Skip to main content

Neurotrophic Factor Function During Ear Development: Expression Changes Define Critical Phases for Neuronal Viability

Part of the Springer Handbook of Auditory Research book series (SHAR,volume 52)

Abstract

Neuronal interactions have two fundamentally different purposes: the release of synaptic transmitters conveys information between neurons whereas co-released neurotrophic factors support survival of neurons as well as growth and pruning of their processes. Cell death and pruning numerically adjusts source to target populations. The developing inner ear is an ideal model to investigate the function of one particular set of neurotrophic factors, the neurotrophins and their receptors. Only two (out of four) neurotrophic factors and their receptors are crucial for the survival of inner ear neurons during development: either loss of both neurotrophic factors or their two receptors lead to complete embryonic loss of all inner ear afferents. In contrast, loss of only one receptor or one neurotrophin results in characteristic and topographically restricted loss of neurons and altered innervation of sensory epithelia. For example, mice genetically engineered to be void of the neurotrophic factor BDNF (brain-derived neurotrophic factor) have no innervation of canal cristae and reduced density of innervation of the apex of the cochlea. In contrast, mouse mutants without the neurotrophic factor NT-3 (neurotrophin 3) show loss of spiral ganglion neurons in the basal turn of the cochlea with no obvious effect on vestibular innervation density. Further, mice genetically engineered to misexpress one neurotrophin under the promoter of the other show that in the cochlea, but not in the vestibular system, one ligand can be replaced by the other ligand. The data on the effects of embryonic loss of neurotrophins fit closely to the original neurotrophic theory, demonstrating a simple quantitative relationship of level and place of neurotrophin expression on the viability of neurons and retention of their processes. In contrast, the rich variation of ratios of afferents to hair cells in the ear is not easily reconcilable with the basic assumption of the neurotrophic theory, namely that neurotrophins regulate numerical matching of innervation proportions.

Keywords

  • Brain-derived neurotrophic factor
  • Cell death
  • Cochlea
  • Ear development
  • Expression changes
  • Neuronal loss
  • Neurotrophins
  • Neurotrophin 3
  • Neurotrophin tyrosine kinase 2 (Ntrk2 or TrkB)
  • TrkC
  • Ntrk3 or Trkc

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-3031-9_3
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-3031-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9

References

  • Agerman, K., Hjerling-Leffler, J., Blanchard, M. P., Scarfone, E., Canlon, B., Nosrat, C., & Ernfors, P. (2003). BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development, 130(8), 1479–1491.

    Google Scholar 

  • Ard, M. D., & Morest, D. K. (1984). Cell death during development of the cochlear and vestibular ganglia of the chick. International Journal of Developmental Neuroscience, 2(6), 535–547.

    Google Scholar 

  • Ard, M. D., Morest, D. K., & Hauger, S. H. (1985). Trophic interactions between the cochleovestibular ganglion of the chick embryo and its synaptic targets in culture. Neuroscience, 16(1), 151–170.

    Google Scholar 

  • Bates, B., Rios, M., Trumpp, A., Chen, C., Fan, G., Bishop, J. M., & Jaenisch, R. (1999). Neurotrophin-3 is required for proper cerebellar development. Nature Neuroscience, 2(2), 115–117.

    Google Scholar 

  • Benes, F. M., Parks, T. N., & Rubel, E. W. (1977). Rapid dendritic atrophy following deafferentation: An EM morphometric analysis. Brain Research, 122(1), 1–13.

    Google Scholar 

  • Born, D. E., & Rubel, E. W. (1985). Afferent influences on brain stem auditory nuclei of the chicken: Neuron number and size following cochlea removal. Journal of Comparative Neurology, 231(4), 435–445.

    Google Scholar 

  • Bothwell, M. (2006). Evolution of the neurotrophin signaling system in invertebrates. Brain, Behavior and Evolution, 68(3), 124–132.

    Google Scholar 

  • Bramham, C. R., & Panja, D. (2014). BDNF regulation of synaptic structure, function, and plasticity. Neuropharmacology, 76 Pt C, 601–602.

