Advertisement

Multiple Criteria Decision Analysis Software

  • H. Roland Weistroffer
  • Yan Li
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 233)

Abstract

We provide an updated overview of the state of multiple criteria decision support software. Many methods and approaches have been proposed in the literature to handle multiple criteria decision analysis, and there is an abundance of software that implements or supports many of these approaches. Our review is structured around several decision considerations when searching for appropriate available software.

Keywords

Multiple criteria decision analysis software Decision support Software package 

References

  1. 1.
    Agrell, P.J., Steuer, R.E.: ACADEA—a decision support system for faculty performance reviews. J. Multi-Criteria Decis. Anal. 9(5), 191–204 (2000)CrossRefGoogle Scholar
  2. 2.
    Bana e Costa, C.A., Vansnick, J.-C.: The MACBETH approach: basic ideas, software, and an application. In: Meskens, N., Roubens, M. (eds.) Advances in Decision Analysis, pp. 131–157. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  3. 3.
    Belton, V., Stewart, T.J.: Multiple Criteria Decision Analysis. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  4. 4.
    Bisdorff, R., Meyer, P., Roubens, M.: RUBIS: a bipolar-valued outranking method for the choice problem. 4OR: Q. J. Oper. Res. 6(2), 143–165 (2008)Google Scholar
  5. 5.
    Brans, J.-P., Mareschal, B.: The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis. Support. Syst. 12(4–5), 297–310 (1994)CrossRefGoogle Scholar
  6. 6.
    Brans, J.P.: L’ingénierie de la décision: élaboration d’instruments d’aide à la décision. La méthode PROMETHEE. L’aide à la décision: Nature, Instruments et Perspectives d’Avenir, pp. 183–213. Presses de l’Université Laval, Québec (1982)Google Scholar
  7. 7.
    Brans, J.P., Vincke, P.: A preference ranking organisation method: the PROMETHEE method for MCDM. Manag. Sci. 31(6), 647–656 (1985)CrossRefGoogle Scholar
  8. 8.
    Brans, J.P., Vincke, P., Mareschal, B.: How to select and how to rank projects: the PROMETHEE method. Eur. J. Oper. Res. 24(2), 228–238 (1986)CrossRefGoogle Scholar
  9. 9.
    Buede, D.: Decision analysis software: aiding the development of insight. OR/MS Today 20(2), 52–60 (1993)Google Scholar
  10. 10.
    Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. J. Heuristics 10(3), 357–380 (2004)CrossRefGoogle Scholar
  11. 11.
    Chelst, K., Canbolat, Y.B.: Value-Added Decision Making for Managers. CRC Press, Boca Raton (2012)Google Scholar
  12. 12.
    Chen, J.Q., Lee, S.M.: An exploratory cognitive DSS for strategic decision making. Decis. Support Syst. 36(2), 147–160 (2003)CrossRefGoogle Scholar
  13. 13.
    Cho, K.T.: Multicriteria decision methods: an attempt to evaluate and unify. Math. Comput. Model. 37(9–10), 1099–1119 (2003)CrossRefGoogle Scholar
  14. 14.
    Clímaco, J., Antunes, C.H.: Implementation of a user friendly software package – a guided tour of TRIMAP. Math. Comput. Model. 12(10–11), 1299–1309 (1989)CrossRefGoogle Scholar
  15. 15.
    Csáki, P., Rapcsák, T., Turchányi, P., Vermes, M.: R and D for group decision aid in Hungary by WINGDSS, a Microsoft Windows based Group Decision Support System. Decis. Support Syst. 14(3), 205–217 (1995)CrossRefGoogle Scholar
  16. 16.
    Danielson, M., Ekenberg, L.: A framework for analysing decisions under risk. Eur. J. Oper. Res. 104(3), 474–484 (1998)CrossRefGoogle Scholar
  17. 17.
    Danielson, M., Ekenberg, L.: Computing upper and lower bounds in interval decision trees. Eur. J. Oper. Res. 181(2), 808–816 (2007)CrossRefGoogle Scholar
  18. 18.
    Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)CrossRefGoogle Scholar
  19. 19.
