Anatomy and Physiology of Erection, Ejaculation, and Orgasm

  • F. Andrew Celigoj
  • R. Matthew Coward
  • Matthew D. Timberlake
  • Ryan P. SmithEmail author


Male sexual dysfunction encompasses erectile dysfunction, ejaculatory disorders, male endocrinopathies, and alterations in orgasm. These conditions are accompanied by significant psychological burdens for men, their partners, and the couple’s relationship. Recognition of these conditions as alterations of normal erectile function stems from a growing understanding of the anatomy and physiology of erection, ejaculation, and male orgasm. Development and delivery of effective treatment requires the practitioner to understand the form and function of these systems within the male. This chapter provides a current understanding of the anatomy and physiology of male sexual function as a basis for appropriate diagnosis and treatment of erectile and sexual dysfunction.


Male sexual function Erectile dysfunction Male orgasm Ejaculatory function Penile anatomy and physiology 



Dr. Celigoj, Dr. Timberlake and Dr. Smith report no conflict of interest.


  1. 1.
    Brenot PH. Male impotence-a historical perspective. Paris: L’Esprit du Temps; 1994.Google Scholar
  2. 2.
    Lue TF. Physiology of penile erection and pathophysiology of erectile dysfunction. In: Wein A, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-Walsh urology, vol. 1. 10th ed. Philadelphia: Elsevier Health Sciences; 2011. p. 688–720.Google Scholar
  3. 3.
    Rowland D, McMahon CG, Abdo C, Chen J, Jannini E, Waldinger MD, et al. Disorders of orgasm and ejaculation in men. J Sex Med. 2010;7(4 Pt 2):1668–86. PubMed PMID: 20388164.CrossRefPubMedGoogle Scholar
  4. 4.
    Masters WH, Johnson VE. Reproductive biology research foundation (U.S.). Human sexual response. 1st ed. Boston: Little, Brown; 1966. vol. 8, 366 pp.Google Scholar
  5. 5.
    Kaplan HS. The new sex therapy; active treatment of sexual dysfunctions. New York: Brunner/Mazel; 1974. vol. 16, 544 pp.Google Scholar
  6. 6.
    Levin R. An orgasm is…who defines what an orgasm is? Sex Relat Ther. 2004;19:101–7.CrossRefGoogle Scholar
  7. 7.
    Lue TF. Erectile dysfunction. N Engl J Med. 2000;342(24):1802–13. PubMed PMID: 10853004.CrossRefPubMedGoogle Scholar
  8. 8.
    Breza J, Aboseif SR, Orvis BR, Lue TF, Tanagho EA. Detailed anatomy of penile neurovascular structures: surgical significance. J Urol. 1989;141(2):437–43. PubMed PMID: 2913372.PubMedGoogle Scholar
  9. 9.
    Droupy S, Hessel A, Benoit G, Blanchet P, Jardin A, Giuliano F. Assessment of the functional role of accessory pudendal arteries in erection by transrectal color Doppler ultrasound. J Urol. 1999;162(6):1987–91. PubMed PMID: 10569553.CrossRefPubMedGoogle Scholar
  10. 10.
    Bella AJ, Brant WO, Lue TF. Microscopic anatomy of erectile function. In: Carson C, Kirby RS, Goldstein IG, Wyllie MG, editors. Textbook of erectile dysfunction. 2nd ed. New York, NY: Informa Healthcare USA, INC; 2009. p. 28–34.Google Scholar
  11. 11.
    Lue TF, Zeineh SJ, Schmidt RA, Tanagho EA. Neuroanatomy of penile erection: its relevance to iatrogenic impotence. J Urol. 1984;131(2):273–80. PubMed PMID: 6422055.PubMedGoogle Scholar
  12. 12.
    Steers WD, Mallory B, de Groat WC. Electrophysiological study of neural activity in penile nerve of the rat. Am J Physiol. 1988;254(6 Pt 2):R989–1000. PubMed PMID: 3381920.PubMedGoogle Scholar
  13. 13.
    Giuliano F, Rampin O. Neural control of erection. Physiol Behav. 2004;83(2):189–201. PubMed PMID: 15488539.CrossRefPubMedGoogle Scholar
  14. 14.
    Halata Z, Munger BL. The neuroanatomical basis for the protopathic sensibility of the human glans penis. Brain Res. 1986;371(2):205–30. PubMed PMID: 3697758.CrossRefPubMedGoogle Scholar
  15. 15.