    Google Scholar 

  • Buchman, C. A., Roush, P. A., Teagle, H. F., Brown, C. J., Zdanski, C. J., & Grose, J. H. (2006). Auditory neuropathy characteristics in children with cochlear nerve deficiency. Ear and Hearing, 27(4), 399–408.

    Google Scholar 

  • Buchman, C. A., Teagle, H. F., Roush, P. A., Park, L. R., Hatch, D., Woodard, J., Zdanski, C., & Adunka, O. F. (2011). Cochlear implantation in children with labyrinthine anomalies and cochlear nerve deficiency: Implications for auditory brainstem implantation. Laryngoscope, 121(9), 1979–1988.

    Google Scholar 

  • Bulankina, A. V., & Moser, T. (2012). Neural circuit development in the mammalian cochlea. Physiology (Bethesda), 27(2), 100–112.

    Google Scholar 

  • Coppola, V., Kucera, J., Palko, M. E., Martinez-De Velasco, J., Lyons, W. E., Fritzsch, B., & Tessarollo, L. (2001). Dissection of NT-3 functions in vivo by gene replacement strategy. Development, 128(21), 4315–4327.

    Google Scholar 

  • Dabdoub, A., Puligilla, C., Jones, J. M., Fritzsch, B., Cheah, K. S., Pevny, L. H., & Kelley, M. W. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the USA, 105(47), 18396–18401.

    Google Scholar 

  • Dekkers, M. P., & Barde, Y. A. (2013). Developmental biology: Programmed cell death in neuronal development. Science, 340(6128), 39–41.

    Google Scholar 

  • Dekkers, M. P., Nikoletopoulou, V., & Barde, Y. A. (2013). Cell biology in neuroscience: Death of developing neurons: New insights and implications for connectivity. Journal of Cell Biology, 203(3), 385–393.

    Google Scholar 

  • Desai, S. S., Ali, H., & Lysakowski, A. (2005a). Comparative morphology of rodent vestibular periphery. II. Cristae ampullares. Journal of Neurophysiology, 93(1), 267–280.

    Google Scholar 

  • Desai, S. S., Zeh, C., & Lysakowski, A. (2005b). Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. Journal of Neurophysiology, 93(1), 251–266.

    Google Scholar 

  • Dieni, S., Matsumoto, T., Dekkers, M., Rauskolb, S., Ionescu, M. S., Deogracias, R., Gundelfinger, E. D., Kojima, M., Nestel, S., & Frotscher, M. (2012). BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. The Journal of Cell Biology, 196(6), 775–788.

    Google Scholar 

  • Duncan, J. S., & Fritzsch, B. (2013). Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One, 8(4), e62046.

    Google Scholar 

  • Durruthy-Durruthy, R., Gottlieb, A., Hartman, B. H., Waldhaus, J., Laske, R. D., Altman, R., & Heller, S. (2014). Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell, 157(4), 964–978.

    Google Scholar 

  • Elliott, K. L., Houston, D. W., & Fritzsch, B. (2015a). Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. Scientific Reports, 5, 8338.

    Google Scholar 

  • Elliott, K. L., Houston, D. W., DeCook, R., & Fritzsch, B. (2015b). Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons. Developmental Neurobiology, doi: 10.1002/dneu.22287.

    Google Scholar 

  • Ernfors, P., Van De Water, T., Loring, J., & Jaenisch, R. (1995). Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron, 14(6), 1153–1164.

    Google Scholar 

  • Esteban, P. F., Yoon, H. Y., Becker, J., Dorsey, S. G., Caprari, P., Palko, M. E., Coppola, V., Saragovi, H. U., Randazzo, P. A., & Tessarollo, L. (2006). A kinase-deficient TrkC receptor isoform activates Arf6–Rac1 signaling through the scaffold protein tamalin. Journal of Cell Biology, 173(2), 291–299.

