An Overview of rAAV Vector Product Development for Gene Therapy

  • Richard O. SnyderEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The drug product development pathway involves proof-of-concept efficacy studies, toxicology studies, and human clinical trials conducted in preparation for commercialization. For time and financial efficiency, a perspective of clinical use, product licensure, and commercialization is beneficial at the outset. For gene transfer products, an understanding of the unmet need for the disease target, the market and competing products, the vector configuration, patient population profile, organ target, delivery method, and time and resources involved is essential. Addressing these variables leads to interconnected strategies and plans for business and finance, regulatory affairs, product supply, R&D, clinical investigations, and commercial launch. Establishing an organization with experienced personnel who have defined responsibilities, departments that are working together but are independently responsible, a network of consultants and contract organizations, and a high level of communication is essential to ensure the quality of the product and protection of patients and give the highest chance for success.


rAAV Vector Adeno-associated virus Product development Gene therapy Manufacturing Quality control Regulatory Commercialization 


Conflict of Interest Statement

RS is an inventor on patents related to recombinant AAV technology. RS owns equity in a gene therapy company that is commercializing AAV for gene therapy applications. To the extent that the work in this manuscript increases the value of these commercial holdings, RS has a conflict of interest.


  1. 1.
    McCarty DM. Self-complementary AAV, vectors; advances and applications. Mol Ther. 2008;16(10):1648–56. Epub 2008/08/07.CrossRefPubMedGoogle Scholar
  2. 2.
    Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78(12):6381–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15(7):445–51. Epub 2014/05/21.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Marsic D, Govindasamy L, Currlin S, Markusic DM, Tseng YS, Herzog RW, et al. Vector design tour de force: integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol Ther. 2014;22(11):1900–9. Epub 2014/07/23.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rabinowitz JE, Bowles DE, Faust SM, Ledford JG, Cunningham SE, Samulski RJ. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J Virol. 2004;78(9):4421–32. Epub 2004/04/14.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Warrington Jr KH, Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol. 2004;78(12):6595–609.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gigout L, Rebollo P, Clement N, Warrington Jr KH, Muzyczka N, Linden RM, et al. Altering AAV tropism with mosaic viral capsids. Mol Ther. 2005;11(6):856–65. Epub 2005/06/01.CrossRefPubMedGoogle Scholar
  8. 8.
    Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 2004;10(2):302–17.CrossRefPubMedGoogle Scholar
  9. 9.
    Chao H, Liu Y, Rabinowitz J, Li C, Samulski RJ, Walsh CE. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther. 2000;2(6):619–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Davidson BL, Chiorini JA. Recombinant adeno-associated viral vector types 4 and 5. Preparation and application for CNS gene transfer. Methods Mol Med. 2003;76:269–85.PubMedGoogle Scholar
  11. 11.
    Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther. 2003;7(6):839–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol. 1998;72(1):309–19.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM. Gene therapy vectors based on adeno-associated virus type 1. J Virol. 1999;73(5):3994–4003.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A. 2002;99(18):11854–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions. Methods Mol Biol. 2011;807:47–92. Epub 2011/10/29.CrossRefPubMedGoogle Scholar
  16. 16.
    Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman MD. The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J Virol. 2007;81(23):12936–45. Epub 2007/09/28.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Choi VW, McCarty DM, Samulski RJ. Host cell DNA repair pathways in adeno-associated viral genome processing. J Virol. 2006;80(21):10346–56.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Snyder RO, Xiao X, Samulski RJ, et al. Production of recombinant adeno-associated viral vectors. In: Dracopoli N, Haines J, Krof B, Moir D, Morton C, Seidman C, editors. Current protocols in human genetics. New York: Wiley; 1996. p. 12.1.1–24.Google Scholar
  19. 19.
    Mietzsch M, Grasse S, Zurawski C, Weger S, Bennett A, Agbandje-McKenna M, et al. OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1–12 vectors for gene therapy. Hum Gene Ther. 2014;25(3):212–22. Epub 2013/12/05.CrossRefPubMedGoogle Scholar
  20. 20.
    Cecchini S, Virag T, Kotin RM. Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther. 2011;22(8):1021–30. Epub 2011/03/09.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gao GP, Qu G, Faust LZ, Engdahl RK, Xiao W, Hughes JV, et al. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus [In Process Citation]. Hum Gene Ther. 1998;9(16):2353–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Clark KR, Voulgaropoulou F, Fraley DM, Johnson PR. Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther. 1995;6(10):1329–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Thomas DL, Wang L, Niamke J, Liu J, Kang W, Scotti MM, et al. Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum Gene Ther. 2009;20(8):861–70. Epub 2009/05/08.CrossRefPubMedGoogle Scholar
