Skip to main content

Early Development of the Spiral Ganglion

Part of the Springer Handbook of Auditory Research book series (SHAR,volume 52)

Abstract

The neurons and sensory epithelia of the inner ear are produced from a proneurosensory domain in the early otocyst. Embryological observations together with analysis at the molecular level have uncovered the origin of spiral ganglion neurons and detailed the series of events that underlie their differentiation. During early development, extrinsic signals position the proneurosensory domain in the anterior of the otic cup, restricting formation of non-sensory regions to the posterior. Transcriptional networks reinforce the neurosensory fate and steer progenitors towards neuronal or sensory fates. Neuronal progenitors delaminate from the otic epithelium, proliferate, and then differentiate to form a contiguous cochlear-vestibular ganglion. Spiral and vestibular ganglion neurons arise from spatially and temporally distinct neuronal progenitors, relying in part on the action of cell-type specific transcription factors. Through unclear mechanisms, spiral ganglion neurons (SGNs) are further subdivided into Type I and Type II SGNs, followed by further diversification of Type I SGNs to produce the heterogeneous population necessary for the sense of hearing.

Keywords

  • Auditory neuroblast
  • Neural progenitor
  • Neurosensory progenitor
  • Otic vesicle
  • Otic neurogenesis
  • Sensory progenitor

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-3031-9_2
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-3031-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4

References

  • Abello, G., Khatri, S., Giraldez, F., & Alsina, B. (2007). Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mechanisms of Development, 124(7–8), 631–645.

    Google Scholar 

  • Abello, G., Khatri, S., Radosevic, M., Scotting, P. J., Giraldez, F., & Alsina, B. (2010). Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Developmental Biology, 339(1), 166–178.

    Google Scholar 

  • Aburto, M. R., Magarinos, M., Leon, Y., Varela-Nieto, I., & Sanchez-Calderon, H. (2012). AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS One, 7(1), e30790.

    Google Scholar 

  • Adam, J., Myat, A., Le Roux, I., Eddison, M., Henrique, D., Ish-Horowicz, D., & Lewis, J. (1998). Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: Parallels with Drosophila sense-organ development. Development, 125(23), 4645–4654.

    Google Scholar 

  • Ahmed, M., Xu, J., & Xu, P. X. (2012a). EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development, 139(11), 1965–1977.

    Google Scholar 

  • Ahmed, M., Wong, E. Y., Sun, J., Xu, J., Wang, F., & Xu, P. X. (2012b). Eya1–Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Developmental Cell, 22(2), 377–390.

    Google Scholar 

  • Ali, M. M., Jayabalan, S., Machnicki, M., & Sohal, G. S. (2003). Ventrally emigrating neural tube cells migrate into the developing vestibulocochlear nerve and otic vesicle. International Journal of Developmental Neuroscience, 21(4), 199–208.

    Google Scholar 

  • Alsina, B., Abello, G., Ulloa, E., Henrique, D., Pujades, C., & Giraldez, F. (2004). FGF signaling is required for determination of otic neuroblasts in the chick embryo. Developmental Biology, 267(1), 119–134.

    Google Scholar 

  • Anniko, M., & Wikstrom, S. O. (1984). Pattern formation of the otic placode and morphogenesis of the otocyst. American Journal of Otolaryngology, 5(6), 373–381.

    Google Scholar 

  • Anniko, M., & Schacht, J. (1984). Inductive tissue interactions during inner ear development. Archives of Oto-Rhino-Laryngology, 240(1), 17–33.

    Google Scholar 

  • Appler, J. M., Lu, C. C., Druckenbrod, N. R., Yu, W. M., Koundakjian, E. J., & Goodrich, L. V. (2013). Gata3 is a critical regulator of cochlear wiring. Journal of Neuroscience, 33(8), 3679–3691.

    Google Scholar 

  • Ard, M. D., & Morest, D. K. (1984). Cell death during development of the cochlear and vestibular ganglia of the chick. International Journal of Developmental Neuroscience, 2(6), 535–547.

    Google Scholar 

  • Barclay, M., Ryan, A. F., & Housley, G. D. (2011). Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Development, 6, 33.

    Google Scholar 

  • Bartelmez, G. W. (1922). The origin of the otic and optic primordia in man. Journal of Comparative Neurology, 34(2), 201–232.

    Google Scholar 

  • Bell, D., Streit, A., Gorospe, I., Varela-Nieto, I., Alsina, B., & Giraldez, F. (2008). Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Developmental Biology, 322(1), 109–120.

    Google Scholar 

  • Bermingham, N. A., Hassan, B. A., Price, S. D., Vollrath, M. A., Ben-Arie, N., Eatock, R. A., Bellen, H. J., Lysakowski, A., & Zoghbi, H. Y. (1999). Math1: An essential gene for the generation of inner ear hair cells. Science, 284(5421), 1837–1841.

    Google Scholar 

  • Bibas, A., Hornigold, R., Liang, J., Michaels, L., Anagnostopoulou, S., & Wright, A. (2006). The development of the spiral ganglion in the human foetus. Folia Morphologica, 65(2), 140–144.

    Google Scholar 

  • Bigelow, H. B. (1904). The sense of hearing in the goldfish Carassius Auratus L. The American Naturalist, 38(448), 275–284.