    Google Scholar 

  • Farinas, I., Jones, K. R., Tessarollo, L., Vigers, A. J., Huang, E., Kirstein, M., de Caprona, D. C., Coppola, V., Backus, C., Reichardt, L. F., & Fritzsch, B. (2001). Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. The Journal of Neuroscience, 21(16), 6170–6180.

    Google Scholar 

  • Fritzsch, B. (1981). Transneuronal vestibular afferent influence on the nodular molecular layer synaptogenesis. Anatomy and Embryology (Berlin), 162(2), 199–208.

    Google Scholar 

  • Fritzsch, B. (1990). Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Brain Research, Developmental Brain Research, 51(1), 113–122.

    Google Scholar 

  • Fritzsch, B. (2003). Development of inner ear afferent connections: Forming primary neurons and connecting them to the developing sensory epithelia. Brain Research Bulletin, 60(5–6), 423–433.

    Google Scholar 

  • Fritzsch, B., Zakon, H. H., & Sanchez, D. Y. (1990). Time course of structural changes in regenerating electroreceptors of a weakly electric fish. Journal of Comparative Neurology, 300(3), 386–404.

    Google Scholar 

  • Fritzsch, B., Christensen, M. A., & Nichols, D. H. (1993). Fiber pathways and positional changes in efferent perikarya of 2.5- to 7-day chick embryos as revealed with DiI and dextran amines. Journal of Neurobiology, 24(11), 1481–1499.

    Google Scholar 

  • Fritzsch, B., Silos-Santiago, I., Smeyne, R., Fagan, A., & Barbacid, M. (1995). Reduction and loss of inner ear innervation in trkB and trkC receptor knockout mice: A whole mount DiI and scanning electron microscopic analysis. Auditory Neuroscience, 1(2), 401–417.

    Google Scholar 

  • Fritzsch, B., Farinas, I., & Reichardt, L. F. (1997a). Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. Journal of Neuroscience, 17(16), 6213–6225.

    Google Scholar 

  • Fritzsch, B., Sarai, P. A., Barbacid, M., & Silos-Santiago, I. (1997b). Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds. International Journal of Developmental Neuroscience, 15(4–5), 563–576.

    Google Scholar 

  • Fritzsch, B., Silos-Santiago, I. I., Bianchi, L. M., & Farinas, I. I. (1997c). Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation. Seminars in Cell and Developmental Biology, 8(3), 277–284.

    Google Scholar 

  • Fritzsch, B., Barbacid, M., & Silos-Santiago, I. (1998). The combined effects of trkB and trkC mutations on the innervation of the inner ear. International Journal of Developmental Neuroscience, 16(6), 493–505.

    Google Scholar 

  • Fritzsch, B., Pirvola, U., & Ylikoski, J. (1999). Making and breaking the innervation of the ear: Neurotrophic support during ear development and its clinical implications. Cell and Tissue Research, 295(3), 369–382.

    Google Scholar 

  • Fritzsch, B., Beisel, K. W., Jones, K., Farinas, I., Maklad, A., Lee, J., & Reichardt, L. F. (2002). Development and evolution of inner ear sensory epithelia and their innervation. Journal of Neurobiology, 53(2), 143–156.

    Google Scholar 

  • Fritzsch, B., Tessarollo, L., Coppola, V., & Reichardt, L. F. (2004). Neurotrophins in the ear: Their roles in sensory neuron survival and fiber guidance. Progress in Brain Research, 146, 265–278.

    Google Scholar 

  • Fritzsch, B., Gregory, D., & Rosa-Molinar, E. (2005a). The development of the hindbrain afferent projections in the axolotl: Evidence for timing as a specific mechanism of afferent fiber sorting. Zoology (Jena), 108(4), 297–306.

    Google Scholar 

  • Fritzsch, B., Matei, V. A., Nichols, D. H., Bermingham, N., Jones, K., Beisel, K. W., & Wang, V. Y. (2005b). Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Developmental Dynamics, 233(2), 570–583.

    Google Scholar 

  • Fritzsch, B., Pauley, S., Matei, V., Katz, D. M., Xiang, M., & Tessarollo, L. (2005c). Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain. Hearing Research, 206(1–2), 52–63.

