Skip to main content
  • 594 Accesses

Abstract

The method of Chap. 1 obviously fails for Brownian motion in two-dimensional domains whose boundaries are smooth and reflecting, except for a small absorbing window at the end of a cusp-shaped funnel, as shown in Figs. 1.2(left) and 2.1. The cusp can be formed by a partial block of a planar domain, as shown in the schematic Fig. 2.2(left).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is known in partial differential equations theory in higher dimensions that at boundary points where \(\sum _{i,j}\sigma ^{ij}(\boldsymbol{x})\nu ^{i}(\boldsymbol{x})\nu ^{j}(\boldsymbol{x}) = 0\) , boundary conditions can be imposed only at points where \(\boldsymbol{a}(\boldsymbol{x}) \cdot \boldsymbol{\nu }(\boldsymbol{x}) <0\).

Bibliography

  • Bénichou, O. and R. Voituriez (2008), “Narrow-escape time problem: Time needed for a particle to exit a confining domain through a small window,” Phys. Rev. Lett., 100, 168105.

    Google Scholar 

  • Berezhkovskii, A.M., A.V. Barzykin, and V.Yu. Zitserman (2009), “Escape from cavity through narrow tunnel,” J. Chem. Phys., 130, 245104.

    Google Scholar 

  • Borgdorff, A.J. and D. Choquet (2002), “Regulation of AMPA receptor lateral movements,” Nature 417, pp.649–653.

    Google Scholar 

  • Cheviakov, A., M.J. Ward, and R. Straube (2010), “An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere,” SIAM Multiscale Modeling and Simulation, 8 (3), 836–870.

    Google Scholar 

  • Choquet, D. (2010), “Fast AMPAR trafficking for a high-frequency synaptic transmission,” Eur. J. Neurosci. 32, pp.250–260.

    Google Scholar 

  • Coombs, D., R. Straube, and M. Ward, (2009), “Diffusion on a sphere with localized traps: Mean first passage time, eigenvalue asymptotics, and Fekete points,” SIAM J. Appl. Math., 70 (1), pp. 302–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado, M.J., M. Ward, D. Coombs, (2015), “Conditional Mean First Passage Times to Small Traps in a 3-D Domain with a Sticky Boundary: Applications to T Cell Searching Behaviour in Lymph Nodes, SIAM J. Multiscale Analysis and Simulation (in press).

    Google Scholar 

  • Edidin, M., S.C. Kuo and M.P. Sheetz (1991), “Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers,” Science 254, pp.1379–1382.

    Google Scholar 

  • Eisinger, J., J. Flores and W.P. Petersen (1986), “A milling crowd model for local and long-range obstructed lateral diffusion. Mobility of excimeric probes in the membrane of intact erythrocytes,” Biophys J. 49, pp.987–1001.

    Google Scholar 

  • Fabrikant, V.I. (1989), Applications of Potential Theory in Mechanics, Kluwer, Dodrecht.

    Google Scholar 

  • Fabrikant, V.I. (1991), Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer, Dodrecht.

    Google Scholar 

  • Garabedian, P.R. (1964), Partial Differential Equations, Wiley, NY.

    Google Scholar 

  • C. Guerrier D. Holcman, The search time to a Ribbon and applications to calcium diffusion near a vesicle at synapses (pre-print).

    Google Scholar 

  • Grigoriev, I.V., Y.A. Makhnovskii, A.M. Berezhkovskii, and V.Y. Zitserman (2002), “Kinetics of escape through a small hole,” J. Chem. Phys., 116, (22), pp.9574–9577.

    Google Scholar 

  • Hänggi, P., P. Talkner, and M. Borkovec (1990), “50 years after Kramers ,” Rev. Mod. Phys., 62, pp.251–341.

    Google Scholar 

  • Holcman, D. and Z. Schuss (2004), “Escape through a small opening: receptor trafficking in a synaptic membrane,” J. Stat. Phys., 117 (5/6), 191–230.

    Google Scholar 

  • Holcman, D., A. Marchewka and Z. Schuss (2005a), “Survival probability of diffusion with trapping in cellular neurobiology.” Phys. Rev. E, Stat. Nonlin. Soft Matter Phys. 72 (3) 031910.

    Google Scholar 

  • Holcman, D. and Z. Schuss (2005c), “Stochastic chemical reactions in microdomains,” J. Chem. Phys., 122, 114710.

    Article  ADS  Google Scholar 

  • Holcman, D., N. Hoze, Z. Schuss (2011), “Narrow escape through a funnel and effective diffusion on a crowded membrane,” Phys. Rev. E, 84, 021906.

    Google Scholar 

  • Holcman, D. and Z. Schuss (2011), “Diffusion laws in dendritic spines,” The Journal of Mathematical Neuroscience, 1 (10), pp.1–14.

    MathSciNet  Google Scholar 

  • Holcman, D. and Z. Schuss (2012a), “Brownian motion in dire straits.” SIAM. J. on Multiscale Modeling and Simulation 10(4), pp.1204–1231.

    Google Scholar 

  • Holcman, D. and Z. Schuss, “Brownian needle in dire straits: Stochastic motion of a rod in very confined narrow domains.” Phys. Rev. E 85 010103(R) (2012b).

    Google Scholar 

  • D Holcman, Z Schuss, Time scale of diffusion in molecular and cellular biology, Journal of Physics A: Mathematical and Theoretical 47 (17), 173001 (2014).

    Google Scholar 

  • Jackson, J.D. (1975), Classical Electrodynamics, 2nd Ed., Wiley, NY.