    Dias, L., Clímaco, J.: ELECTRE TRI for groups with imprecise information on parameter values. Group Decis. Negot. 9(5), 355–377 (2000)CrossRefGoogle Scholar
  20. 20.
    Dias, L.C., Clímaco, J.N.: Additive aggregation with variable interdependent parameters: the VIP analysis software. J. Oper. Res. Soc. 51(9), 1070–1082 (2000)CrossRefGoogle Scholar
  21. 21.
    Dias, L.C., Mousseau, V., Figueira, J., Clímaco, J., Silva, C.G.: IRIS 1.0 software. Newsletter of the European Working Group “Multicriteria Aid for Decisions” 3(5), 4–6 (2002)Google Scholar
  22. 22.
    Druzdzel, M.J.: SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: a development environment for graphical decision-theoretic models. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence and the Eleventh Innovative Applications of Artificial Intelligence Conference, American Association for Artificial Intelligence, Orlando, pp. 902–903 (1999)Google Scholar
  23. 23.
    Dyer, J.S., Fishburn, P.C., Steuer, R.E., Wallenius, J., Zionts, S.: Multiple criteria decision making, multiattribute utility theory: the next ten years. Manag. Sci. 38(5), 645–654 (1992)CrossRefGoogle Scholar
  24. 24.
    Edwards, W.: How to use multiattribute utility measurement for social decision making. IEEE Trans. Syst. Man Cybern. 7(5), 326–340 (1977)CrossRefGoogle Scholar
  25. 25.
    Edwards, W., Barron, F.H.: SMARTS and SMARTER: improved simple methods for multiattribute utility measurement. Organ. Behav. Hum. Decis. Process. 60(3), 306–325 (1994)CrossRefGoogle Scholar
  26. 26.
    Farquhar, P.H.: Utility assessment methods. Manag. Sci. 30(11), 1283–1300 (1984)CrossRefGoogle Scholar
  27. 27.
    Figueira, J., Mousseau, V., Roy, B.: ELECTRE methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 133–162. Springer, Boston (2005)CrossRefGoogle Scholar
  28. 28.
    Geldermann, J., Zhang, K.: Software review: “Decision Lab 2000”. J. Multi-Criteria Decis. Anal. 10(6), 317–323 (2001)CrossRefGoogle Scholar
  29. 29.
    Greco, S., Matarazzo, B., Slowinski, R.: The Use of Rough Sets and Fuzzy Sets in MCDM. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  30. 30.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)CrossRefGoogle Scholar
  31. 31.
    Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. Eur. J. Oper. Res. 191(2), 416–436 (2008)CrossRefGoogle Scholar
  32. 32.
    Hansen, P., Ombler, F.: A new method for scoring additive multi-attribute value models using pairwise rankings of alternatives. J. Multi-Criteria Decis. Anal. 15(3–4), 87–107 (2008)CrossRefGoogle Scholar
  33. 33.
    Hurwicz, L.: Optimality criteria for decision making under ignorance. Cowles Commission Discussion Paper, Statistics 370 (1951)Google Scholar
  34. 34.
    Jacquet-Lagrèze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria decision-making: the UTA method. Eur. J. Oper. Res. 10(2), 151–164 (1982)CrossRefGoogle Scholar
  35. 35.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives. Wiley, New York (1976)Google Scholar
  36. 36.
    Kelly, G.: The Psychology of Personal Constructs. Norton, New York (1955)Google Scholar
  37. 37.
    Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: a framework for evolutionary multi-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Evolutionary Multi-Criterion Optimization, Vol 4403 of Lecure Notes in Computer Science, pp. 386–400. Springer, Berlin (2007)Google Scholar
  38. 38.
    Limayem, M., DeSanctis, G.: Providing decisional guidance for multicriteria decision making in groups. Inf. Syst. Res. 11(4), 386–401 (2000)CrossRefGoogle Scholar
  39. 39.
    Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Berlin (2011)CrossRefGoogle Scholar
  40. 40.