    Google Scholar 

  • Fritzsch, B., Pauley, S., Feng, F., Matei, V., & Nichols, D. (2006). The molecular and developmental basis of the evolution of the vertebrate auditory system. International Journal of Comparative Psychology, 19(1), 1–24.

    Google Scholar 

  • Fritzsch, B., Pan, N., Jahan, I., Duncan, J. S., Kopecky, B. J., Elliott, K. L., Kersigo, J., & Yang, T. (2013). Evolution and development of the tetrapod auditory system: An organ of Corti-centric perspective. Evolution & Development, 15(1), 63–79.

    Google Scholar 

  • Fritzsch, B., Pan, N., Jahan, I., & Elliott, K. L. (2014). Inner ear development: Building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell and Tissue Research, 361, 7–24.

    Google Scholar 

  • Gorski, J. A., Zeiler, S. R., Tamowski, S., & Jones, K. R. (2003). Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. The Journal of Neuroscience, 23(17), 6856–6865.

    Google Scholar 

  • Hallbook, F. (1999). Evolution of the vertebrate neurotrophin and Trk receptor gene families. Current Opinion in Neurobiology, 9(5), 616–621.

    Google Scholar 

  • Hallbook, F., Lundin, L. G., & Kullander, K. (1998). Lampetra fluviatilis neurotrophin homolog, descendant of a neurotrophin ancestor, discloses the early molecular evolution of neurotrophins in the vertebrate subphylum. The Journal of Neuroscience, 18(21), 8700–8711.

    Google Scholar 

  • Hallbook, F., Wilson, K., Thorndyke, M., & Olinski, R. P. (2006). Formation and evolution of the chordate neurotrophin and Trk receptor genes. Brain Behavior & Evolution, 68(3), 133–144.

    Google Scholar 

  • Harris, J. A., & Rubel, E. W. (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 2166217, 127–137.

    Google Scholar 

  • Heeroma, J. H., Roelandse, M., Wierda, K., van Aerde, K. I., Toonen, R. F., Hensbroek, R. A., Brussaard, A., Matus, A., & Verhage, M. (2004). Trophic support delays but does not prevent cell-intrinsic degeneration of neurons deficient for munc18-1. The European Journal of Neuroscience, 20(3), 623–634.

    Google Scholar 

  • Hellard, D., Brosenitsch, T., Fritzsch, B., & Katz, D. M. (2004). Cranial sensory neuron development in the absence of brain-derived neurotrophic factor in BDNF/Bax double null mice. Developmental Biology, 275(1), 34–43.

    Google Scholar 

  • Jahan, I., Pan, N., Kersigo, J., & Fritzsch, B. (2013). Beyond generalized hair cells: Molecular cues for hair cell types. Hearing Research, 297, 30–41.

    Google Scholar 

  • Jahan, I., Pan, N., Kersigo, J., Calisto, L.E., Morris, K.A., Kopecky, B., Duncan, J.S., Beisel, K.W., Fritzsch, B. (2012). Expression of Neurog1 instead of Atoh1 can partially rescue organ of Corti cell survival. PLoS One, 7: e30853.

    Google Scholar 

  • Jones, D. P., & Singer, M. (1969). Neurotrophic dependence of the lateral-line sensory organs of the newt, Triturus viridescens. The Journal of Experimental Zoology, 171(4), 433–442.

    Google Scholar 

  • Katayama, K., Zine, A., Ota, M., Matsumoto, Y., Inoue, T., Fritzsch, B., & Aruga, J. (2009). Disorganized innervation and neuronal loss in the inner ear of Slitrk6-deficient mice. PLoS One, 4(11), e7786.

    Google Scholar 

  • Kersigo, J., & Fritzsch, B. (2015). Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Frontiers in Aging Neuroscience, 7, 33.

    Google Scholar 

  • Kersigo, J., D’Angelo, A., Gray, B. D., Soukup, G. A., & Fritzsch, B. (2011). The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis, 49(4), 326–341.

