Skip to main content

The Circadian Clock in the Mammalian Kidney

  • Chapter
Sodium and Water Homeostasis

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1186 Accesses

Abstract

Healthy circadian rhythms are important for maintaining overall health. Several core clock genes, including Bmal1, Per, CLOCK, and Cry encode transcription factors that regulate gene expression in the kidney and in nearly all other organs and cell types. Modulation of clock genes can cause major physiological effects. Loss of any of the core clock genes in mice results in significant changes in blood pressure, indicating that the molecular clock is critical for regulation of blood pressure. The kidney regulates electrolyte and volume balance and is thus an important regulator of blood pressure. Several lines of evidence suggest a role for the kidney clock in blood pressure regulation.

Many aspects of renal function, including glomerular filtration rate and electrolyte excretion, are known to vary with a circadian rhythm. Multiple studies have demonstrated that the kidney is sensitive to food and light cues, consistent with a role for circadian rhythms in the regulation of renal function. In the kidney, clock genes are rhythmically expressed and thousands of genes that contribute to renal function are subject to transcriptional regulation by the core clock proteins. Indeed, several key circadian genes oscillate even in the fetal kidney. It is clear that the circadian clock is an important regulator of renal function and that a better understanding of how it functions can open up new avenues for the treatment of kidney disease and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bugaj V, Pochynyuk O, Mironova E, Vandewalle A, Medina JL, Stockand JD (2008) Regulation of the epithelial Na+ channel by endothelin-1 in rat collecting duct. Am J Physiol Renal Physiol 295(4):F1063–F1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crowley SD, Gurley SB, Coffman TM (2007) AT(1) receptors and control of blood pressure: the kidney and more. Trends Cardiovasc Med 17(1):30–34. doi:10.1016/j.tcm.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  • Curtis JJ, Luke RG, Dustan HP et al (1983) Remission of essential hypertension after renal transplantation. N Engl J Med 309(17):1009–1015. doi:10.1056/NEJM198310273091702

    Article  CAS  PubMed  Google Scholar 

  • Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA (2007) Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci U S A 104(9):3450–3455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahl LK, Heine M (1975) Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res 36(6):692–696

    Article  CAS  PubMed  Google Scholar 

  • Debonneville C, Staub O (2004) Participation of the ubiquitin-conjugating enzyme UBE2E3 in Nedd4-2-dependent regulation of the epithelial Na+ channel. Mol Cell Biol 24(6):2397–2409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549. doi:10.1146/annurev-physiol-021909-135821

    Article  CAS  PubMed  Google Scholar 

  • Doi M, Takahashi Y, Komatsu R et al (2010) Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med 16(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Dolatshad H, Cary AJ, Davis FC (2010) Differential expression of the circadian clock in maternal and embryonic tissues of mice. PLoS One 5(3), e9855. doi:10.1371/journal.pone.0009855

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferraris RP (2001) Dietary and developmental regulation of intestinal sugar transport. Biochem J 360(Pt 2):265–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Gallego MS, Ling BN (1996) Regulation of amiloride-sensitive Na+ channels by endothelin-1 in distal nephron cells. Am J Physiol 271(2 Pt 2):F451–F460

    CAS  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL et al (2014) Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129(3):399–410. doi:10.1161/01.cir.0000442015.53336.12

    Article  PubMed  Google Scholar 

  • Grisk O, Kloting I, Exner J et al (2002) Long-term arterial pressure in spontaneously hypertensive rats is set by the kidney. J Hypertens 20(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Gumz ML, Rabinowitz L (2013) Role of circadian rhythms in potassium homeostasis. Semin Nephrol 33(3):229–236. doi:10.1016/j.semnephrol.2013.04.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gumz ML, Popp MP, Wingo CS, Cain BD (2003) Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am J Physiol Renal Physiol 285(4):F664–F673. doi:10.1152/ajprenal.00353.2002

    Article  CAS  PubMed  Google Scholar 

  • Gumz ML, Stow LR, Lynch IJ et al (2009) The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 119(8):2423–2434. doi:10.1172/JCI36908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hermida RC, Ayala DE, Mojon A, Fernandez JR (2010) Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int 27(8):1629–1651. doi:10.3109/07420528.2010.510230