    McKenna KE. Central control of penile erection. Int J Impot Res. 1998;10 Suppl 1:S25–34. PubMed PMID: 9669218.PubMedGoogle Scholar
  16. 16.
    Burnett AL, Tillman SL, Chang TS, Epstein JI, Lowenstein CJ, Bredt DS, et al. Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis. J Urol. 1993;150(1):73–6. PubMed PMID: 7685426.PubMedGoogle Scholar
  17. 17.
    Arnow BA, Desmond JE, Banner LL, Glover GH, Solomon A, Polan ML, et al. Brain activation and sexual arousal in healthy, heterosexual males. Brain. 2002;125(Pt 5):1014–23. PubMed PMID: 11960892.CrossRefPubMedGoogle Scholar
  18. 18.
    Mallick HN, Manchanda SK, Kumar VM. Sensory modulation of the medial preoptic area neuronal activity by dorsal penile nerve stimulation in rats. J Urol. 1994;151(3):759–62. PubMed PMID: 8309001.PubMedGoogle Scholar
  19. 19.
    Marson L, Platt KB, McKenna KE. Central nervous system innervation of the penis as revealed by the transneuronal transport of pseudorabies virus. Neuroscience. 1993;55(1):263–80. PubMed PMID: 7688882.CrossRefPubMedGoogle Scholar
  20. 20.
    Gondre M, Christ GJ. Endothelin-1-induced alterations in phenylephrine-induced contractile responses are largely additive in physiologically diverse rabbit vasculature. J Pharmacol Exp Ther. 1998;286(2):635–42. PubMed PMID: 9694914.PubMedGoogle Scholar
  21. 21.
    Italiano G, Calabro A, Spini S, Ragazzi E, Pagano F. Functional response of cavernosal tissue to distension. Urol Res. 1998;26(1):39–44. PubMed PMID: 9537695.CrossRefPubMedGoogle Scholar
  22. 22.
    Saenz de Tejada I, Kim N, Lagan I, Krane RJ, Goldstein I. Regulation of adrenergic activity in penile corpus cavernosum. J Urol. 1989;142(4):1117–21. PubMed PMID: 2795742.PubMedGoogle Scholar
  23. 23.
    Ignarro LJ, Bush PA, Buga GM, Wood KS, Fukuto JM, Rajfer J. Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun. 1990;170(2):843–50. PubMed PMID: 2166511.CrossRefPubMedGoogle Scholar
  24. 24.
    Saenz de Tejada I, Goldstein I, Azadzoi K, Krane RJ, Cohen RA. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med. 1989;320(16):1025–30. PubMed PMID: 2927481.CrossRefPubMedGoogle Scholar
  25. 25.
    Pickard RS, Powell PH, Zar MA. The effect of inhibitors of nitric oxide biosynthesis and cyclic GMP formation on nerve-evoked relaxation of human cavernosal smooth muscle. Br J Pharmacol. 1991 104(3):755–9. PubMed Pubmed Central PMCID: 1908248.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pickard RS, Powell PH, Zar MA. Nitric oxide and cyclic GMP formation following relaxant nerve stimulation in isolated human corpus cavernosum. Br J Urol. 1995;75(4):516–22. PubMed PMID: 7788263.CrossRefPubMedGoogle Scholar
  27. 27.
    Campos de Carvalho AC, Roy C, Moreno AP, Melman A, Hertzberg EL, Christ GJ, et al. Gap junctions formed of connexin43 are found between smooth muscle cells of human corpus cavernosum. J Urol. 1993;149(6):1568–75. PubMed PMID: 8388962.PubMedGoogle Scholar
  28. 28.
    Christ GJ, Brink PR, Melman A, Spray DC. The role of gap junctions and ion channels in the modulation of electrical and chemical signals in human corpus cavernosum smooth muscle. Int J Impot Res. 1993;5(2):77–96. PubMed PMID: 7688635.PubMedGoogle Scholar
  29. 29.
    Mulligan T, Schmitt B. Testosterone for erectile failure. J Gen Intern Med. 1993;8(9):517–21. PubMed PMID: 8410427.CrossRefPubMedGoogle Scholar
  30. 30.