    Google Scholar 

  • Klein, R., Silos-Santiago, I., Smeyne, R. J., Lira, S. A., Brambilla, R., Bryant, S., Zhang, L., Snider, W. D., & Barbacid, M. (1994). Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature, 368(6468), 249–251.

    Google Scholar 

  • Kopecky, B. J., Jahan, I., & Fritzsch, B. (2013). Correct timing of proliferation and differentiation is necessary for normal inner ear development and auditory hair cell viability. Developmental Dynamics, 242(2), 132–147.

    Google Scholar 

  • Koppel, I., & Timmusk, T. (2013). Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors. Neuropharmacology, 75, 106–115.

    Google Scholar 

  • Koppel, I., Aid-Pavlidis, T., Jaanson, K., Sepp, M., Palm, K., & Timmusk, T. (2010). BAC transgenic mice reveal distal cis-regulatory elements governing BDNF gene expression. Genesis, 48(4), 214–219.

    Google Scholar 

  • Kuczewski, N., Porcher, C., Lessmann, V., Medina, I., & Gaiarsa, J. L. (2009). Activity-dependent dendritic release of BDNF and biological consequences. Molecular Neurobiology, 39(1), 37–49.

    Google Scholar 

  • Levi-Montalcini, R. (1949). The development to the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. Journal of Comparative Neurology, 91(2), 209–241.

    Google Scholar 

  • Lewis, E. R., Leverenz, E. L., & Bialek, W. S. (1985). The vertebrate inner ear. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lindholm, P., & Saarma, M. (2010). Novel CDNF/MANF family of neurotrophic factors. Developmental Neurobiology, 70(5), 360–371.

    Google Scholar 

  • Ma, C., Su, L., Seven, A. B., Xu, Y., & Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 339(6118), 421–425.

    Google Scholar 

  • Ma, L., Reis, G., Parada, L. F., & Schuman, E. M. (1999). Neuronal NT-3 is not required for synaptic transmission or long-term potentiation in area CA1 of the adult rat hippocampus. Learning & Memory, 6(3), 267–275.

    Google Scholar 

  • Ma, Q., Anderson, D. J., & Fritzsch, B. (2000). Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. Journal of the Association of Research in Otolaryngology, 1(2), 129–143.

    Google Scholar 

  • Maklad, A., & Fritzsch, B. (2003). Development of vestibular afferent projections into the hindbrain and their central targets. Brain Research Bulletin, 60(5–6), 497–510.

    Google Scholar 

  • Maklad, A., Kamel, S., Wong, E., & Fritzsch, B. (2010). Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice. Cell and Tissue Research, 340(2), 303–321.

    Google Scholar 

  • Mao, Y., Reiprich, S., Wegner, M., & Fritzsch, B. (2014). Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS One, 9(4), e94580.

    Google Scholar 

  • Maricich, S. M., Xia, A., Mathes, E. L., Wang, V. Y., Oghalai, J. S., Fritzsch, B., & Zoghbi, H. Y. (2009). Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. The Journal of Neuroscience, 29(36), 11123–11133.

    Google Scholar 

  • Marrs, G. S., & Spirou, G. A. (2012). Embryonic assembly of auditory circuits: spiral ganglion and brainstem. Journal of Physiology, 590(Part 10), 2391–2408.

    Google Scholar 

  • Matei, V., Pauley, S., Kaing, S., Rowitch, D., Beisel, K. W., Morris, K., Feng, F., Jones, K., Lee, J., & Fritzsch, B. (2005). Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Developmental Dynamics, 234(3), 633–650.

    Google Scholar 

  • Miyamoto, Y., Yamauchi, J., Tanoue, A., Wu, C., & Mobley, W. C. (2006). TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proceedings of the National Academy of Sciences of the USA, 103(27), 10444–10449.

    Google Scholar 

  • Nayagam, B. A., Muniak, M. A., & Ryugo, D. K. (2011). The spiral ganglion: Connecting the peripheral and central auditory systems. Hearing Research, 278(1–2), 2–20.