    Article  PubMed  Google Scholar 

  • Kanbay M, Bayram Y, Solak Y, Sanders PW (2013) Dietary potassium: a key mediator of the cardiovascular response to dietary sodium chloride. J Am Soc Hypertens 7(5):395–400. doi:10.1016/j.jash.2013.04.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kario K, Shimada K (2004) Risers and extreme-dippers of nocturnal blood pressure in hypertension: antihypertensive strategy for nocturnal blood pressure. Clin Exp Hypertens 26(2):177–189

    Article  PubMed  Google Scholar 

  • Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L (1989) Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond) 77(1):105–111

    Article  CAS  Google Scholar 

  • Lee IH, Campbell CR, Song SH et al (2009) The activity of the epithelial sodium channels is regulated by caveolin-1 via a Nedd4-2-dependent mechanism. J Biol Chem 284(19):12663–12669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104(4):545–556

    Article  CAS  PubMed  Google Scholar 

  • Lubarski I, Pihakaski-Maunsbach K, Karlish SJ, Maunsbach AB, Garty H (2005) Interaction with the Na, K-ATPase and tissue distribution of FXYD5 (related to ion channel). J Biol Chem 280(45):37717–37724. doi:10.1074/jbc.M506397200, M506397200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lynch IJ, Welch AK, Kohan DE, Cain BD, Wingo CS (2013) Endothelin-1 inhibits sodium reabsorption by ET(A) and ET(B) receptors in the mouse cortical collecting duct. Am J Physiol Renal Physiol 305(4):F568–F573. doi:10.1152/ajprenal.00613.2012

    Article  CAS  PubMed  Google Scholar 

  • Manchester RC (1933) The diurnal rhythm in water and mineral exchange. J Clin Invest 12(6):995–1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meszaros K, Pruess L, Szabo AJ, Gondan M, Ritz E, Schaefer F (2014) Development of the circadian clockwork in the kidney. Kidney Int. doi:10.1038/ki.2014.199

  • Moon JY (2013) Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension. Electrolyte Blood Press 11(2):41–45. doi:10.5049/EBP.2013.11.2.41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikolaeva S, Pradervand S, Centeno G et al (2012) The circadian clock modulates renal sodium handling. J Am Soc Nephrol 23(6):1019–1026. doi:10.1681/ASN.2011080842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishide SY, Hashimoto K, Nishio T, Honma K, Honma S (2014) Organ-specific development characterizes circadian clock gene Per2 expression in rats. Am J Physiol Regul Integr Comp Physiol 306(1):R67–R74. doi:10.1152/ajpregu.00063.2013

    Article  CAS  PubMed  Google Scholar 

  • Noshiro M, Furukawa M, Honma S et al (2005) Tissue-specific disruption of rhythmic expression of Dec1 and Dec2 in clock mutant mice. J Biol Rhythms 20(5):404–418

    Article  CAS  PubMed  Google Scholar 

  • Ohta H, Honma S, Abe H, Honma K (2002) Effects of nursing mothers on rPer1 and rPer2 circadian expressions in the neonatal rat suprachiasmatic nuclei vary with developmental stage. Eur J Neurosci 15(12):1953–1960

    Article  PubMed  Google Scholar 

  • Oster H, Baeriswyl S, Van Der Horst GT, Albrecht U (2003) Loss of circadian rhythmicity in aging mPer1−/−mCry2−/− mutant mice. Genes Dev 17(11):1366–1379. doi:10.1101/gad.256103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pizarro A, Hayer K, Lahens NF, Hogenesch JB (2013) CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res 41(Database issue):D1009–D1013. doi:10.1093/nar/gks1161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pons M, Forpomes O, Espagnet S, Cambar J (1996) Relationship between circadian changes in renal hemodynamics and circadian changes in urinary glycosaminoglycan excretion in normal rats. Chronobiol Int 13(5):349–358

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  CAS  PubMed  Google Scholar 

