med. 2010;63(3):745–53.

    Article  PubMed  Google Scholar 

  70. Yaghoubi SS et al. Noninvasive detection of therapeutic cytolytic T cells with 18F–FHBG PET in a patient with glioma. Nat Clin Pract Oncol. 2008;6(1):53–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zurkiya O, Chan AWS, Hu X. MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med. 2008;59(6):1225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Genove G et al. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med. 2005;11(4):450–4.

    Article  CAS  PubMed  Google Scholar 

  73. Li Z et al. Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells. 2008;26(4):864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gonzalez-Lara LE et al. The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol Imaging Biol. 2011;13(4):702–11.

    Article  PubMed  Google Scholar 

  75. Guzman R et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci. 2007;104(24):10211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Obenaus A et al. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Ann Neurol. 2011;69(2):282–91.

    Article  PubMed  Google Scholar 

  77. Zhu J, Zhou L, XingWu F. Tracking neural stem cells in patients with brain trauma. N Engl J Med. 2006;355(22):2376–8.

    Article  CAS  PubMed  Google Scholar 

  78. Callera F, de Melo CM. Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells Dev. 2007;16(3):461–6.

    Article  PubMed  Google Scholar 

  79. Kanpolat Y. Percutaneous destructive pain procedures on the upper spinal cord and brain stem in cancer pain: CT-guided techniques, indications and results. Adv Tech Stand Neurosurg. 2007;32:147–73.

    Article  CAS  PubMed  Google Scholar 

  80. Kanpolat Y et al. CT-guided percutaneous selective cordotomy. Acta Neurochir (Wien). 1993;123(1–2):92–6.

    Article  CAS  Google Scholar 

  81. McGirt MJ et al. MRI-guided frameless stereotactic percutaneous cordotomy. Stereotact Funct Neurosurg. 2002;78(2):53–63.

    Article  PubMed  Google Scholar 

  82. Lee JH et al. Percutaneous transplantation of human umbilical cord blood-derived multipotent stem cells in a canine model of spinal cord injury. J Neurosurg Spine. 2009;11(6):749–57.

    Article  PubMed  Google Scholar 

  83. Larson PS et al. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery. 2012;70(1 Suppl Operative):95–103. discussion 103.

    PubMed  Google Scholar 

  84. Martin AJ et al. Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med. 2005;54(5):1107–14.

    Article  PubMed  Google Scholar 

  85. Starr PA et al. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg. 2010;112(3):479–90.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Boulis M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Medani, K., Riley, J., Lamanna, J., Boulis, N. (2016). Spinal Cord Cellular Therapeutics Delivery: Device Design Considerations. In: Childers, M. (eds) Regenerative Medicine for Degenerative Muscle Diseases. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3228-3_5

Download citation

Publish with us

Policies and ethics