    Google Scholar 

  • Bok, J., Bronner-Fraser, M., & Wu, D. K. (2005). Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear. Development, 132(9), 2115–2124.

    Google Scholar 

  • Bok, J., Raft, S., Kong, K. A., Koo, S. K., Drager, U. C., & Wu, D. K. (2011). Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proceedings of the National Academy of Sciences of the USA, 108(1), 161–166.

    Google Scholar 

  • Bok, J., Zenczak, C., Hwang, C. H., & Wu, D. K. (2013). Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proceedings of the National Academy of Sciences of the USA, 110(34), 13869–13874.

    Google Scholar 

  • Bouchard, M., Souabni, A., & Busslinger, M. (2004). Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis, 38(3), 105–109.

    Google Scholar 

  • Bricaud, O., & Collazo, A. (2011). Balancing cell numbers during organogenesis: Six1a differentially affects neurons and sensory hair cells in the inner ear. Developmental Biology, 357(1), 191–201.

    Google Scholar 

  • Brooker, R., Hozumi, K., & Lewis, J. (2006). Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development, 133(7), 1277–1286.

    Google Scholar 

  • Brown, A. S., & Epstein, D. J. (2011). Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development. Development, 138(18), 3967–3976.

    Google Scholar 

  • Bruce, L. L., Kingsley, J., Nichols, D. H., & Fritzsch, B. (1997). The development of vestibulocochlear efferents and cochlear afferents in mice. International Journal of Developmental Neuroscience, 15(4–5), 671–692.

    Google Scholar 

  • Camarero, G., Avendano, C., Fernandez-Moreno, C., Villar, A., Contreras, J., de Pablo, F., Pichel, J. G., & Varela-Nieto, I. (2001). Delayed inner ear maturation and neuronal loss in postnatal Igf-1–deficient mice. Journal of Neuroscience, 21(19), 7630–7641.

    Google Scholar 

  • Camarero, G., Leon, Y., Gorospe, I., De Pablo, F., Alsina, B., Giraldez, F., & Varela-Nieto, I. (2003). Insulin-like growth factor 1 is required for survival of transit-amplifying neuroblasts and differentiation of otic neurons. Developmental Biology, 262(2), 242–253.

    Google Scholar 

  • Carney, P. R., & Silver, J. (1983). Studies on cell migration and axon guidance in the developing distal auditory system of the mouse. Journal of Comparative Neurology, 215(4), 359–369.

    Google Scholar 

  • Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H., & Beachy, P. A. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599), 407–413.

    Google Scholar 

  • Cole, L. K., Le Roux, I., Nunes, F., Laufer, E., Lewis, J., & Wu, D. K. (2000). Sensory organ generation in the chicken inner ear: Contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. Journal of Comparative Neurology, 424(3), 509–520.

    Google Scholar 

  • Dabdoub, A., Puligilla, C., Jones, J. M., Fritzsch, B., Cheah, K. S., Pevny, L. H., & Kelley, M. W. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the USA, 105(47), 18396–18401.

    Google Scholar 

  • D’Amico-Martel, A., & Noden, D. M. (1983). Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. American Journal of Anatomy, 166(4), 445–468.

    Google Scholar 

  • Daudet, N., & Lewis, J. (2005). Two contrasting roles for Notch activity in chick inner ear development: Specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development, 132(3), 541–551.

    Google Scholar 

  • Daudet, N., Ariza-McNaughton, L., & Lewis, J. (2007). Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development, 134(12), 2369–2378.

    Google Scholar 

  • Davis, R. L., & Liu, Q. (2011). Complex primary afferents: What the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hearing Research, 276(1–2), 34–43.

    Google Scholar 

  • Davis-Dusenbery, B. N., Williams, L. A., Klim, J. R., & Eggan, K. (2014). How to make spinal motor neurons. Development, 141(3), 491–501.

    Google Scholar 

  • Defourny, J., Poirrier, A. L., Lallemend, F., Mateo Sanchez, S., Neef, J., Vanderhaeghen, P., Soriano, E., Peuckert, C., Kullander, K., Fritzsch, B., Nguyen, L., Moonen, G., Moser, T., & Malgrange, B. (2013). Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nature Communications, 4, 1438.

    Google Scholar 

  • Deng, M., Yang, H., Xie, X., Liang, G., & Gan, L. (2014). Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons. Gene Expression Patterns, 15(1), 31–37.

    Google Scholar 

  • Duncan, J. S., & Fritzsch, B. (2013). Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One, 8(4), e62046.

    Google Scholar 

  • Duncan, J. S., Lim, K. C., Engel, J. D., & Fritzsch, B. (2011). Limited inner ear morphogenesis and neurosensory development are possible in the absence of GATA3. International Journal of Developmental Biology, 55(3), 297–303.

    Google Scholar 

  • Echteler, S. M. (1992). Developmental segregation in the afferent projections to mammalian auditory hair cells. Proceedings of the National Academy of Sciences of the USA, 89(14), 6324–6327.

    Google Scholar 

  • Echteler, S. M., Magardino, T., & Rontal, M. (2005). Spatiotemporal patterns of neuronal programmed cell death during postnatal development of the gerbil cochlea. Brain Research. Developmental Brain Research, 157(2), 192–200.

    Google Scholar 

  • Ernfors, P., Van De Water, T., Loring, J., & Jaenisch, R. (1995). Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron, 14(6), 1153–1164.