  • Richards J, Gumz ML (2012) Advances in understanding the peripheral circadian clocks. FASEB J 26(9):3602–3613. doi:10.1096/fj.12-203554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards J, Greenlee MM, Jeffers LA et al (2012) Inhibition of alphaENaC expression and ENaC activity following blockade of the circadian clock-regulatory kinases CK1delta/epsilon. Am J Physiol Renal Physiol 303(7):F918–F927. doi:10.1152/ajprenal.00678.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards J, All S, Skopis G et al (2013a) Opposing actions of Per1 and Cry2 in the regulation of Per1 target gene expression in the liver and kidney. Am J Physiol Regul Integr Comp Physiol 305(7):R735–R747. doi:10.1152/ajpregu.00195.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards J, Cheng KY, All S et al (2013b) A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am J Physiol Renal Physiol 305(12):F1697–F1704. doi:10.1152/ajprenal.00472.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards J, Jeffers LA, All SC, Cheng KY, Gumz ML (2013c) Role of Per1 and the mineralocorticoid receptor in the coordinate regulation of alphaENaC in renal cortical collecting duct cells. Front Physiol 4:253. doi:10.3389/fphys.2013.00253

    Article  PubMed Central  PubMed  Google Scholar 

  • Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML (2014) A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J Biol Chem 289(17):11791–11806. doi:10.1074/jbc.M113.531095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saifur Rohman M, Emoto N, Nonaka H et al (2005) Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int 67(4):1410–1419

    Article  PubMed  Google Scholar 

  • Sladek M, Sumova A, Kovacikova Z, Bendova Z, Laurinova K, Illnerova H (2004) Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci U S A 101(16):6231–6236. doi:10.1073/pnas.0401149101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stow LR, Richards J, Cheng KY et al (2012) The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension 59(6):1151–1156. doi:10.1161/HYPERTENSIONAHA.112.190892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takano A, Isojima Y, Nagai K (2004) Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J Biol Chem 279(31):32578–32585. doi:10.1074/jbc.M403433200

    Article  CAS  PubMed  Google Scholar 

  • Timmermans PB, Wong PC, Chiu AT et al (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45(2):205–251

    CAS  PubMed  Google Scholar 

  • Tokonami N, Mordasini D, Pradervand S et al (2014) Local renal circadian clocks control fluid-electrolyte homeostasis and BP. J Am Soc Nephrol 25(7):1430–1439. doi:10.1681/ASN.2013060641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Horst GT, Muijtjens M, Kobayashi K et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627–630. doi:10.1038/19323

    Article  PubMed  Google Scholar 

  • Vitaterna MH, King DP, Chang AM et al (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264(5159):719–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vukolic A, Antic V, Van Vliet BN, Yang Z, Albrecht U, Montani JP (2010) Role of mutation of the circadian clock gene Per2 in cardiovascular circadian rhythms. Am J Physiol Regul Integr Comp Physiol 298(3):R627–R634

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Maillard M, Schibler U, Burnier M, Gachon F (2010) Cardiac hypertrophy, low blood pressure, and low aldosterone levels in mice devoid of the three circadian PAR bZip transcription factors DBP, HLF, and TEF. Am J Physiol Regul Integr Comp Physiol 299(4):R1013–R1019. doi:10.1152/ajpregu.00241.2010, ajpregu.00241.2010 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Ni Y, Dong Y et al (2010) Regulation of circadian gene expression in the kidney by light and food cues in rats. Am J Physiol Regul Integr Comp Physiol 298(3):R635–R641

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Ni Y, Zhuge F et al (2011) Significant dissociation of expression patterns of the basic helix-loop-helix transcription factors Dec1 and Dec2 in rat kidney. J Exp Biol 214(Pt 8):1257–1263. doi:10.1242/jeb.052100

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Fu O, Yao L, Sun L, Zhuge F, Fu Z (2012) Differential responses of peripheral circadian clocks to a short-term feeding stimulus. Mol Biol Rep 39(10):9783–9789. doi:10.1007/s11033-012-1844-0

    Article  CAS  PubMed  Google Scholar 

  • Zicha J, Dobesova Z, Behuliak M, Kunes J, Vaneckova I (2011) Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction. Acta Physiol 202(1):29–38. doi:10.1111/j.1748-1716.2010.02248.x

    Article  CAS  Google Scholar 

  • Zuber AM, Centeno G, Pradervand S et al (2009) Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci U S A 106(38):16523–16528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Gumz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Physiological Society

About this chapter

Cite this chapter

Solocinski, K., Gumz, M.L. (2015). The Circadian Clock in the Mammalian Kidney. In: Hyndman, K., Pannabecker, T. (eds) Sodium and Water Homeostasis. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3213-9_15

Download citation

Publish with us

Policies and ethics