    Lotov, A.V., Berezkin, V.E., Kamenev, G.K.: Approximation and visualization of the Pareto frontier for non-convex multi-criteria problems. Dokl. Math. 66(2), 260–262 (2002)Google Scholar
  41. 41.
    Lotov, A.V., Bushenkov, V.A., Chernov, A.V., Gusev, D.V., Kamenev, G.K.: INTERNET, GIS, and interactive decision maps. J. Geogr. Inf. Decis. Anal. 1(2), 118–149 (1997)Google Scholar
  42. 42.
    Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Feasible Goals Method – Search for Smart Decisions. Computing Centre RAS, Moscow (2001)Google Scholar
  43. 43.
    Lourenço, J.C., Morton, A., Bana e Costa, C.A.: PROBE – a multicriteria decision support system for portfolio robustness evaluation. Decis. Support Syst. 54(1), 534–555 (2012)Google Scholar
  44. 44.
    Matsatsinis, N.F., Siskos, Y.: MARKEX: an intelligent decision support system for product development decisions. Eur. J. Oper. Res. 113(2), 336–354 (1999)CrossRefGoogle Scholar
  45. 45.
    Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective optimization. Eur. J. Oper. Res. 170(3), 909–922 (2006)CrossRefGoogle Scholar
  46. 46.
    Monte, L., Brittain, J.E., Gallego, E., Håkanson, L., Hofman, D., Jiménez, A.: MOIRA-PLUS: a decision support system for the management of complex fresh water ecosystems contaminated by radionuclides and heavy metals. Comput. Geosci. 35(5), 880–896 (2009)CrossRefGoogle Scholar
  47. 47.
    Mousseau, V., Figueira, J., Dias, L., Gomes da Silva, C., Clímaco, J.: Resolving inconsistencies among constraints on the parameters of an MCDA model. Eur. J. Oper. Res. 147(1), 72–93 (2003) Google Scholar
  48. 48.
    Mousseau, V., Slowinski, R., Zielniewicz, P.: A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support. Comput. Oper. Res. 27(7–8), 757–777 (2000)CrossRefGoogle Scholar
  49. 49.
    Munda, G.: Multicriteria Evaluation in a Fuzzy Environment. Physica-Verlag, Heidelberg (1995)CrossRefGoogle Scholar
  50. 50.
    Mustajoki, J., Marttunen, M.: Comparison of multi-criteria decision analytical software – searching for ideas for developing a new EIA-specific multi-criteria software. IMPERIA Project Report, University of Jyväskylä, Finland (2013)Google Scholar
  51. 51.
    Newman, J.W.: Management Applications of Decision Theory. Harper & Row, New York (1971)Google Scholar
  52. 52.
    Papamichail, K.N., French, S.: Decision support in nuclear emergencies. J. Hazard. Mater. 71(1–3), 321–342 (2000)CrossRefGoogle Scholar
  53. 53.
    Patchak, W.M.: Software survey: decision analysis. OR/MS Today 39(5), 39–49 (2012)Google Scholar
  54. 54.
    Poles, S., Vassileva, M., Sasaki, D.: Multiobjective optimization software. In: Branke, J., Deb, K., Miettinen, K., Słowinski, R. (eds.) Multiobjective Optimization. pp. 329–348. Springer, Berlin (2008)Google Scholar
  55. 55.
    Potapov, M.A., Kabanov, P.N.: SOLVEX – system for solving nonlinear, global and multicriteria problems. In: Proceedings 3rd IFIP WG-7.6 Working Conference on Optimization-Based Computer-Aided Modelling and Design, Prague, pp. 343–347 (1995)Google Scholar
  56. 56.
    Ríos Insua, D., Gallego, E., Mateos, A., Ríos-Insua, S.: MOIRA: a decision support system for decision making on aquatic ecosystems contaminated by radioactive fallout. Ann. Oper. Res. 95(1), 341–364 (2000)CrossRefGoogle Scholar
  57. 57.
    Roy, B.: How outranking relation helps multiple criteria decision making. In: Cochrane, J., Zeleny, M. (eds.) Topics in Multiple Criteria Decision Making, pp. 179–201. University of South Carolina Press, Columbia (1973)Google Scholar
  58. 58.
    Roy, B.: ELECTRE III: Un algorithme de classements fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du Centre d’Etudes de Recherche Opérationnelle (Belgique) 20(1), 3–24 (1978)Google Scholar