    Google Scholar 

  • Evsen, L., Sugahara, S., Uchikawa, M., Kondoh, H., & Wu, D. K. (2013). Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1. Journal of Neuroscience, 33(9), 3879–3890.

    Google Scholar 

  • Farinas, I., Jones, K. R., Tessarollo, L., Vigers, A. J., Huang, E., Kirstein, M., de Caprona, D. C., Coppola, V., Backus, C., Reichardt, L. F., & Fritzsch, B. (2001). Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. Journal of Neuroscience, 21(16), 6170–6180.

    Google Scholar 

  • Fekete, D. M., & Wu, D. K. (2002). Revisiting cell fate specification in the inner ear. Current Opinion in Neurobiology, 12(1), 35–42.

    Google Scholar 

  • Flores-Otero, J., Xue, H. Z., & Davis, R. L. (2007). Reciprocal regulation of presynaptic and postsynaptic proteins in bipolar spiral ganglion neurons by neurotrophins. Journal of Neuroscience, 27(51), 14023–14034.

    Google Scholar 

  • Freter, S., Fleenor, S. J., Freter, R., Liu, K. J., & Begbie, J. (2013). Cranial neural crest cells form corridors prefiguring sensory neuroblast migration. Development, 140(17), 3595–3600.

    Google Scholar 

  • Freyer, L., Aggarwal, V., & Morrow, B. E. (2011). Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development, 138(24), 5403–5414.

    Google Scholar 

  • Freyer, L., Nowotschin, S., Pirity, M. K., Baldini, A., & Morrow, B. E. (2013). Conditional and constitutive expression of a Tbx1–GFP fusion protein in mice. BMC Developmental Biology, 13(1), 33.

    Google Scholar 

  • Friedman, R. A., Makmura, L., Biesiada, E., Wang, X., & Keithley, E. M. (2005). Eya1 acts upstream of Tbx1, Neurogenin 1, NeuroD and the neurotrophins BDNF and NT-3 during inner ear development. Mechanisms of Development, 122(5), 625–634.

    Google Scholar 

  • Fritzsch, B., & Straka, H. (2014). Evolution of vertebrate mechanosensory hair cells and inner ears: Toward identifying stimuli that select mutation driven altered morphologies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(1), 5–18.

    Google Scholar 

  • Fritzsch, B., Barbacid, M., & Silos-Santiago, I. (1998). The combined effects of trkB and trkC mutations on the innervation of the inner ear. International Journal of Developmental Neuroscience, 16(6), 493–505.

    Google Scholar 

  • Fritzsch, B., Pan, N., Jahan, I., Duncan, J. S., Kopecky, B. J., Elliott, K. L., Kersigo, J., & Yang, T. (2013). Evolution and development of the tetrapod auditory system: An organ of Corti-centric perspective. Evolution & Development, 15(1), 63–79.

    Google Scholar 

  • Green, S. H., Bailey, E., Wang, Q., & Davis, R. L. (2012). The Trk A, B, C’s of neurotrophins in the cochlea. Anatomical Record, 295(11), 1877–1895.

    Google Scholar 

  • Groves, A. K., & Fekete, D. M. (2012). Shaping sound in space: The regulation of inner ear patterning. Development, 139(2), 245–257.

    Google Scholar 

  • Haddon, C., & Lewis, J. (1996). Early ear development in the embryo of the zebrafish, Danio rerio. Journal of Comparative Neurology, 365(1), 113–128.

    Google Scholar 

  • Haddon, C., Jiang, Y. J., Smithers, L., & Lewis, J. (1998). Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: Evidence from the mind bomb mutant. Development, 125(23), 4637–4644.

    Google Scholar 

  • Hafidi, A. (1998). Peripherin-like immunoreactivity in type II spiral ganglion cell body and projections. Brain Research, 805(1–2), 181–190.

    Google Scholar 

  • Hammond, K. L., & Whitfield, T. T. (2011). Fgf and Hh signalling act on a symmetrical pre-pattern to specify anterior and posterior identity in the zebrafish otic placode and vesicle. Development, 138(18), 3977–3987.

    Google Scholar 

  • Hammond, K. L., Loynes, H. E., Folarin, A. A., Smith, J., & Whitfield, T. T. (2003). Hedgehog signalling is required for correct anteroposterior patterning of the zebrafish otic vesicle. Development, 130(7), 1403–1417.

    Google Scholar 

  • Hammond, K. L., van Eeden, F. J., & Whitfield, T. T. (2010). Repression of Hedgehog signalling is required for the acquisition of dorsolateral cell fates in the zebrafish otic vesicle. Development, 137(8), 1361–1371.

    Google Scholar 

  • Hans, S., Irmscher, A., & Brand, M. (2013). Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development, 140(9), 1936–1945.

    Google Scholar 

  • Harada, Y., Kasuga, S., & Tamura, S. (2001). Comparison and evolution of the lagena in various animal species. Acta Oto-Laryngologica, 121(3), 355–363.

    Google Scholar 

  • Hartman, B. H., Reh, T. A., & Bermingham-McDonogh, O. (2010). Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proceedings of the National Academy of Sciences of the USA, 107(36), 15792–15797.

