Skip to main content

Gamma-nonnegativity

  • Chapter
Eulerian Numbers

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher ((BAT))

  • 2099 Accesses

Abstract

The binomial distribution is the first probability distribution a student encounters. Among its many properties is the fact that it is palindromic and unimodal. Many combinatorial distributions, including the Eulerian and Narayana distributions, can be built out of copies of binomial distributions that are shifted to have the same center of symmetry, and this fact has many interesting consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature the term “symmetric” is sometimes used to describe what we mean by “palindromic.” This is okay in some circumstances, but there is a more common notion of “symmetric polynomial”—namely a polynomial that is fixed under permutation of its variables—so we prefer the less ambiguous term. George Andrews used another synonym for palindromic, “reciprocal polynomial,” in [8] and [9].

References

  1. Andrews GE. A theorem on reciprocal polynomials with applications to permutations and compositions. Am Math Monthly. 1975;82(8):830–3.

    Article  MATH  Google Scholar 

  2. Andrews GE. Reciprocal polynomials and quadratic transformations. Utilitas Math. 1985;28:255–64.

    MATH  MathSciNet  Google Scholar 

  3. Brändén P. Counterexamples to the Neggers-Stanley conjecture. Electron Res Announc Am Math Soc. 2004;10:155–58 (electronic). Available from: http://dx.doi.org/10.1090/S1079-6762-04-00140-4.

  4. Brändén P. Sign-graded posets, unimodality of W-polynomials and the Charney-Davis conjecture. Electron J Combin. 2004/06;11(2):Research Paper 9, 15 pp. (electronic). Available from: http://www.combinatorics.org/Volume_11/Abstracts/v11i2r9.html.

  5. Brändén P. Actions on permutations and unimodality of descent polynomials. European J Combin. 2008;29(2):514–31. Available from: http://dx.doi.org/10.1016/j.ejc.2006.12.010.

    Article  MATH  MathSciNet  Google Scholar 

  6. Brändén P. Unimodality, log-concavity, real-rootedness and beyond. In: Handbook of enumerative combinatorics, CRC Press; 2015.

    Google Scholar 

  7. Brenti F. Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update. In: Jerusalem combinatorics ’93. vol. 178 of Contemp. Math. Amer. Math. Soc., Providence, RI; 1994. p. 71–89. Available from: http://dx.doi.org/10.1090/conm/178/01893.

  8. Foata D, Schützenberger MP. Théorie géométrique des polynômes eulériens. Lecture Notes in Mathematics, Vol. 138. Springer-Verlag, Berlin-New York; 1970.

    Google Scholar 

  9. Foata D, Strehl V. Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers. Math Z. 1974;137:257–64.

    Article  MATH  MathSciNet  Google Scholar 

  10. Gal ŚR. Real root conjecture fails for five- and higher-dimensional spheres. Discrete Comput Geom. 2005;34(2):269–84. Available from: http://dx.doi.org/10.1007/s00454-005-1171-5.

    Article  MATH  MathSciNet  Google Scholar 

  11. Hersh P. Deformation of chains via a local symmetric group action. Electron J Combin. 1999;6:Research paper 27, 18 pp. (electronic). Available from: http://www.combinatorics.org/Volume_6/Abstracts/v6i1r27.html.

  12. Petersen TK. On the shard intersection order of a Coxeter group. SIAM J Discrete Math. 2013;27(4):1880–912.

    Article  MATH  MathSciNet  Google Scholar 

  13. Reiner V, Welker V. On the Charney-Davis and Neggers-Stanley conjectures. J Combin Theory Ser A. 2005;109(2):247–80. Available from: http://dx.doi.org/10.1016/j.jcta.2004.09.003.

    Article  MATH  MathSciNet  Google Scholar 

  14. Shapiro LW, Woan WJ, Getu S. Runs, slides and moments. SIAM J Algebraic Discrete Methods. 1983;4(4):459–66. Available from: http://dx.doi.org/10.1137/0604046.

    Article  MATH  MathSciNet  Google Scholar 

  15. Simion R. Combinatorial statistics on noncrossing partitions. J Combin Theory Ser A. 1994;66(2):270–301. Available from: http://dx.doi.org/10.1016/0097-3165(94)90066-3.

    Article  MATH  MathSciNet  Google Scholar 

  16. Simion R, Ullman D. On the structure of the lattice of noncrossing partitions. Discrete Math. 1991;98(3):193–206. Available from: http://dx.doi.org/10.1016/0012-365X(91)90376-D.

    Article  MATH  MathSciNet  Google Scholar 

  17. Stanley RP. Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Graph theory and its applications: East and West (Jinan, 1986). vol. 576 of Ann. New York Acad. Sci. New York Acad. Sci., New York; 1989. p. 500–35. Available from: http://dx.doi.org/10.1111/j.1749-6632.1989.tb16434.x.

  18. Stembridge JR. Counterexamples to the poset conjectures of Neggers, Stanley, and Stembridge. Trans Am Math Soc. 2007;359(3):1115–28 (electronic). Available from: http://dx.doi.org/10.1090/S0002-9947-06-04271-1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petersen, T.K. (2015). Gamma-nonnegativity. In: Eulerian Numbers. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-3091-3_4

Download citation

Publish with us

Policies and ethics