  24. 24.
    Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med. 2013;5(194), 194ra92. Epub 2013/07/19.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ayuso E, Mingozzi F, Montane J, Leon X, Anguela XM, Haurigot V, et al. High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Ther. 2010;17(4):503–10. Epub 2009/12/04.CrossRefPubMedGoogle Scholar
  26. 26.
    Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999;6(6):973–85.CrossRefPubMedGoogle Scholar
  27. 27.
    Snyder RO, Audit M, Francis JD. rAAV vector product characterization and stability studies. Methods Mol Biol. 2011;807:405–28. Epub 2011/10/29.CrossRefPubMedGoogle Scholar
  28. 28.
    Snyder RO, Francis J. Adeno-associated viral vectors for clinical gene transfer studies. Curr Gene Ther. 2005;5(3):311–21. Epub 2005/06/25.CrossRefPubMedGoogle Scholar
  29. 29.
    Senis E, Fatouros C, Grosse S, Wiedtke E, Niopek D, Mueller AK, et al. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J. 2014;9(11):1402–12. Epub 2014/09/05.CrossRefPubMedGoogle Scholar
  30. 30.
    Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21. Epub 2011/06/28.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL, et al. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther. 2014;22(11):1923–35. Epub 2014/09/10.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bailey AM, Mendicino M, Au P. An FDA perspective on preclinical development of cell-based regenerative medicine products. Nat Biotechnol. 2014;32(8):721–3. Epub 2014/08/06.CrossRefPubMedGoogle Scholar
  33. 33.
    MacLachlan TK, McIntyre M, Mitrophanous K, Miskin J, Jolly DJ, Cavagnaro JA. Not reinventing the wheel: applying the 3Rs concepts to viral vector gene therapy biodistribution studies. Hum Gene Ther Clin Dev. 2013;24(1):1–4. Epub 2013/05/23.CrossRefPubMedGoogle Scholar
  34. 34.
    USFDA. Guidance for Industry, Formal meetings between the FDA and sponsors or applicants. 2009.Google Scholar
  35. 35.
    Lenzi RN, Altevogt BM, Gostin LO, editors. Oversight and review of clinical gene transfer protocols: assessing the role of the recombinant DNA advisory committee. Washington, DC; 2014.Google Scholar
  36. 36.
    USFDA. Prescription drug user fee rates for fiscal year 2016. Fed Regist. 2015;80(148):46028–32.Google Scholar
  37. 37.
    USFDA. Guidance for Industry, expedited programs for serious conditions – drugs and biologics. 2014.Google Scholar
  38. 38.
    Field MJ, Boat TF, editors. Rare diseases and orphan products: accelerating research and development. Washington, DC; 2010.Google Scholar
  39. 39.
    Ridic G, Gleason S, Ridic O. Comparisons of health care systems in the United States, Germany and Canada. Mater Sociomed. 2012;24(2):112–20. Epub 2012/01/01.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Brennan TA, Wilson JM. The special case of gene therapy pricing. Nat Biotechnol. 2014;32(9):874–6. Epub 2014/09/10.CrossRefPubMedGoogle Scholar
  41. 41.
    Philippidis A. Orphan drugs, big pharma. Hum Gene Ther. 2011;22(9):1035–8. Epub 2011/09/22.CrossRefPubMedGoogle Scholar
  42. 42.
    Philippidis A. Crafting a robust business model for orphan drug development. Hum Gene Ther. 2011;22(7):781–3. Epub 2011/07/16.CrossRefPubMedGoogle Scholar
  43. 43.
    Philippidis A. Developing a balanced business model for gene therapy. Hum Gene Ther. 2011;22(6):645–6. Epub 2011/05/19.CrossRefPubMedGoogle Scholar
  44. 44.
    Abou-El-Enein M, Bauer G, Reinke P. The business case for cell and gene therapies. Nat Biotechnol. 2014;32(12):1192–3. Epub 2014/12/10.CrossRefPubMedGoogle Scholar
  45. 45.
    USFDA. Guidance for Industry (Draft), Fulfilling regulatory requirements for postmarketing submissions of interactive promotional media for prescription human and animal drugs and biologics. 2014.Google Scholar
  46. 46.
    Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004. Epub 2014/11/20.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vis Res. 2014. Epub 2014/08/06.Google Scholar
  48. 48.
    Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S, et al. A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med. 2014;371(15):1407–17. Epub 2014/10/09.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev. 2015;263(1):68–89. Epub 2014/12/17.CrossRefPubMedGoogle Scholar
  50. 50.
    Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467(7313):318–22. Epub 2010/09/17.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kastelein JJ, Ross CJ, Hayden MR. From mutation identification to therapy: discovery and origins of the first approved gene therapy in the Western world. Hum Gene Ther. 2013;24(5):472–8. Epub 2013/04/13.CrossRefPubMedGoogle Scholar
  52. 52.
    Burger L, HIirschler B. First gene therapy drug sets million-euro price record. Reuters. 2014.Google Scholar
  53. 53.
    Ledley FD, McNamee LM, Uzdil V, Morgan IW. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies. Gene Ther. 2014;21(2):188–94. Epub 2013/12/07.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Molecular Genetics and MicrobiologyUniversity of Florida, College of MedicineGainesvilleUSA
  2. 2.Atlantic Gene Therapies, INSERM UMR 1089Université de NantesNantesFrance
  3. 3.Center of Excellence for Regenerative Health BiotechnologyUniversity of FloridaAlachuaUSA

Personalised recommendations