    Google Scholar 

  • Hatch, E. P., Noyes, C. A., Wang, X., Wright, T. J., & Mansour, S. L. (2007). Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development, 134(20), 3615–3625.

    Google Scholar 

  • Hebert, J. M., & McConnell, S. K. (2000). Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Developmental Biology, 222(2), 296–306.

    Google Scholar 

  • Hemond, S. G., & Morest, D. K. (1991a). Ganglion formation from the otic placode and the otic crest in the chick embryo: Mitosis, migration, and the basal lamina. Anatomy and Embryology, 184(1), 1–13.

    Google Scholar 

  • Hemond, S. G., & Morest, D. K. (1991b). Formation of the cochlea in the chicken embryo: Sequence of innervation and localization of basal lamina-associated molecules. Brain Research. Developmental Brain Research, 61(1), 87–96.

    Google Scholar 

  • Hossain, W. A., Brumwell, C. L., & Morest, D. K. (2002). Sequential interactions of fibroblast growth factor-2, brain-derived neurotrophic factor, neurotrophin-3, and their receptors define critical periods in the development of cochlear ganglion cells. Experimental Neurology, 175(1), 138–151.

    Google Scholar 

  • Huang, L. C., Thorne, P. R., Housley, G. D., & Montgomery, J. M. (2007). Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development, 134(16), 2925–2933.

    Google Scholar 

  • Huang, L. C., Barclay, M., Lee, K., Peter, S., Housley, G. D., Thorne, P. R., & Montgomery, J. M. (2012). Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Development, 7, 38.

    Google Scholar 

  • Hurd, E. A., Poucher, H. K., Cheng, K., Raphael, Y., & Martin, D. M. (2010). The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development, 137(18), 3139–3150.

    Google Scholar 

  • Jahan, I., Kersigo, J., Pan, N., & Fritzsch, B. (2010a). Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell and Tissue Research, 341(1), 95–110.

    Google Scholar 

  • Jahan, I., Pan, N., Kersigo, J., & Fritzsch, B. (2010b). Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One, 5(7), e11661.

    Google Scholar 

  • Johnson, S. B., Schmitz, H. M., & Santi, P. A. (2011). TSLIM imaging and a morphometric analysis of the mouse spiral ganglion. Hearing Research, 278(1–2), 34–42.

    Google Scholar 

  • Jones, J. M., & Warchol, M. E. (2009). Expression of the Gata3 transcription factor in the acoustic ganglion of the developing avian inner ear. Journal of Comparative Neurology, 516(6), 507–518.

    Google Scholar 

  • Kalatzis, V., Sahly, I., El-Amraoui, A., & Petit, C. (1998). Eya1 expression in the developing ear and kidney: Towards the understanding of the pathogenesis of branchio-oto-renal (BOR) syndrome. Developmental Dynamics, 213(4), 486–499.

    Google Scholar 

  • Karis, A., Pata, I., van Doorninck, J. H., Grosveld, F., de Zeeuw, C. I., de Caprona, D., & Fritzsch, B. (2001). Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. Journal of Comparative Neurology, 429(4), 615–630.

    Google Scholar 

  • Kawase, T., & Liberman, M. C. (1992). Spatial organization of the auditory nerve according to spontaneous discharge rate. Journal of Comparative Neurology, 319(2), 312–318.

    Google Scholar 

  • Kiernan, A. E. (2013). Notch signaling during cell fate determination in the inner ear. Seminars in Cell and Developmental Biology, 24(5), 470–479.

    Google Scholar 

  • Kiernan, A. E., Pelling, A. L., Leung, K. K., Tang, A. S., Bell, D. M., Tease, C., Lovell-Badge, R., Steel, K. P., & Cheah, K. S. (2005). Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 434(7036), 1031–1035.

    Google Scholar 

  • Kim, H. J., Woo, H. M., Ryu, J., Bok, J., Kim, J. W., Choi, S. B., Park, M. H., Park, H. Y., & Koo, S. K. (2013). Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS One, 8(2), e55609.

    Google Scholar 

  • Kim, W. Y., Fritzsch, B., Serls, A., Bakel, L. A., Huang, E. J., Reichardt, L. F., Barth, D. S., & Lee, J. E. (2001). NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development, 128(3), 417–426.

    Google Scholar 

  • Knowlton, V. Y. (1967). Correlation of the development of membranous and bony labyrinths, acoustic ganglia, nerves, and brain centers of the chick embryo. Journal of Morphology, 121(3), 179–207.

    Google Scholar 

  • Koo, S. K., Hill, J. K., Hwang, C. H., Lin, Z. S., Millen, K. J., & Wu, D. K. (2009). Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Developmental Biology, 333(1), 14–25.

    Google Scholar 

  • Koundakjian, E. J., Appler, J. L., & Goodrich, L. V. (2007). Auditory neurons make stereotyped wiring decisions before maturation of their targets. Journal of Neuroscience, 27(51), 14078–14088.

    Google Scholar 

  • Kuratani, S., Horigome, N., Ueki, T., Aizawa, S., & Hirano, S. (1998). Stereotyped axonal bundle formation and neuromeric patterns in embryos of a cyclostome, Lampetra japonica. Journal of Comparative Neurology, 391(1), 99–114.

    Google Scholar 

  • Lawoko-Kerali, G., Rivolta, M. N., & Holley, M. (2002). Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear. Journal of Comparative Neurology, 442(4), 378–391.