    Google Scholar 

  • Nikolic, P., Jarlebark, L. E., Billett, T. E., & Thorne, P. R. (2000). Apoptosis in the developing rat cochlea and its related structures. Brain Research, Developmental Brain Research, 119(1), 75–83.

    Google Scholar 

  • Oppenheim, R. (1991). Cell death during development of the nervous system. Annual Review of Neuroscience, 14(1), 453–501.

    Google Scholar 

  • Oppenheim, R. W. (1989). The neurotrophic theory and naturally occurring motoneuron death. Trends in Neurosciences, 12(7), 252–255.

    Google Scholar 

  • Pan, N., Jahan, I., Kersigo, J., Duncan, J., Kopecky, B., & Fritzsch, B. (2012a). A novel Atoh1 ’self-terminating’ mouse model reveals the necessity of proper Atoh1 expression level and duration for inner ear hair cell differentiation and viability. PLoS One, 7(1), e30358.

    Google Scholar 

  • Pan, N., Kopecky, B., Jahan, I., & Fritzsch, B. (2012b). Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell and Tissue Research, 349, 415–432.

    Google Scholar 

  • Pan, N., Jahan, I., Kersigo, J., Kopecky, B., Santi, P., Johnson, S., Schmitz, H., & Fritzsch, B. (2011). Conditional deletion of Atoh1 using Pax2–Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hearing Research, 275(1–2), 66–80.

    Google Scholar 

  • Panja, D., & Bramham, C. R. (2014). BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology, 76( Part C), 664–676.

    Google Scholar 

  • Pauley, S., Kopecky, B., Beisel, K., Soukup, G., & Fritzsch, B. (2008). Stem cells and molecular strategies to restore hearing. Panminerva Medica, 50(1), 41–53.

    Google Scholar 

  • Petralia, R. S., Gill, S. S., & Peusner, K. D. (1991). Ultrastructural evidence that early synapse formation on central vestibular sensory neurons is independent of peripheral vestibular influences. Journal of Comparative Neurology, 310(1), 68–81.

    Google Scholar 

  • Peusner, K., Vidal, P. P., Minor, L., Cullen, K., Yates, B., Shao, M., & Dutia, M. (2009). Vestibular compensation: New clinical and basic science perspectives. Journal of Vestibular Research, 19(5–6), 143–146.

    Google Scholar 

  • Peusner, K. D., & Morest, D. K. (1977). Neurogenesis in the nucleus vestibularis tangentialis of the chick embryo in the absence of the primary afferent fibers. Neuroscience, 2(2), 253–270.

    Google Scholar 

  • Pirvola, U., Ylikoski, J., Palgi, J., Lehtonen, E., Arumae, U., & Saarma, M. (1992). Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proceedings of the National Academy of Science USA, 89(20), 9915–9919.

    Google Scholar 

  • Pirvola, U., Arumae, U., Moshnyakov, M., Palgi, J., Saarma, M., & Ylikoski, J. (1994). Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hearing Research, 75(1–2), 131–144.

    Google Scholar 

  • Pirvola, U., Hallbook, F., Xing-Qun, L., Virkkala, J., Saarma, M., & Ylikoski, J. (1997). Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. Journal of Neurobiology, 33(7), 1019–1033.

    Google Scholar 

  • Postigo, A., Calella, A. M., Fritzsch, B., Knipper, M., Katz, D., Eilers, A., Schimmang, T., Lewin, G. R., Klein, R., & Minichiello, L. (2002). Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes & Development, 16(5), 633–645.

    Google Scholar 

  • Pruunsild, P., Sepp, M., Orav, E., Koppel, I., & Timmusk, T. (2011). Identification of cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene. The Journal of Neuroscience, 31(9), 3295–3308.

    Google Scholar 

  • Richter, C. P., Kumar, G., Webster, E., Banas, S. K., & Whitlon, D. S. (2011). Unbiased counting of neurons in the cochlea of developing gerbils. Hearing Research, 278(1–2), 43–51.