    Google Scholar 

  • Kochubey, O., X. Lou, and R. Schneggenburger (2011), “Regulation of transmitter release by Ca2+ and synaptotagmin: insights from a large cns synapse,” Trends in Neuroscience 34 (5).

    Google Scholar 

  • Kolokolnikov, T., M. Titcombe and M.J. Ward (2005), “Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps,” European J. Appl. Math., 16, 161–200.

    Google Scholar 

  • Korkotian, E., D. Holcman and M. Segal (2004), “Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons,” Euro. J. of Neuroscience, 20 (10), pp.2649–2663.

    Google Scholar 

  • Kusumi, A., C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R.S. Kasai, J. Kondo, T. Fujiwara (2005), “Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules,” Annu Rev Biophys Biomol Struct. 34, pp.351–378.

    Google Scholar 

  • Kusumi, A., Y. Sako and M. Yamamoto (1993), “Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells,” Biophys J. 65, pp.2021–2040.

    Google Scholar 

  • Reingruber, J. and D. Holcman (2011b), “The narrow escape problem in a flat cylindrical microdomain with application to diffusion in the synaptic cleft.” Multiscale Model. Simul. 9 (2), pp.793–816.

    Google Scholar 

  • Saxton, M.J. (1995), “Single-particle tracking: effects of corrals,” Biophys. J. 69, pp.389–398.

    Google Scholar 

  • Saxton, M.J. and K. Jacobson (1997), “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, pp.373–399.

    Google Scholar 

  • Schuss, Z., A. Singer, and D. Holcman (2007), “The narrow escape problem for diffusion in cellular microdomains,” Proc. Natl. Acad. Sci. USA, 104, 16098–16103.

    Google Scholar 

  • Schuss, Z. (2010a), “Equilibrium and recrossings of the transition state: what can be learned from diffusion?” J. Phys. Chem. C, 114 (48), pp.20320–20334.

    Google Scholar 

  • Schuss, Z. (2010b), Theory and Applications of Stochastic Processes, and Analytical Approach, Springer series on Applied Mathematical Sciences 170, NY.

    Google Scholar 

  • Schuss, Z.(2013) Brownian Dynamics at Boundaries and Interfaces in Physics, Chemistry, and Biology, Springer series on Applied Mathematical Sciences, NY.

    Book  MATH  Google Scholar 

  • Sheetz, M.P. (1993), “Glycoprotein motility and dynamic domains in fluid plasma membranes,” Ann. Rev. Biophys. Biomol. Struct. 22, pp.417–431.

    Google Scholar 

  • Singer, A., Z. Schuss, D. Holcman, and R.S. Eisenberg (2006a), “Narrow escape, Part I,” J. Stat. Phys., 122 (3), pp.437–463.

    Google Scholar 

  • Singer, A., Z. Schuss, and D. Holcman (2006b), “Narrow escape, Part II: The circular disk,” J. Stat. Phys., 122 (3), pp.465–489.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Singer, A., Z. Schuss, and D. Holcman (2006c), “Narrow escape, Part III: Non-smooth domains and Riemann surfaces,” J. Stat. Phys., 122 (3), pp.491–509.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Singer, A. and Z. Schuss (2006), “Activation through a narrow opening,” Phys. Rev. E (Rapid Comm.), 74, 020103(R).

    Google Scholar 

  • Singer, A. Z. Schuss, A. Osipov, and D. Holcman (2008b), “Partially Reflected Diffusion” SIAM J. Appl. Math. 68, pp.844–868.

    Google Scholar 

  • Sneddon, I.N. (1966), Mixed Boundary Value Problems in Potential Theory, Wiley, NY.

    MATH  Google Scholar 

  • Suzuki, K. and M.P. Sheetz (2001), “Binding of cross-linked glycosylphosphatidyl-inositol-anchored proteins to discrete actin-associated sites and cholesterol-dependent domains,” Biophys. J. 81, pp.2181–2189.

    Google Scholar 

  • Taflia, A. and D. Holcman (2007), “Dwell time of a molecule in a microdomain,” J. Chem. Phys. 126, (23) 234107.

    Google Scholar 

  • Taflia, A. and D. Holcman (2011), “Estimating the synaptic current in a multiconductance AMPA receptor model.” Biophys. J. 101 (4), pp.781–792.

    Google Scholar 

  • Tardin, C., L. Cognet, C. Bats, B. Lounis, and D. Choquet (2003), “Direct imaging of lateral movements of AMPA receptors inside synapses,” Embo J. 22, pp.4656–4665.

    Google Scholar 

  • Triller, A. and D. Choquet (2003), “The role of receptor diffusion in the organization of the postsynaptic membrane,” Nat. Rev. Neurosci., 4, pp.1251–1265.

    Google Scholar 

  • Ward, M.J. and E. Van De Velde (1992), “The onset of thermal runaway in partially insulated or cooled reactors,” IMA J. Appl. Math., 48, 53–85.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ward, M.J. and J.B. Keller (1993), “Strong localized perturbations of eigenvalue problems,” SIAM J. Appl. Math., 53, pp.770–798.

    Article  MathSciNet  MATH  Google Scholar 

  • Ward, M.J., W.D. Henshaw, and J.B. Keller (1993), “Summing logarithmic expansions for singularly perturbed eigenvalue problems,” SIAM J. Appl. Math., 53, pp.799–828.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holcman, D., Schuss, Z. (2015). Special Asymptotics for Stochastic Narrow Escape. In: Stochastic Narrow Escape in Molecular and Cellular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3103-3_2

Download citation

Publish with us

Policies and ethics