    Google Scholar 

  • Lawoko-Kerali, G., Rivolta, M. N., Lawlor, P., Cacciabue-Rivolta, D. I., Langton-Hewer, C., van Doorninck, J. H., & Holley, M. C. (2004). GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear. Mechanisms of Development, 121(3), 287–299.

    Google Scholar 

  • Layman, W. S., Hurd, E. A., & Martin, D. M. (2010). Chromodomain proteins in development: Lessons from CHARGE syndrome. Clinical Genetics, 78(1), 11–20.

    Google Scholar 

  • Leone, D. P., Srinivasan, K., Chen, B., Alcamo, E., & McConnell, S. K. (2008). The determination of projection neuron identity in the developing cerebral cortex. Current Opinion in Neurobiology, 18(1), 28–35.

    Google Scholar 

  • Li, C., Van De Water, T., & Ruben, R. (1978). The fate mapping of the eleventh and twelfth day mouse otocyst: An in vitro study of the sites of origin of the embryonic inner ear sensory structures. Journal of Morphology, 157(3), 249–267.

    Google Scholar 

  • Li, H., Liu, H., Sage, C., Huang, M., Chen, Z. Y., & Heller, S. (2004). Islet-1 expression in the developing chicken inner ear. Journal of Comparative Neurology, 477(1), 1–10.

    Google Scholar 

  • Liberman, L. D., Wang, H., & Liberman, M. C. (2011). Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. Journal of Neuroscience, 31(3), 801–808.

    Google Scholar 

  • Liberman, M. C. (1980). Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections. Hearing Research, 3(1), 45–63.

    Google Scholar 

  • Liberman, M. C. (1982). Single-neuron labeling in the cat auditory nerve. Science, 216(4551), 1239–1241.

    Google Scholar 

  • Liu, M., Pereira, F. A., Price, S. D., Chu, M. J., Shope, C., Himes, D., Eatock, R. A., Brownell, W. E., Lysakowski, A., & Tsai, M. J. (2000). Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes and Development, 14(22), 2839–2854.

    Google Scholar 

  • Liu, W., & Davis, R. L. (2014). Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. Journal of Comparative Neurology, 522(10), 2299–2318.

    Google Scholar 

  • Liu, Z., Owen, T., Fang, J., & Zuo, J. (2012). Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One, 7(3), e34123.

    Google Scholar 

  • Locher, H., Frijns, J. H., van Iperen, L., de Groot, J. C., Huisman, M. A., & Chuva de Sousa Lopes, S. M. (2013). Neurosensory development and cell fate determination in the human cochlea. Neural Development, 8, 20.

    Google Scholar 

  • Lu, C. C., Appler, J. M., Houseman, E. A., & Goodrich, L. V. (2011). Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. Journal of Neuroscience, 31(30), 10903–10918.

    Google Scholar 

  • Luo, X. J., Deng, M., Xie, X., Huang, L., Wang, H., Jiang, L., Liang, G., Hu, F., Tieu, R., Chen, R., & Gan, L. (2013). GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Human Molecular Genetics, 22(18), 3609–3623.

    Google Scholar 

  • Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J. L., & Anderson, D. J. (1998). neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron, 20(3), 469–482.

    Google Scholar 

  • Ma, Q., Anderson, D. J., & Fritzsch, B. (2000). Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. Journal of the Association for Research in Otolaryngology, 1(2), 129–143.

    Google Scholar 

  • Mahmoud, A., Reed, C., & Maklad, A. (2013). Central projections of lagenar primary neurons in the chick. Journal of Comparative Neurology, 521(15), 3524–3540.

    Google Scholar 

  • Mak, A. C., Szeto, I. Y., Fritzsch, B., & Cheah, K. S. (2009). Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expression Patterns, 9(6), 444–453.

    Google Scholar 

  • Mao, Y., Reiprich, S., Wegner, M., & Fritzsch, B. (2014). Targeted deletion of Sox10 by Wnt1–cre defects neuronal migration and projection in the mouse inner ear. PLoS One, 9(4), e94580.

    Google Scholar 

  • Marovitz, W. F., Khan, K. M., & Schulte, T. (1977). Ultrastructural development of the early rat otocyst. Annals of Otology, Rhinology, and Laryngology, 86(1 Pt 2 Supplement 35), 9–28.

    Google Scholar 

  • Matei, V., Pauley, S., Kaing, S., Rowitch, D., Beisel, K. W., Morris, K., Feng, F., Jones, K., Lee, J., & Fritzsch, B. (2005). Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Developmental Dynamics, 234(3), 633–650.

    Google Scholar 

  • McCormick, C. A., & Wallace, A. C. (2012). Otolith end organ projections to auditory neurons in the descending octaval nucleus of the goldfish, Carassius auratus: A confocal analysis. Brain, Behavior and Evolution, 80(1), 41–63.

    Google Scholar 

  • Molea, D., & Rubel, E. W. (2003). Timing and topography of nucleus magnocellularis innervation by the cochlear ganglion. Journal of Comparative Neurology, 466(4), 577–591.

    Google Scholar 

  • Morris, J. K., Maklad, A., Hansen, L. A., Feng, F., Sorensen, C., Lee, K. F., Macklin, W. B., & Fritzsch, B. (2006). A disorganized innervation of the inner ear persists in the absence of ErbB2. Brain Research, 1091(1), 186–199.