    Google Scholar 

  • Rubel, E. W., & Fritzsch, B. (2002). Auditory system development: Primary auditory neurons and their targets. Annual Review of Neuroscience, 25, 51–101.

    Google Scholar 

  • Ruben, R. J. (1967). Development of the inner ear of the mouse: A radioautographic study of terminal mitoses. Acta Oto-Laryngolocia Supplementum, 220, 221–244.

    Google Scholar 

  • Rueda, J., de la Sen, C., Juiz, J. M., & Merchan, J. A. (1987). Neuronal loss in the spiral ganglion of young rats. Acta Oto-Laryngologica, 104(5–6), 417–421.

    Google Scholar 

  • Rusch, A., Lysakowski, A., & Eatock, R. A. (1998). Postnatal development of type I and type II hair cells in the mouse utricle: Acquisition of voltage-gated conductances and differentiated morphology. The Journal of Neuroscience, 18(18), 7487–7501.

    Google Scholar 

  • Shao, M., Popratiloff, A., Hirsch, J. C., & Peusner, K. D. (2009). Presynaptic and postsynaptic ion channel expression in vestibular nuclei neurons after unilateral vestibular deafferentation. Journal of Vestibular Research, 19(5–6), 191–200.

    Google Scholar 

  • Schimmang, T., Minichiello, L., Vazquez, E., San Jose, I., Giraldez, F., Klein, R., & Represa, J. (1995). Developing inner ear sensory neurons require TrkB and TrkC receptors for innervation of their peripheral targets. Development, 121(10), 3381–3391.

    Google Scholar 

  • Sciarretta, C., Fritzsch, B., Beisel, K., Rocha-Sanchez, S. M., Buniello, A., Horn, J. M., & Minichiello, L. (2010). PLCgamma-activated signalling is essential for TrkB mediated sensory neuron structural plasticity. BMC Developmental Biology, 10, 103.

    Google Scholar 

  • Simmons, D., Duncan, J., Crapon de Caprona, D., & Fritzsch, B. (2011). Development of the inner ear efferent system. In D. K. Ryugo, R. R. Fay, & A. N. Popper (Eds.), Auditory and vestibular efferents. (pp. 187–216.). New York: Springer Science+Business Media.

    Google Scholar 

  • Singer, W., Panford-Walsh, R., & Knipper, M. (2014). The function of BDNF in the adult auditory system. Neuropharmacology, 76(Part C), 719–728.

    Google Scholar 

  • Stenqvist, A., Agerman, K., Marmigere, F., Minichiello, L., & Ernfors, P. (2005). Genetic evidence for selective neurotrophin 3 signalling through TrkC but not TrkB in vivo. EMBO Reports, 6(10), 973–978.

    Google Scholar 

  • Straka, H., Fritzsch, B., & Glover, J. C. (2014). Connecting ears to eye muscles: Evolution of a ‘simple’reflex arc. Brain, Behavior and Evolution, 83(2), 162–175.

    Google Scholar 

  • Taylor, A. R., Gifondorwa, D. J., Robinson, M. B., Strupe, J. L., Prevette, D., Johnson, J. E., Hempstead, B., Oppenheim, R. W., & Milligan, C. E. (2012). Motoneuron programmed cell death in response to proBDNF. Developmental Neurobiology, 72(5), 699–712.

    Google Scholar 

  • Tessarollo, L., Tsoulfas, P., Donovan, M. J., Palko, M. E., Blair-Flynn, J., Hempstead, B. L., & Parada, L. F. (1997). Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proceedings of the National Academy of Sciences of the USA, 94(26), 14776–14781.

    Google Scholar 

  • Tessarollo, L., Coppola, V., & Fritzsch, B. (2004). NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. The Journal of Neuroscience, 24(10), 2575–2584.

    Google Scholar 

  • Triplett, J. W. (2014). Molecular guidance of retinotopic map development in the midbrain. Current Opinion in Neurobiology, 24, 7–12.