  59. 59.
    Roy, B.: The outranking approach and the foundations of ELECTRE methods. Theor. Decis. 31(1), 49–73 (1991)CrossRefGoogle Scholar
  60. 60.
    Parashar, S., Clarich, A., Geremia, P., Otani, A.: Reverse Multi-Objective Robust Design Optimization (R-MORDO) using chaos collocation based robustness quantification for engine calibration. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth, p. 9038 (2010)Google Scholar
  61. 61.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)Google Scholar
  62. 62.
    Salo, A., Hämäläinen, R.P.: Preference ratio in multiattribute evaluation (PRIME) –elicitation and decision procedures under incomplete information. IEEE Trans. Syst. Man Cybern. Part A 31(6), 533–545 (2001)CrossRefGoogle Scholar
  63. 63.
    Salo, A., Hämäläinen, R.P.: Processing interval judgments in the analytic hierarchy process. In: Goicocchea, A., Duckstein, L., Zionts, S. (eds.) Multiple Criteria Decision Making, pp. 359–371. Springer, New York (1991)Google Scholar
  64. 64.
    Salo, A., Hämäläinen, R.P.: Preference programming through approximate ratio comparisons. Eur. J. Oper. Res. 82(3), 458–475 (1995)CrossRefGoogle Scholar
  65. 65.
    Salo, A., Punkka, A.: Rank inclusion in criteria hierarchies. Eur. J. Oper. Res. 163(2), 338–356 (2005)CrossRefGoogle Scholar
  66. 66.
    Savage, L.J.: The theory of statistical decision. J. Am. Stat. Assoc. 46(253), 55–67 (1951)CrossRefGoogle Scholar
  67. 67.
    Savage, L.J.: Foundations of Statistics, 2nd edn. Dover, New York (1972)Google Scholar
  68. 68.
    Seixedo, C., Tereso, A.: A multicriteria decision aid software application for selecting MCDM software using AHP. In: Proceedings of the 2nd International Conference on Engineering Optimization, Lisbon (2010)Google Scholar
  69. 69.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)Google Scholar
  70. 70.
    Siskos, Y., Matsatsinis, N.F.: A DSS for market analysis and new product design. J. Decis. Syst. 2(1), 35–63 (1993)CrossRefGoogle Scholar
  71. 71.
    Siskos, Y., Spyridakos, A., Yannacopoulos, D.: MINORA: a multicriteria decision aiding system for discrete alternatives. J. Inf. Sci. Technol. 2(2), 136–149 (1993)Google Scholar
  72. 72.
    Talašová, J., Holeček, P.: The FuzzME software package. In: Proceedings of the Joint International Fuzzy Systems Association World Congress and the European Society of Fuzzy Logic and Technology Conference, Lisbon (2009)Google Scholar
  73. 73.
    Von Winterfelt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge (1986)Google Scholar
  74. 74.
    Wallenius, J., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K.: Multiple criteria decision making, multiattribute utility theory: recent accomplishments and what lies ahead. Manag. Sci. 54(7), 1336–1349 (2008)CrossRefGoogle Scholar
  75. 75.
    Weistroffer, H.R., Smith, C.H., Narula, S.C.: Multiple criteria decision support software. In: Figueira, J., Greco, S., Ehrgott,M. (eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer, Berlin (2005)Google Scholar
  76. 76.
    Yang, J.B.: Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. Eur. J. Oper. Res. 131(1), 31–61 (2001)CrossRefGoogle Scholar
  77. 77.
    Yang, J.B., Singh, M.G.: An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Trans. Syst. Man Cybern. 24(1), 1–18 (1994)CrossRefGoogle Scholar
  78. 78.
    Zapatero, E.G., Smith, C.H., Weistroffer, H.R.: Evaluating multiple-attribute decision support systems. J. Multi-Criteria Decis. Anal. 6, 201–214 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of BusinessVirginia Commonwealth UniversityRichmondUSA
  2. 2.Center for Information Systems and TechnologyClaremont Graduate UniversityClaremontUSA

Personalised recommendations