    Google Scholar 

  • Morsli, H., Choo, D., Ryan, A., Johnson, R., & Wu, D. K. (1998). Development of the mouse inner ear and origin of its sensory organs. Journal of Neuroscience, 18(9), 3327–3335.

    Google Scholar 

  • Nadol, J. B., Jr. (1988). Quantification of human spiral ganglion cells by serial section reconstruction and segmental density estimates. American Journal of Otolaryngology, 9(2), 47–51.

    Google Scholar 

  • Neves, J., Kamaid, A., Alsina, B., & Giraldez, F. (2007). Differential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick. Journal of Comparative Neurology, 503(4), 487–500.

    Google Scholar 

  • Neves, J., Parada, C., Chamizo, M., & Giraldez, F. (2011). Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: A mechanism for sensory organ specification. Development, 138(4), 735–744.

    Google Scholar 

  • Neves, J., Abello, G., Petrovic, J., & Giraldez, F. (2013). Patterning and cell fate in the inner ear: A case for Notch in the chicken embryo. Development Growth and Differentiation, 55(1), 96–112.

    Google Scholar 

  • Nichols, D. H., Pauley, S., Jahan, I., Beisel, K. W., Millen, K. J., & Fritzsch, B. (2008). Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell and Tissue Research, 334(3), 339–358.

    Google Scholar 

  • Nishizaki, K., Anniko, M., Orita, Y., Karita, K., Masuda, Y., & Yoshino, T. (1998). Programmed cell death in the developing epithelium of the mouse inner ear. Acta Oto-Laryngologica, 118(1), 96–100.

    Google Scholar 

  • Ohyama, T., & Groves, A. K. (2004). Generation of Pax2–Cre mice by modification of a Pax2 bacterial artificial chromosome. Genesis, 38(4), 195–199.

    Google Scholar 

  • Ohyama, T., Mohamed, O. A., Taketo, M. M., Dufort, D., & Groves, A. K. (2006). Wnt signals mediate a fate decision between otic placode and epidermis. Development, 133(5), 865–875.

    Google Scholar 

  • Pan, N., Kopecky, B., Jahan, I., & Fritzsch, B. (2012). Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell and Tissue Research, 349(2), 415–432.

    Google Scholar 

  • Pan, W., Jin, Y., Stanger, B., & Kiernan, A. E. (2010). Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proceedings of the National Academy of Sciences of the USA, 107(36), 15798–15803.

    Google Scholar 

  • Pan, W., Jin, Y., Chen, J., Rottier, R. J., Steel, K. P., & Kiernan, A. E. (2013). Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. Journal of Neuroscience, 33(41), 16146–16157.

    Google Scholar 

  • Pauley, S., Wright, T. J., Pirvola, U., Ornitz, D., Beisel, K., & Fritzsch, B. (2003). Expression and function of FGF10 in mammalian inner ear development. Developmental Dynamics, 227(2), 203–215.

    Google Scholar 

  • Perkins, R. E., & Morest, D. K. (1975). A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarkski Optics. Journal of Comparative Neurology, 163(2), 129–158.

    Google Scholar 

  • Philippidou, P., & Dasen, J. S. (2013). Hox genes: Choreographers in neural development, architects of circuit organization. Neuron, 80(1), 12–34.

    Google Scholar 

  • Pirvola, U., Spencer-Dene, B., Xing-Qun, L., Kettunen, P., Thesleff, I., Fritzsch, B., Dickson, C., & Ylikoski, J. (2000). FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. Journal of Neuroscience, 20(16), 6125–6134.

    Google Scholar 

  • Popper, A. N., & Hoxter, B. (1984). Growth of a fish ear: 1. Quantitative analysis of hair cell and ganglion cell proliferation. Hearing Research, 15(2), 133–142.

    Google Scholar 

  • Puligilla, C., Dabdoub, A., Brenowitz, S. D., & Kelley, M. W. (2010). Sox2 induces neuronal formation in the developing mammalian cochlea. Journal of Neuroscience, 30(2), 714–722.

    Google Scholar 

  • Radde-Gallwitz, K., Pan, L., Gan, L., Lin, X., Segil, N., & Chen, P. (2004). Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. Journal of Comparative Neurology, 477(4), 412–421.

    Google Scholar 

  • Radosevic, M., Robert-Moreno, A., Coolen, M., Bally-Cuif, L., & Alsina, B. (2011). Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development, 138(3), 397–408.

    Google Scholar 

  • Raft, S., Nowotschin, S., Liao, J., & Morrow, B. E. (2004). Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development, 131(8), 1801–1812.

    Google Scholar 

  • Raft, S., Koundakjian, E. J., Quinones, H., Jayasena, C. S., Goodrich, L. V., Johnson, J. E., Segil, N., & Groves, A. K. (2007). Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development, 134(24), 4405–4415.

    Google Scholar 

  • Rasmussen, A. T. (1940). Studies of the VIIIth cranial nerve of man. The Laryngoscope, 50(1), 67–83.

    Google Scholar 

  • Rebillard, M., & Pujol, R. (1983). Innervation of the chicken basilar papilla during its development. Acta Oto-Laryngologica, 96(5–6), 379–388.

