Skip to main content

Central Projections of Spiral Ganglion Neurons

Part of the Springer Handbook of Auditory Research book series (SHAR,volume 52)

Abstract

Neurons of the spiral ganglion exhibit a complex yet precise organization for delivering acoustic information from the mammalian inner ear to the brain. These neurons display a range of anatomical and physiological specializations for accurate encoding of sound features, and many of the characteristics observed in the periphery are reflected in the pattern of central projections of the auditory nerve into the cochlear nucleus. The dominant organizational principle of the auditory system is tonotopy, in which the topographic ordering of frequency from low-to-high along the sensory epithelium is replicated throughout the auditory pathway. Overlying this tonotopic organization is a second layer of complexity relating to spontaneous discharge rate, activation threshold, average rates of activity, and sound intensity coding. In the cochlear nucleus, different levels of spiral ganglion cell activity are associated with different termination patterns, even within an isofrequency lamina, and can produce morphological differences in ending structure. Ending morphology and distribution also differ with respect to target cell types and physiological response properties in the cochlear nucleus, suggesting that particular classes of connections code different aspects of the acoustic signal. Ultimately, neural activity initiated by hair cells is sent along divergent, parallel pathways to converge and recombine into percepts of the sound environment. The evolutionary persistence of features that enhance acoustic processing is a reminder that auditory specializations promote species survival.

Keywords

  • Auditory nerve
  • Characteristic frequency
  • Cochlear nucleus
  • Endbulb of Held
  • Ending morphology
  • Neuroanatomy
  • Spontaneous discharge rate
  • Synapses
  • Tonotopy
  • Type I fiber
  • Type II fiber
  • Ultrastructure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-3031-9_6
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-3031-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10

References

  • Alving, B. M., & Cowan, W. M. (1971). Some quantitative observations on the cochlear division of the eighth nerve in the squirrel monkey (Saimiri sciureus). Brain Research, 25(2), 229–239.

    Google Scholar 

  • Anniko, M., & Arnesen, A. R. (1988). Cochlear nerve topography and fiber spectrum in the pigmented mouse. Archives of Oto-Rhino-Laryngology, 245(3), 155–159.

    Google Scholar 

  • Appler, J. M., & Goodrich, L. V. (2011). Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Progress in Neurobiology, 93(4), 488–508.

    Google Scholar 

  • Arnesen, A. R., & Osen, K. K. (1978). The cochlear nerve in the cat: Topography, cochleotopy, and fiber spectrum. Journal of Comparative Neurology, 178(4), 661–678.

    Google Scholar 

  • Arnesen, A. R., Osen, K. K., & Mugnaini, E. (1978). Temporal and spatial sequence of anterograde degeneration in the cochlear nerve fibers of the cat. A light microscopic study. Journal of Comparative Neurology, 178(4), 679–696.

    Google Scholar 

  • Babalian, A. L., Ryugo, D. K., & Rouiller, E. M. (2003). Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Experimental Brain Research, 153(4), 452–460.

    Google Scholar 

  • Bergles, D. E., Diamond, J. S., & Jahr, C. E. (1999). Clearance of glutamate inside the synapse and beyond. Current Opinion in Neurobiology, 9(3), 293–298.

    Google Scholar 

  • Berglund, A. M., & Ryugo, D. K. (1986). A monoclonal antibody labels type II neurons of the spiral ganglion. Brain Research, 383(1–2), 327–332.

    Google Scholar 

  • Berglund, A. M., & Ryugo, D. K. (1987). Hair cell innervation by spiral ganglion neurons in the mouse. Journal of Comparative Neurology, 255(4), 560–570.

    Google Scholar 

  • Berglund, A. M., & Ryugo, D. K. (1991). Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea. Journal of Comparative Neurology, 306(3), 393–408.

    Google Scholar 

  • Berglund, A. M., & Brown, M. C. (1994). Central trajectories of type II spiral ganglion cells from various cochlear regions in mice. Hearing Research, 75(1–2), 121–130.