    Mulligan T, Frick MF, Zuraw QC, Stemhagen A, McWhirter C. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int J Clin Pract. 2006;60(7):762–9. PubMed Pubmed Central PMCID: 1569444.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Corona G, Mannucci E, Forti G, Maggi M. Hypogonadism, ED, metabolic syndrome and obesity: a pathological link supporting cardiovascular diseases. Int J Androl. 2009;32(6):587–98. PubMed PMID: 19226407.CrossRefPubMedGoogle Scholar
  32. 32.
    Corona G, Monami M, Rastrelli G, Aversa A, Tishova Y, Saad F, et al. Testosterone and metabolic syndrome: a meta-analysis study. J Sex Med. 2011;8(1):272–83. PubMed PMID: 20807333.CrossRefPubMedGoogle Scholar
  33. 33.
    Mirone V, Imbimbo C, Fusco F, Verze P, Creta M, Tajana G. Androgens and morphologic remodeling at penile and cardiovascular levels: a common piece in complicated puzzles? Eur Urol. 2009;56(2):309–16. PubMed PMID: 19147269.CrossRefPubMedGoogle Scholar
  34. 34.
    Waldkirch E, Uckert S, Schultheiss D, Geismar U, Bruns C, Scheller F, et al. Non-genomic effects of androgens on isolated human vascular and nonvascular penile erectile tissue. BJU Int. 2008;101(1):71–5. discussion 5. PubMed PMID: 17868421.PubMedGoogle Scholar
  35. 35.
    Mills TM, Stopper VS, Wiedmeier VT. Effects of castration and androgen replacement on the hemodynamics of penile erection in the rat. Biol Reprod. 1994;51(2):234–8. PubMed PMID: 7948478.CrossRefPubMedGoogle Scholar
  36. 36.
    Penson DF, Ng C, Cai L, Rajfer J, Gonzalez-Cadavid NF. Androgen and pituitary control of penile nitric oxide synthase and erectile function in the rat. Biol Reprod. 1996;55(3):567–74. PubMed PMID: 8862773.CrossRefPubMedGoogle Scholar
  37. 37.
    Traish AM, Munarriz R, O’Connell L, Choi S, Kim SW, Kim NN, et al. Effects of medical or surgical castration on erectile function in an animal model. J Androl. 2003;24(3):381–7. PubMed PMID: 12721214.CrossRefPubMedGoogle Scholar
  38. 38.
    Traish AM, Park K, Dhir V, Kim NN, Moreland RB, Goldstein I. Effects of castration and androgen replacement on erectile function in a rabbit model. Endocrinology. 1999;140(4):1861–8. PubMed PMID: 10098525.PubMedGoogle Scholar
  39. 39.
    Leonard MP, Nickel CJ, Morales A. Hyperprolactinemia and impotence: why, when and how to investigate. J Urol. 1989;142(4):992–4. PubMed PMID: 2795758.PubMedGoogle Scholar
  40. 40.
    Johnson RD. Descending pathways modulating the spinal circuitry for ejaculation: effects of chronic spinal cord injury. Prog Brain Res. 2006;152:415–26. PubMed PMID: 16198717.CrossRefPubMedGoogle Scholar
  41. 41.
    Giuliano F, Clement P. Neuroanatomy and physiology of ejaculation. Annu Rev Sex Res. 2005;16:190–216. PubMed PMID: 16913292.PubMedGoogle Scholar
  42. 42.
    Giuliano F, Clement P. Physiology of ejaculation: emphasis on serotonergic control. Eur Urol. 2005;48(3):408–17. PubMed PMID: 15996810.CrossRefPubMedGoogle Scholar
  43. 43.
    Anton PG, McGrath JC. Further evidence for adrenergic transmission in the human vas deferens. J Physiol. 1977;273(1):45–55. PubMed Pubmed Central PMCID: 1353725.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bruschini H, Schmidt RA, Tanagho EA. Studies on the neurophysiology of the vas deferens. Investig Urol. 1977;15(2):112–6. PubMed PMID: 903209.Google Scholar
  45. 45.
    Kedia K, Markland C. The effect of pharmacological agents on ejaculation. J Urol. 1975;114(4):569–73. PubMed PMID: 1235380.PubMedGoogle Scholar
  46. 46.
    Borgdorff AJ, Bernabe J, Denys P, Alexandre L, Giuliano F. Ejaculation elicited by microstimulation of lumbar spinothalamic neurons. Eur Urol. 2008;54(2):449–56. PubMed PMID: 18394782.CrossRefPubMedGoogle Scholar
  47. 47.