    Google Scholar 

  • Riccomagno, M. M., Takada, S., & Epstein, D. J. (2005). Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes and Development, 19(13), 1612–1623.

    Google Scholar 

  • Romand, M. R., & Romand, R. (1990). Development of spiral ganglion cells in mammalian cochlea. Journal of Electron Microscopy Technique, 15(2), 144–154.

    Google Scholar 

  • Romand, R., Dolle, P., & Hashino, E. (2006). Retinoid signaling in inner ear development. Journal of Neurobiology, 66(7), 687–704.

    Google Scholar 

  • Ronan, J. L., Wu, W., & Crabtree, G. R. (2013). From neural development to cognition: Unexpected roles for chromatin. Nature Revies Genetics, 14(5), 347–359.

    Google Scholar 

  • Ruben, R. J. (1967). Development of the inner ear of the mouse: A radioautographic study of terminal mitoses. Acta Oto-Laryngologica Supplementum, 220, 221–244.

    Google Scholar 

  • Sandell, L. L., Butler Tjaden, N. E., Barlow, A. J., & Trainor, P. A. (2014). Cochleovestibular nerve development is integrated with migratory neural crest cells. Developmental Biology, 385(2), 200–210.

    Google Scholar 

  • Sapede, D., & Pujades, C. (2010). Hedgehog signaling governs the development of otic sensory epithelium and its associated innervation in zebrafish. Journal of Neuroscience, 30(10), 3612–3623.

    Google Scholar 

  • Sapede, D., Dyballa, S., & Pujades, C. (2012). Cell lineage analysis reveals three different progenitor pools for neurosensory elements in the otic vesicle. Journal of Neuroscience, 32(46), 16424–16434.

    Google Scholar 

  • Satoh, T., & Fekete, D. M. (2005). Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development, 132(7), 1687–1697.

    Google Scholar 

  • Schmidt, J. M. (1985). Cochlear neuronal populations in developmental defects of the inner ear. Implications for cochlear implantation. Acta Oto-Laryngologica, 99(1–2), 14–20.

    Google Scholar 

  • Schwanbeck, R., Martini, S., Bernoth, K., & Just, U. (2011). The Notch signaling pathway: Molecular basis of cell context dependency. European Journal of Cell Biology, 90(6–7), 572–581.

    Google Scholar 

  • Sher, A. (1972). The embryonic and postnatal development of the inner ear of the mouse. Acta Oto-Laryngologica Supplementum, 285, 1–77.

    Google Scholar 

  • Spoendlin, H. (1972). Innervation densities of the cochlea. Acta Oto-Laryngologica, 73(2), 235–248.

    Google Scholar 

  • Spoendlin, H., & Schrott, A. (1989). Analysis of the human auditory nerve. Hearing Research, 43(1), 25–38.

    Google Scholar 

  • Stevens, C. B., Davies, A. L., Battista, S., Lewis, J. H., & Fekete, D. M. (2003). Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Developmental Biology, 261(1), 149–164.

    Google Scholar 

  • Streeter, G. L. (1906). On the development of the membranous labyrinth and the acoustic and facial nerves in the human embryo. American Journal of Anatomy, 6(1), 139–165.

    Google Scholar 

  • Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569.

    Google Scholar 

  • Varela-Nieto, I., Morales-Garcia, J. A., Vigil, P., Diaz-Casares, A., Gorospe, I., Sanchez-Galiano, S., Canon, S., Camarero, G., Contreras, J., Cediel, R., & Leon, Y. (2004). Trophic effects of insulin-like growth factor-I (IGF-I) in the inner ear. Hearing Research, 196(1–2), 19–25.

    Google Scholar 

  • Vazquez-Echeverria, C., Dominguez-Frutos, E., Charnay, P., Schimmang, T., & Pujades, C. (2008). Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Developmental Biology, 322(1), 167–178.

    Google Scholar 

  • Vemaraju, S., Kantarci, H., Padanad, M. S., & Riley, B. B. (2012). A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear. PLoS Genetics, 8(11), e1003068.

    Google Scholar 

  • Wang, S. Z., Ibrahim, L. A., Kim, Y. J., Gibson, D. A., Leung, H. C., Yuan, W., Zhang, K. K., Tao, H. W., Ma, L., & Zhang, L. I. (2013). Slit/Robo signaling mediates spatial positioning of spiral ganglion neurons during development of cochlear innervation. Journal of Neuroscience, 33(30), 12242–12254.

    Google Scholar 

  • Weisz, C., Glowatzki, E., & Fuchs, P. (2009). The postsynaptic function of type II cochlear afferents. Nature, 461(7267), 1126–1129.

    Google Scholar 

  • White, P. M., Doetzlhofer, A., Lee, Y. S., Groves, A. K., & Segil, N. (2006). Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature, 441(7096), 984–987.

    Google Scholar 

  • Whitehead, M. C., & Morest, D. K. (1981). Dual populations of efferent and afferent cochlear axons in the chicken. Neuroscience, 6(11), 2351–2365.

    Google Scholar 

  • Whitehead, M. C., & Morest, D. K. (1985). The development of innervation patterns in the avian cochlea. Neuroscience, 14(1), 255–276.

    Google Scholar 

  • Wikstrom, S. O., & Anniko, M. (1987). Early development of the stato-acoustic and facial ganglia. Acta Oto-Laryngologica, 104(1–2), 166–174.