    Google Scholar 

  • Berglund, A. M., Benson, T. E., & Brown, M. C. (1996). Synapses from labeled type II axons in the mouse cochlear nucleus. Hearing Research, 94(1–2), 31–46.

    Google Scholar 

  • Bilak, M. M., Bilak, S. R., & Morest, D. K. (1996). Differential expression of N-methyl-D-aspartate receptor in the cochlear nucleus of the mouse. Neuroscience, 75(4), 1075–1097.

    Google Scholar 

  • Bourk, T. R., Mielcarz, J. P., & Norris, B. E. (1981). Tonotopic organization of the anteroventral cochlear nucleus of the cat. Hearing Research, 4(3–4), 215–241.

    Google Scholar 

  • Brawer, J. R., Morest, D. K., & Kane, E. C. (1974). The neuronal architecture of the cochlear nucleus of the cat. Journal of Comparative Neurology, 155(3), 251–300.

    Google Scholar 

  • Brown, M. C. (1987). Morphology of labeled afferent fibers in the guinea pig cochlea. Journal of Comparative Neurology, 260(4), 591–604.

    Google Scholar 

  • Brown, M. C., & Ledwith, J. V. (1990). Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hearing Research, 49(1–3), 105–118.

    Google Scholar 

  • Brown, M. C., Berglund, A. M., Kiang, N. Y., & Ryugo, D. K. (1988). Central trajectories of type II spiral ganglion neurons. Journal of Comparative Neurology, 278(4), 581–590.

    Google Scholar 

  • Bruns, V., & Schmieszek, E. (1980). Cochlear innervation in the greater horseshoe bat: Demonstration of an acoustic fovea. Hearing Research, 3(1), 27–43.

    Google Scholar 

  • Cant, N. B. (1992). The cochlear nucleus: Neuronal types and their synaptic organization. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.), The mammalian auditory pathway: Neuroanatomy (pp. 66–116). New York: Springer-Verlag.

    Google Scholar 

  • Cant, N. B. (1993). The synaptic organization of the ventral cochlear nucleus of the cat: The peripheral cap of small cells. In M. A. Merchán, J. M. Juiz, D. A. Godfrey, & E. Mugnaini (Eds.), The mammalian cochlear nuclei: Organization and function (pp. 91–105). New York: Plenum Press.

    Google Scholar 

  • Cant, N. B., & Morest, D. K. (1979). The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience, 4(12), 1925–1945.

    Google Scholar 

  • Cant, N. B., & Casseday, J. H. (1986). Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. Journal of Comparative Neurology, 247(4), 457–476.

    Google Scholar 

  • Chen, I., Limb, C. J., & Ryugo, D. K. (2010). The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats. Journal of the Association for Research in Otolaryngology, 11(4), 587–603.

    Google Scholar 

  • Clopton, B. M., Winfield, J. A., & Flammino, F. J. (1974). Tonotopic organization: Review and analysis. Brain Research, 76(1), 1–20.

    Google Scholar 

  • el Barbary, A. (1991). Auditory nerve of the normal and jaundiced rat. I. Spontaneous discharge rate and cochlear nerve histology. Hearing Research, 54(1), 75–90.

    Google Scholar 

  • Evans, E. F. (1972). The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. Journal of Physiology, 226(1), 263–287.

    Google Scholar 

  • Evans, E. F., & Palmer, A. R. (1980). Relationship between the dynamic range of cochlear nerve fibers and their spontaneous activity. Experimental Brain Research, 40(1), 115–118.

    Google Scholar 

  • Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fekete, D. M., Rouiller, E. M., Liberman, M. C., & Ryugo, D. K. (1984). The central projections of intracellularly labeled auditory nerve fibers in cats. Journal of Comparative Neurology, 229(3), 432–450.