    Google Scholar 

  • van de Bospoort, R., Farina, M., Schmitz, S. K., de Jong, A., de Wit, H., Verhage, M., & Toonen, R. F. (2012). Munc13 controls the location and efficiency of dense-core vesicle release in neurons. The Journal of Cell Biology, 199(6), 883–891.

    Google Scholar 

  • Varoqueaux, F., Sigler, A., Rhee, J. S., Brose, N., Enk, C., Reim, K., & Rosenmund, C. (2002). Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proceedings of the National Academy of Sciences of the USA, 99(13), 9037–9042.

    Google Scholar 

  • Verhage, M., Maia, A. S., Plomp, J. J., Brussaard, A. B., Heeroma, J. H., Vermeer, H., Toonen, R. F., Hammer, R. E., van den Berg, T. K., Missler, M., Geuze, H. J., & Sudhof, T. C. (2000). Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science, 287(5454), 864–869.

    Google Scholar 

  • von Bartheld, C. S., & Fritzsch, B. (2006). Comparative analysis of neurotrophin receptors and ligands in vertebrate neurons: Tools for evolutionary stability or changes in neural circuits? Brain, Behavior and Evolution, 68(3), 157–172.

    Google Scholar 

  • von Bartheld, C. S., Patterson, S. L., Heuer, J. G., Wheeler, E. F., Bothwell, M., & Rubel, E. W. (1991). Expression of nerve growth factor (NGF) receptors in the developing inner ear of chick and rat. Development, 113(2), 455–470.

    Google Scholar 

  • Xiang, M., Maklad, A., Pirvola, U., & Fritzsch, B. (2003). Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neuroscience, 4(1), 2.

    Google Scholar 

  • Yang, T., Bassuk, A. G., & Fritzsch, B. (2013). Prickle1 stunts limb growth through alteration of cell polarity and gene expression. [Research Support, N.I.H., Extramural]. Developmental Dynamics, 242(11), 1293–1306.

    Google Scholar 

  • Yang, T., Kersigo, J., Jahan, I., Pan, N., & Fritzsch, B. (2011). The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hearing Research, 278(1–2), 21–33.

    Google Scholar 

  • Ylikoski, J., Pirvola, U., Moshnyakov, M., Palgi, J., Arumae, U., & Saarma, M. (1993). Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hearing Research, 65(1–2), 69–78.

    Google Scholar 

  • Zhou, X. N., & Van de Water, T. R. (1987). The effect of target tissues on survival and differentiation of mammalian statoacoustic ganglion neurons in organ culture. Acta Oto-Laryngologica, 104(1–2), 90–98.

    Google Scholar 

  • Zilberstein, Y., Liberman, M. C., & Corfas, G. (2012). Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. Journal of Neuroscience, 32(2), 405–410.

    Google Scholar 

  • Zuccotti, A., Kuhn, S., Johnson, S. L., Franz, C., Singer, W., Hecker, D., Geisler, H. S., Kopschall, I., Rohbock, K., Gutsche, K., Dlugaiczyk, J., Schick, B., Marcotti, W., Ruttiger, L., Schimmang, T., & Knipper, M. (2012). Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise-induced hearing loss. The Journal of Neuroscience, 32(25), 8545–8553.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NASA Base Grant (BF), a P30 core grant (DC 010362), an RO3 grant (DC013655 to IJ) and an R01 grant (DC 005590) to BF. The support of the Office of the Vice President for Research (OVPR) of the University of Iowa is gratefully acknowledged. We thank Dr. Lino Tessarollo for his expert review, comments, and suggestions of an earlier version and the SHAR editors for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Fritzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fritzsch, B., Kersigo, J., Yang, T., Jahan, I., Pan, N. (2016). Neurotrophic Factor Function During Ear Development: Expression Changes Define Critical Phases for Neuronal Viability. In: Dabdoub, A., Fritzsch, B., Popper, A., Fay, R. (eds) The Primary Auditory Neurons of the Mammalian Cochlea. Springer Handbook of Auditory Research, vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3031-9_3

Download citation