    Google Scholar 

  • Wong, E. Y., Ahmed, M., & Xu, P. X. (2013). EYA1–SIX1 complex in neurosensory cell fate induction in the mammalian inner ear. Hearing Research, 297, 13–19.

    Google Scholar 

  • Wood, H. B., & Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mechanisms of Development, 86(1–2), 197–201.

    Google Scholar 

  • Woods, C., Montcouquiol, M., & Kelley, M. W. (2004). Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nature Neuroscience, 7(12), 1310–1318.

    Google Scholar 

  • Wright, T. J., & Mansour, S. L. (2003a). FGF signaling in ear development and innervation. Current Topics in Developmental Biology, 57, 225–259.

    Google Scholar 

  • Wright, T. J., & Mansour, S. L. (2003b). Fgf3 and Fgf10 are required for mouse otic placode induction. Development, 130(15), 3379–3390.

    Google Scholar 

  • Wu, D. K., Nunes, F. D., & Choo, D. (1998). Axial specification for sensory organs versus non-sensory structures of the chicken inner ear. Development, 125(1), 11–20.

    Google Scholar 

  • Wu, L. Q., & Dickman, J. D. (2011). Magnetoreception in an avian brain in part mediated by inner ear lagena. Current Biology, 21(5), 418–423.

    Google Scholar 

  • Xu, H., Viola, A., Zhang, Z., Gerken, C. P., Lindsay-Illingworth, E. A., & Baldini, A. (2007). Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Developmental Biology, 302(2), 670–682.

    Google Scholar 

  • Yagi, H., Furutani, Y., Hamada, H., Sasaki, T., Asakawa, S., Minoshima, S., Ichida, F., Joo, K., Kimura, M., Imamura, S., Kamatani, N., Momma, K., Takao, A., Nakazawa, M., Shimizu, N., & Matsuoka, R. (2003). Role of TBX1 in human del22q11.2 syndrome. Lancet, 362(9393), 1366–1373.

    Google Scholar 

  • Yang, H., Xie, X., Deng, M., Chen, X., & Gan, L. (2010). Generation and characterization of Atoh1–Cre knock-in mouse line. Genesis, 48(6), 407–413.

    Google Scholar 

  • Yang, T., Kersigo, J., Jahan, I., Pan, N., & Fritzsch, B. (2011). The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hearing Research, 278(1–2), 21–33.

    Google Scholar 

  • Yntema, C. L. (1937). An experimental study of the origin of the cells which constitute the VIIth and VIIIth cranial ganglia and nerves in the embryo of Amblystoma punctatum. Journal of Experimental Zoology, 75(1), 75–101.

    Google Scholar 

  • Yu, W. M., Appler, J. M., Kim, Y. H., Nishitani, A. M., Holt, J. R., & Goodrich, L. V. (2013). A Gata3–Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife, 2, e01341.

    Google Scholar 

  • Zentner, G. E., Hurd, E. A., Schnetz, M. P., Handoko, L., Wang, C., Wang, Z., Wei, C., Tesar, P. J., Hatzoglou, M., Martin, D. M., & Scacheri, P. C. (2010). CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Human Molecular Genetics, 19(18), 3491–3501.

    Google Scholar 

  • Zhang, N., Martin, G. V., Kelley, M. W., & Gridley, T. (2000). A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Current Biology, 10(11), 659–662.

    Google Scholar 

  • Zheng, W., Huang, L., Wei, Z. B., Silvius, D., Tang, B., & Xu, P. X. (2003). The role of Six1 in mammalian auditory system development. Development, 130(17), 3989–4000.

    Google Scholar 

  • Zhou, X., & Van De Water, T. R. (1987). The effect of target tissues on survival and differentiation of mammalian statoacoustic ganglion neurons in organ culture. Acta Oto-Laryngologica, 104(1–2), 90–98.

    Google Scholar 

  • Zou, D., Silvius, D., Fritzsch, B., & Xu, P. X. (2004). Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes. Development, 131(22), 5561–5572.

    Google Scholar 

  • Zou, D., Erickson, C., Kim, E. H., Jin, D., Fritzsch, B., & Xu, P. X. (2008). Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear. Human Molecular Genetics, 17(21), 3340–3356.

    Google Scholar 

  • Zweier, C., Sticht, H., Aydin-Yaylagul, I., Campbell, C. E., & Rauch, A. (2007). Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. American Journal of Human Genetics, 80(3), 510–517.

    Google Scholar 

Download references

Acknowledgments

Thank you to Dr. Doris Wu, Dr. Donna Fekete, Dr. Amy Kiernan, Dr. Matthew Kelley, and Dr. Bernd Fritzsch for their insightful comments and many engaging discussions about spiral ganglion neuron development over the years, as well as to Dr. Cindy Lu, Dr. Noah Druckenbrod, Dr. Brikha Shrestha, and Ms. Andrea Yung for assistance with final preparation of the manuscript and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa V. Goodrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodrich, L.V. (2016). Early Development of the Spiral Ganglion. In: Dabdoub, A., Fritzsch, B., Popper, A., Fay, R. (eds) The Primary Auditory Neurons of the Mammalian Cochlea. Springer Handbook of Auditory Research, vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3031-9_2

Download citation