    Google Scholar 

  • Feng, A. S., & Vater, M. (1985). Functional organization of the cochlear nucleus of rufous horseshoe bats (Rhinolophus rouxi): Frequencies and internal connections are arranged in slabs. Journal of Comparative Neurology, 235(4), 529–553.

    Google Scholar 

  • Futai, K., Okada, M., Matsuyama, K., & Takahashi, T. (2001). High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. Journal of Neuroscience, 21(10), 3342–3349.

    Google Scholar 

  • Gacek, R. R., & Rasmussen, G. L. (1961). Fiber analysis of the statoacoustic nerve of guinea pig, cat, and monkey. Anatomical Record, 139, 455–463.

    Google Scholar 

  • Gardner, S. M., Trussell, L. O., & Oertel, D. (2001). Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei. Journal of Neuroscience, 21(18), 7428–7437.

    Google Scholar 

  • Geisler, C. D., Deng, L., & Greenberg, S. R. (1985). Thresholds for primary auditory fibers using statistically defined criteria. Journal of the Acoustical Society of America, 77(3), 1102–1109.

    Google Scholar 

  • Ghoshal, S., & Kim, D. O. (1996). Marginal shell of the anteroventral cochlear nucleus: Acoustically weakly-driven and not-driven units in the unanesthetized decerebrate cat. Acta Oto-Laryngologica, 116(2), 280–283.

    Google Scholar 

  • Ghoshal, S., & Kim, D. O. (1997). Marginal shell of the anteroventral cochlear nucleus: Single-unit response properties in the unanesthetized decerebrate cat. Journal of Neurophysiology, 77(4), 2083–2097.

    Google Scholar 

  • Godfrey, D. A., Kiang, N. Y., & Norris, B. E. (1975). Single unit activity in the posteroventral cochlear nucleus of the cat. Journal of Comparative Neurology, 162(2), 247–268.

    Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.

    Google Scholar 

  • Guild, S. R., Crowe, S. J., Bunch, C. C., & Polvogt, L. M. (1931). Correlations of differences in the density of innervation of the organ of Corti with differences in the acuity of hearing, including evidence as to the location in the human cochlea of the receptors for certain tones. Acta Oto-Laryngologica, 15(2–4), 269–308.

    Google Scholar 

  • Hackney, C. M., Osen, K. K., Ottersen, O. P., StormMathisen, J., & Manjaly, G. (1996). Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: A quantitative study in the guinea-pig anteroventral cochlear nucleus. European Journal of Neuroscience, 8(1), 79–91.

    Google Scholar 

  • Hafidi, A., Despres, G., & Romand, R. (1993). Ontogenesis of type II spiral ganglion neurons during development: Peripherin immunohistochemistry. International Journal of Developmental Neuroscience, 11(4), 507–512.

    Google Scholar 

  • Harrison, J. M., & Irving, R. (1965). The anterior ventral cochlear nucleus. Journal of Comparative Neurology, 124, 15–41.

    Google Scholar 

  • Harrison, J. M., & Irving, R. (1966). Ascending connections of the anterior ventral cochlear nucleus in the rat. Journal of Comparative Neurology, 126(1), 51–63.

    Google Scholar 

  • Held, H. (1893). Die centrale Gehörleitung. Archiv für Anatomie und Physiologie, Anatomische Abteilung, 201–248.

    Google Scholar 

  • Huang, L. C., Thorne, P. R., Housley, G. D., & Montgomery, J. M. (2007). Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development, 134(16), 2925–2933.

    Google Scholar 

  • Isaacson, J. S., & Walmsley, B. (1995). Receptors underlying excitatory synaptic transmission in slices of the rat anteroventral cochlear nucleus. Journal of Neurophysiology, 73(3), 964–973.

    Google Scholar 

  • Kaas, J. H. (1997). Topographic maps are fundamental to sensory processing. Brain Research Bulletin, 44(2), 107–112.

    Google Scholar 

  • Kawase, T., & Liberman, M. C. (1992). Spatial organization of the auditory nerve according to spontaneous discharge rate. Journal of Comparative Neurology, 319(2), 312–318.

    Google Scholar 

  • Keithley, E. M., & Schreiber, R. C. (1987). Frequency map of the spiral ganglion in the cat. Journal of the Acoustical Society of America, 81(4), 1036–1042.

    Google Scholar 

  • Kiang, N. Y.-S., Watanabe, T., Thomas, E. C., & Clark, L. F. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kiang, N. Y.-S., Rho, J. M., Northrop, C. C., Liberman, M. C., & Ryugo, D. K. (1982). Hair-cell innervation by spiral ganglion cells in adult cats. Science, 217(4555), 175–177.

    Google Scholar 

  • Kiang, N. Y.-S., Liberman, M. C., Gage, J. S., Northrup, C. C., Dodds, L. W., & Oliver, M. E. (1984). Afferent innervation of the mammalian cochlea. In L. Bolis, R. D. Keynes, & H. P. Maddrell (Eds.), Comparative physiology of sensory systems (pp. 143–161). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kössl, M., & Vater, M. (1985). The cochlear frequency map of the mustache bat, Pteronotus parnellii. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 157(5), 687–697.

    Google Scholar 

  • Leake, P. A., & Snyder, R. L. (1989). Topographic organization of the central projections of the spiral ganglion in cats. Journal of Comparative Neurology, 281(4), 612–629.

    Google Scholar 

  • Leake, P. A., Hradek, G. T., Bonham, B. H., & Snyder, R. L. (2008). Topography of auditory nerve projections to the cochlear nucleus in cats after neonatal deafness and electrical stimulation by a cochlear implant. Journal of the Association for Research in Otolaryngology, 9(3), 349–372.

    Google Scholar 

  • Lenn, N. J., & Reese, T. S. (1966). The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. American Journal of Anatomy, 118(2), 375–389.

    Google Scholar 

  • Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustical Society of America, 63(2), 442–455.

    Google Scholar 

  • Liberman, M. C. (1982a). Single-neuron labeling in the cat auditory nerve. Science, 216(4551), 1239–1241.

    Google Scholar 

  • Liberman, M. C. (1982b). The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency. Journal of the Acoustical Society of America, 72(5), 1441–1449.

    Google Scholar 

  • Liberman, M. C. (1991). Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. Journal of Comparative Neurology, 313(2), 240–258.

    Google Scholar 

  • Liberman, M. C. (1993). Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei. Journal of Comparative Neurology, 327(1), 17–36.

    Google Scholar 

  • Liberman, M. C., & Oliver, M. E. (1984). Morphometry of intracellularly labeled neurons of the auditory nerve: Correlations with functional properties. Journal of Comparative Neurology, 223(2), 163–176.

    Google Scholar 

  • Lin, K. H., Oleskevich, S., & Taschenberger, H. (2011). Presynaptic Ca2+ influx and vesicle exocytosis at the mouse endbulb of Held: A comparison of two auditory nerve terminals. Journal of Physiology, 589(Pt 17), 4301–4320.

    Google Scholar 

  • Lorente de Nó, R. (1933a). Anatomy of the eighth nerve: The central projections of the nerve endings of the internal ear. Laryngoscope, 43(1), 1–38.

    Google Scholar 

  • Lorente de Nó, R. (1933b). Anatomy of the eighth nerve. III. General plan of structure of the primary cochlear nuclei. Laryngoscope, 43(4), 327–350.

    Google Scholar 

  • Lorente de Nó, R. (1937). Symposium: Neural mechanism of hearing: I. Anatomy and physiology. (b) The sensory endings in the cochlea. Laryngoscope, 47(6), 373–377.

    Google Scholar 

  • Lorente de Nó, R. (1976). Some unresolved problems concerning the cochlear nerve. Annals of Otology, Rhinology and Laryngology, 85(Supplement 34), 1–28.

    Google Scholar 

  • Lorente de Nó, R. (1981). The primary acoustic nuclei. New York: Raven Press.

    Google Scholar 

  • Manis, P. B., & Marx, S. O. (1991). Outward currents in isolated ventral cochlear nucleus neurons. Journal of Neuroscience, 11(9), 2865–2880.

    Google Scholar 

  • May, B. J., Huang, A., Le Prell, G., & Hienz, R. D. (1996). Vowel formant frequency discrimination in cats: Comparison of auditory nerve representations and psychophysical thresholds. Auditory Neuroscience, 3(2), 135–162.

    Google Scholar 

  • Merchan-Perez, A., & Liberman, M. C. (1996). Ultrastructural differences among afferent synapses on cochlear hair cells: Correlations with spontaneous discharge rate. Journal of Comparative Neurology, 371(2), 208–221.

    Google Scholar 

  • Morgan, Y. V., Ryugo, D. K., & Brown, M. C. (1994). Central trajectories of type II (thin) fibers of the auditory nerve in cats. Hearing Research, 79(1–2), 74–82.

    Google Scholar 

  • Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., & Ruppersberg, J. P. (1994). A molecular determinant for submillisecond desensitization in glutamate receptors. Science, 266(5187), 1059–1062.

    Google Scholar 

  • Mugnaini, E., Warr, W. B., & Osen, K. K. (1980). Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse. Journal of Comparative Neurology, 191(4), 581–606.

    Google Scholar 

  • Müller, M. (1990). Quantitative comparison of frequency representation in the auditory brainstem nuclei of the gerbil, Pachyuromys duprasi. Experimental Brain Research, 81(1), 140–149.

    Google Scholar 

  • Müller, M. (1991). Frequency representation in the rat cochlea. Hearing Research, 51(2), 247–254.

    Google Scholar 

  • Müller, M. (1996). The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hearing Research, 94(1–2), 148–156.

    Google Scholar 

  • Müller, M., Laube, B., Burda, H., & Bruns, V. (1992). Structure and function of the cochlea in the African mole rat (Cryptomys hottentotus): Evidence for a low frequency acoustic fovea. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 171(4), 469–476.

    Google Scholar 

  • Müller, M., Wess, F. P., & Bruns, V. (1993). Cochlear place-frequency map in the marsupial Monodelphis domestica. Hearing Research, 67(1–2), 198–202.

    Google Scholar 

  • Müller, M., von Hunerbein, K., Hoidis, S., & Smolders, J. W. (2005). A physiological place-frequency map of the cochlea in the CBA/J mouse. Hearing Research, 202(1–2), 63–73.

    Google Scholar 

  • Müller, M., Hoidis, S., & Smolders, J. W. (2010). A physiological frequency-position map of the chinchilla cochlea. Hearing Research, 268(1–2), 184–193.

    Google Scholar 

  • Muniak, M. A., Rivas, A., Montey, K. L., May, B. J., Francis, H. W., & Ryugo, D. K. (2013). 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. Journal of Comparative Neurology, 521(7), 1510–1532.

    Google Scholar 

  • Nadol, J. B., Jr. (1988). Quantification of human spiral ganglion cells by serial section reconstruction and segmental density estimates. American Journal of Otolaryngology, 9(2), 47–51.

    Google Scholar 

  • Nayagam, B. A., Muniak, M. A., & Ryugo, D. K. (2011). The spiral ganglion: Connecting the peripheral and central auditory systems. Hearing Research, 278(1–2), 2–20.

    Google Scholar 

  • Ohlemiller, K. K., & Echteler, S. M. (1990). Functional correlates of characteristic frequency in single cochlear nerve fibers of the Mongolian gerbil. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 167(3), 329–338.

    Google Scholar 

  • O’Neil, J. N., Limb, C. J., Baker, C. A., & Ryugo, D. K. (2010). Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. Journal of Comparative Neurology, 518(12), 2382–2404.

    Google Scholar 

  • Osen, K. K. (1969). Cytoarchitecture of the cochlear nuclei in the cat. Journal of Comparative Neurology, 136(4), 453–484.

    Google Scholar 

  • Osen, K. K. (1970). Course and termination of the primary afferents in the cochlear nuclei of the cat: An experimental anatomical study. Archives Italiennes de Biologie, 108(1), 21–51.

    Google Scholar 

  • Petralia, R. S., Rubio, M. E., Wang, Y. X., & Wenthold, R. J. (2000). Differential distribution of glutamate receptors in the cochlear nuclei. Hearing Research, 147(1–2), 59–69.

    Google Scholar 

  • Pfeiffer, R. R. (1966). Anteroventral cochlear nucleus: Wave forms of extracellularly recorded spike potentials. Science, 154(3749), 667–668.

    Google Scholar 

  • Pliss, L., Yang, H., & Xu-Friedman, M. A. (2009). Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus. Journal of Neurophysiology, 102(5), 2627–2637.

    Google Scholar 

  • Poljak, S. (1927). Über den allgemeinen Bauplan des Gehörsystems und über seine Bedeutung für die Physiologie, für die Klinik und für die Psychologie. Zeitschrift für die Gesamte Neurologie und Psychiatrie, 110(1), 1–49.

    Google Scholar 

  • Raman, I. M., & Trussell, L. O. (1992). The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron, 9(1), 173–186.

    Google Scholar 

  • Ramón y Cajal, S. (1909). Histologie du système nerveux de l’homme et des vertébrés. Paris: Maloine.

    Google Scholar 

  • Rasmussen, A. T. (1940). Studies of the VIIIth cranial nerve of man. Laryngoscope, 50, 67–83.

    Google Scholar 

  • Redd, E. E., Pongstaporn, T., & Ryugo, D. K. (2000). The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hearing Research, 147(1–2), 160–174.

    Google Scholar 

  • Rees, S., Guldner, F. H., & Aitkin, L. (1985). Activity dependent plasticity of postsynaptic density structure in the ventral cochlear nucleus of the rat. Brain Research, 325(1–2), 370–374.

    Google Scholar 

  • Rhode, W. S., & Smith, P. H. (1986). Encoding timing and intensity in the ventral cochlear nucleus of the cat. Journal of Neurophysiology, 56(2), 261–286.

    Google Scholar 

  • Robertson, D. (1984). Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hearing Research, 15(2), 113–121.

    Google Scholar 

  • Rose, J. E., Galambos, R., & Hughes, J. R. (1959). Microelectrode studies of the cochlear nuclei of the cat. Bulletin of the Johns Hopkins Hospital, 104(5), 211–251.

    Google Scholar 

  • Rothman, J. S., Young, E. D., & Manis, P. B. (1993). Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: Implications of a computational model. Journal of Neurophysiology, 70(6), 2562–2583.

    Google Scholar 

  • Rouiller, E. M., Cronin-Schreiber, R., Fekete, D. M., & Ryugo, D. K. (1986). The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology. Journal of Comparative Neurology, 249(2), 261–278.

    Google Scholar 

  • Rubio, M. E., & Wenthold, R. J. (1997). Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron, 18(6), 939–950.

    Google Scholar 

  • Rubio, M. E., & Juiz, J. M. (1998). Chemical anatomy of excitatory endings in the dorsal cochlear nucleus of the rat: Differential synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc. Journal of Comparative Neurology, 399(3), 341–358.

    Google Scholar 

  • Ryugo, D. K. (2008). Projections of low spontaneous rate, high threshold auditory nerve fibers to the small cell cap of the cochlear nucleus in cats. Neuroscience, 154(1), 114–126.

    Google Scholar 

  • Ryugo, D. K., & Fekete, D. M. (1982). Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held. Journal of Comparative Neurology, 210(3), 239–257.

    Google Scholar 

  • Ryugo, D. K., & Sento, S. (1991). Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of Held and spherical bushy cells. Journal of Comparative Neurology, 305(1), 35–48.

    Google Scholar 

  • Ryugo, D. K., & May, S. K. (1993). The projections of intracellularly labeled auditory nerve fibers to the dorsal cochlear nucleus of cats. Journal of Comparative Neurology, 329(1), 20–35.

    Google Scholar 

  • Ryugo, D. K., & Parks, T. N. (2003). Primary innervation of the avian and mammalian cochlear nucleus. Brain Research Bulletin, 60(5–6), 435–456.

    Google Scholar 

  • Ryugo, D. K., Dodds, L. W., Benson, T. E., & Kiang, N. Y. (1991). Unmyelinated axons of the auditory nerve in cats. Journal of Comparative Neurology, 308(2), 209–223.

    Google Scholar 

  • Ryugo, D. K., Wright, D. D., & Pongstaporn, T. (1993). Ultrastructural analysis of synaptic endings of auditory nerve fibers in cats: Correlations with spontaneous discharge rate. In M. A. Merchán, J. M. Juiz, D. A. Godfrey & E. Mugnaini (Eds.), The mammalian cochlear nuclei: Organization and function (pp. 65–74). New York: Plenum Press.

    Google Scholar 

  • Ryugo, D. K., Wu, M. M., & Pongstaporn, T. (1996). Activity-related features of synapse morphology: A study of endbulbs of Held. Journal of Comparative Neurology, 365(1), 141–158.

    Google Scholar 

  • Ryugo, D. K., Pongstaporn, T., Huchton, D. M., & Niparko, J. K. (1997). Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of Held. Journal of Comparative Neurology, 385(2), 230–244.

    Google Scholar 

  • Ryugo, D. K., Rosenbaum, B. T., Kim, P. J., Niparko, J. K., & Saada, A. A. (1998). Single unit recordings in the auditory nerve of congenitally deaf white cats: Morphological correlates in the cochlea and cochlear nucleus. Journal of Comparative Neurology, 397(4), 532–548.

    Google Scholar 

  • Ryugo, D. K., Kretzmer, E. A., & Niparko, J. K. (2005). Restoration of auditory nerve synapses in cats by cochlear implants. Science, 310(5753), 1490–1492.

    Google Scholar 

  • Sachs, M. B., & Young, E. D. (1979). Encoding of steady-state vowels in the auditory nerve: Representation in terms of discharge rate. Journal of the Acoustical Society of America, 66(2), 470–479.

    Google Scholar 

  • Sando, I. (1965). The anatomical interrelationships of the cochlear nerve fibers. Acta Oto-Laryngologica, 59, 417–436.

    Google Scholar 

  • Schmiedt, R. A. (1989). Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: Comparisons to cat data. Hearing Research, 42(1), 23–35.

    Google Scholar 

  • Sento, S., & Ryugo, D. K. (1989). Endbulbs of Held and spherical bushy cells in cats: Morphological correlates with physiological properties. Journal of Comparative Neurology, 280(4), 553–562.

    Google Scholar 

  • Spirou, G. A., Brownell, W. E., & Zidanic, M. (1990). Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. Journal of Neurophysiology, 63(5), 1169–1190.

    Google Scholar 

  • Spirou, G. A., May, B. J., Wright, D. D., & Ryugo, D. K. (1993). Frequency organization of the dorsal cochlear nucleus in cats. Journal of Comparative Neurology, 329(1), 36–52.

    Google Scholar 

  • Spoendlin, H. (1971). Degeneration behaviour of the cochlear nerve. Archiv für Klinische und Experimentelle Ohren-, Nasen- und Kehlkopfheilkunde, 200(4), 275–291.

    Google Scholar 

  • Spoendlin, H. (1973). The innervation of the cochlea receptor. In A. R. Møller (Ed.), Mechanisms in hearing (pp. 185–229). New York: Academic Press.

    Google Scholar 

  • Stevens, S. S., & Davis, H. (1938). Hearing: Its psychology and physiology. New York: John Wiley & Sons.

    Google Scholar 

  • Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569.

    Google Scholar 

  • Tolbert, L. P., & Morest, D. K. (1982). The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: electron microscopy. Neuroscience, 7(12), 3053–3067.

    Google Scholar 

  • Tolbert, L. P., Morest, D. K., & Yurgelun-Todd, D. A. (1982). The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Horseradish peroxidase labelling of identified cell types. Neuroscience, 7(12), 3031–3052.

    Google Scholar 

  • Tsuji, J., & Liberman, M. C. (1997). Intracellular labeling of auditory nerve fibers in guinea pig: Central and peripheral projections. Journal of Comparative Neurology, 381(2), 188–202.

    Google Scholar 

  • Turecek, R., & Trussell, L. O. (2000). Control of synaptic depression by glutamate transporters. Journal of Neuroscience, 20(5), 2054–2063.

    Google Scholar 

  • Uchizono, K. (1965). Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature, 207(997), 642–643.

    Google Scholar 

  • Vater, M., Feng, A. S., & Betz, M. (1985). An HRP-study of the frequency-place map of the horseshoe bat cochlea: Morphological correlates of the sharp tuning to a narrow frequency band. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 157(5), 671–686.

    Google Scholar 

  • von Békésy, G. (1960). Experiments in hearing. New York: McGraw-Hill.

    Google Scholar 

  • Wang, Y. X., Wenthold, R. J., Ottersen, O. P., & Petralia, R. S. (1998). Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. Journal of Neuroscience, 18(3), 1148–1160.

    Google Scholar 

  • Webster, D. B. (1971). Projection of the cochlea to cochlear nuclei in Merriam’s kangaroo rat. Journal of Comparative Neurology, 143(3), 323–340.

    Google Scholar 

  • Weisz, C., Glowatzki, E., & Fuchs, P. (2009). The postsynaptic function of type II cochlear afferents. Nature, 461(7267), 1126–1129.

    Google Scholar 

  • Weisz, C. J., Lehar, M., Hiel, H., Glowatzki, E., & Fuchs, P. A. (2012). Synaptic transfer from outer hair cells to type II afferent fibers in the rat cochlea. Journal of Neuroscience, 32(28), 9528–9536.

    Google Scholar 

  • Wever, E. G., McCormick, J. G., Palin, J., & Ridgway, S. H. (1971). The cochlea of the dolphin, Tursiops truncatus: Hair cells and ganglion cells. Proceedings of the National Academy of Sciences of the USA, 68(12), 2908–2912.

    Google Scholar 

  • Wright, D. D., Blackstone, C. D., Huganir, R. L., & Ryugo, D. K. (1996). Immunocytochemical localization of the mGluR1 alpha metabotropic glutamate receptor in the dorsal cochlear nucleus. Journal of Comparative Neurology, 364(4), 729–745.

    Google Scholar 

  • Ye, Y., Machado, D. G., & Kim, D. O. (2000). Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. Journal of Comparative Neurology, 420(1), 127–138.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from NHMRC grant 1009482, 1080652, and 1081478 Fairfax Foundation; Oticon Foundation; the Macquarie Development Group; and donations from Christian Vignes, Allen and Irene Moss, Hadyn and Sue Daw, Alan and Lynne Rydge, and Carol-Ann Kirkpatrick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Ryugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muniak, M.A., Connelly, C.J., Suthakar, K., Milinkeviciute, G., Ayeni, F.E., Ryugo, D.K. (2016). Central Projections of Spiral Ganglion Neurons. In: Dabdoub, A., Fritzsch, B., Popper, A., Fay, R. (eds) The Primary Auditory Neurons of the Mammalian Cochlea. Springer Handbook of Auditory Research, vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3031-9_6

Download citation