    Truitt WA, Coolen LM. Identification of a potential ejaculation generator in the spinal cord. Science. 2002;297(5586):1566–9. PubMed PMID: 12202834.CrossRefPubMedGoogle Scholar
  48. 48.
    Kafetsoulis A, Brackett NL, Ibrahim E, Attia GR, Lynne CM. Current trends in the treatment of infertility in men with spinal cord injury. Fertil Steril. 2006;86(4):781–9. PubMed PMID: 16963042.CrossRefPubMedGoogle Scholar
  49. 49.
    Sonksen J, Biering-Sorensen F, Kristensen JK. Ejaculation induced by penile vibratory stimulation in men with spinal cord injuries. the importance of the vibratory amplitude. Paraplegia. 1994;32(10):651–60. PubMed PMID: 7831070.CrossRefPubMedGoogle Scholar
  50. 50.
    Holstege G. Central nervous system control of ejaculation. World J Urol. 2005;23(2):109–14. PubMed PMID: 15875196.CrossRefPubMedGoogle Scholar
  51. 51.
    Marson L. Lesions of the periaqueductal gray block the medial preoptic area-induced activation of the urethrogenital reflex in male rats. Neurosci Lett. 2004;367(3):278–82. PubMed PMID: 15337249.CrossRefPubMedGoogle Scholar
  52. 52.
    Waldinger MD, Zwinderman AH, Schweitzer DH, Olivier B. Relevance of methodological design for the interpretation of efficacy of drug treatment of premature ejaculation: a systematic review and meta-analysis. Int J Impot Res. 2004;16(4):369–81. PubMed PMID: 14961051.CrossRefPubMedGoogle Scholar
  53. 53.
    Bitran D, Thompson JT, Hull EM, Sachs BD. Quinelorane (LY163502), a D2 dopamine receptor agonist, facilitates seminal emission, but inhibits penile erection in the rat. Pharmacol Biochem Behav. 1989;34(3):453–8. PubMed PMID: 2533690.CrossRefPubMedGoogle Scholar
  54. 54.
    Eaton RC, Markowski VP, Lumley LA, Thompson JT, Moses J, Hull EM. D2 receptors in the paraventricular nucleus regulate genital responses and copulation in male rats. Pharmacol Biochem Behav. 1991;39(1):177–81. PubMed PMID: 1833780.CrossRefPubMedGoogle Scholar
  55. 55.
    Ferrari F, Giuliani D. Behavioral effects induced by the dopamine D3 agonist 7-OH-DPAT in sexually-active and -inactive male rats. Neuropharmacology. 1996;35(3):279–84. PubMed PMID: 8783202.CrossRefPubMedGoogle Scholar
  56. 56.
    Hull EM, Eaton RC, Markowski VP, Moses J, Lumley LA, Loucks JA. Opposite influence of medial preoptic D1 and D2 receptors on genital reflexes: implications for copulation. Life Sci. 1992;51(22):1705–13. PubMed PMID: 1359367.CrossRefPubMedGoogle Scholar
  57. 57.
    Bar-Or D, Salottolo KM, Orlando A, Winkler JV, Tramadol ODTSG. A randomized double-blind, placebo-controlled multicenter study to evaluate the efficacy and safety of two doses of the tramadol orally disintegrating tablet for the treatment of premature ejaculation within less than 2 minutes. Eur Urol. 2012;61(4):736–43. PubMed PMID: 21889833.CrossRefPubMedGoogle Scholar
  58. 58.
    Georgiadis JR, Reinders AA, Paans AM, Renken R, Kortekaas R. Men versus women on sexual brain function: prominent differences during tactile genital stimulation, but not during orgasm. Hum Brain Mapp. 2009;30(10):3089–101. PubMed PMID: 19219848.CrossRefPubMedGoogle Scholar
  59. 59.
    Carmichael MS, Warburton VL, Dixen J, Davidson JM. Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Arch Sex Behav. 1994;23(1):59–79. PubMed PMID: 8135652.CrossRefPubMedGoogle Scholar
  60. 60.
    Kruger TH, Haake P, Chereath D, Knapp W, Janssen OE, Exton MS, et al. Specificity of the neuroendocrine response to orgasm during sexual arousal in men. J Endocrinol. 2003;177(1):57–64. PubMed PMID: 12697037.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • F. Andrew Celigoj
    • 1
  • R. Matthew Coward
    • 2
  • Matthew D. Timberlake
    • 1
  • Ryan P. Smith
    • 1
    Email author
  1. 1.Department of UrologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of UrologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations