Abello, G., Khatri, S., Giraldez, F., & Alsina, B. (2007). Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mechanisms of Development, 124(7–8), 631–645.
Google Scholar
Abello, G., Khatri, S., Radosevic, M., Scotting, P. J., Giraldez, F., & Alsina, B. (2010). Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Developmental Biology, 339(1), 166–178.
Google Scholar
Aburto, M. R., Magarinos, M., Leon, Y., Varela-Nieto, I., & Sanchez-Calderon, H. (2012). AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS One, 7(1), e30790.
Google Scholar
Adam, J., Myat, A., Le Roux, I., Eddison, M., Henrique, D., Ish-Horowicz, D., & Lewis, J. (1998). Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: Parallels with Drosophila sense-organ development. Development, 125(23), 4645–4654.
Google Scholar
Ahmed, M., Xu, J., & Xu, P. X. (2012a). EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development, 139(11), 1965–1977.
Google Scholar
Ahmed, M., Wong, E. Y., Sun, J., Xu, J., Wang, F., & Xu, P. X. (2012b). Eya1–Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Developmental Cell, 22(2), 377–390.
Google Scholar
Ali, M. M., Jayabalan, S., Machnicki, M., & Sohal, G. S. (2003). Ventrally emigrating neural tube cells migrate into the developing vestibulocochlear nerve and otic vesicle. International Journal of Developmental Neuroscience, 21(4), 199–208.
Google Scholar
Alsina, B., Abello, G., Ulloa, E., Henrique, D., Pujades, C., & Giraldez, F. (2004). FGF signaling is required for determination of otic neuroblasts in the chick embryo. Developmental Biology, 267(1), 119–134.
Google Scholar
Anniko, M., & Wikstrom, S. O. (1984). Pattern formation of the otic placode and morphogenesis of the otocyst. American Journal of Otolaryngology, 5(6), 373–381.
Google Scholar
Anniko, M., & Schacht, J. (1984). Inductive tissue interactions during inner ear development. Archives of Oto-Rhino-Laryngology, 240(1), 17–33.
Google Scholar
Appler, J. M., Lu, C. C., Druckenbrod, N. R., Yu, W. M., Koundakjian, E. J., & Goodrich, L. V. (2013). Gata3 is a critical regulator of cochlear wiring. Journal of Neuroscience, 33(8), 3679–3691.
Google Scholar
Ard, M. D., & Morest, D. K. (1984). Cell death during development of the cochlear and vestibular ganglia of the chick. International Journal of Developmental Neuroscience, 2(6), 535–547.
Google Scholar
Barclay, M., Ryan, A. F., & Housley, G. D. (2011). Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Development, 6, 33.
Google Scholar
Bartelmez, G. W. (1922). The origin of the otic and optic primordia in man. Journal of Comparative Neurology, 34(2), 201–232.
Google Scholar
Bell, D., Streit, A., Gorospe, I., Varela-Nieto, I., Alsina, B., & Giraldez, F. (2008). Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Developmental Biology, 322(1), 109–120.
Google Scholar
Bermingham, N. A., Hassan, B. A., Price, S. D., Vollrath, M. A., Ben-Arie, N., Eatock, R. A., Bellen, H. J., Lysakowski, A., & Zoghbi, H. Y. (1999). Math1: An essential gene for the generation of inner ear hair cells. Science, 284(5421), 1837–1841.
Google Scholar
Bibas, A., Hornigold, R., Liang, J., Michaels, L., Anagnostopoulou, S., & Wright, A. (2006). The development of the spiral ganglion in the human foetus. Folia Morphologica, 65(2), 140–144.
Google Scholar
Bigelow, H. B. (1904). The sense of hearing in the goldfish Carassius Auratus L. The American Naturalist, 38(448), 275–284.
Google Scholar
Bok, J., Bronner-Fraser, M., & Wu, D. K. (2005). Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear. Development, 132(9), 2115–2124.
Google Scholar
Bok, J., Raft, S., Kong, K. A., Koo, S. K., Drager, U. C., & Wu, D. K. (2011). Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proceedings of the National Academy of Sciences of the USA, 108(1), 161–166.
Google Scholar
Bok, J., Zenczak, C., Hwang, C. H., & Wu, D. K. (2013). Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proceedings of the National Academy of Sciences of the USA, 110(34), 13869–13874.
Google Scholar
Bouchard, M., Souabni, A., & Busslinger, M. (2004). Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis, 38(3), 105–109.
Google Scholar
Bricaud, O., & Collazo, A. (2011). Balancing cell numbers during organogenesis: Six1a differentially affects neurons and sensory hair cells in the inner ear. Developmental Biology, 357(1), 191–201.
Google Scholar
Brooker, R., Hozumi, K., & Lewis, J. (2006). Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development, 133(7), 1277–1286.
Google Scholar
Brown, A. S., & Epstein, D. J. (2011). Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development. Development, 138(18), 3967–3976.
Google Scholar
Bruce, L. L., Kingsley, J., Nichols, D. H., & Fritzsch, B. (1997). The development of vestibulocochlear efferents and cochlear afferents in mice. International Journal of Developmental Neuroscience, 15(4–5), 671–692.
Google Scholar
Camarero, G., Avendano, C., Fernandez-Moreno, C., Villar, A., Contreras, J., de Pablo, F., Pichel, J. G., & Varela-Nieto, I. (2001). Delayed inner ear maturation and neuronal loss in postnatal Igf-1–deficient mice. Journal of Neuroscience, 21(19), 7630–7641.
Google Scholar
Camarero, G., Leon, Y., Gorospe, I., De Pablo, F., Alsina, B., Giraldez, F., & Varela-Nieto, I. (2003). Insulin-like growth factor 1 is required for survival of transit-amplifying neuroblasts and differentiation of otic neurons. Developmental Biology, 262(2), 242–253.
Google Scholar
Carney, P. R., & Silver, J. (1983). Studies on cell migration and axon guidance in the developing distal auditory system of the mouse. Journal of Comparative Neurology, 215(4), 359–369.
Google Scholar
Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H., & Beachy, P. A. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599), 407–413.
Google Scholar
Cole, L. K., Le Roux, I., Nunes, F., Laufer, E., Lewis, J., & Wu, D. K. (2000). Sensory organ generation in the chicken inner ear: Contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. Journal of Comparative Neurology, 424(3), 509–520.
Google Scholar
Dabdoub, A., Puligilla, C., Jones, J. M., Fritzsch, B., Cheah, K. S., Pevny, L. H., & Kelley, M. W. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proceedings of the National Academy of Sciences of the USA, 105(47), 18396–18401.
Google Scholar
D’Amico-Martel, A., & Noden, D. M. (1983). Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. American Journal of Anatomy, 166(4), 445–468.
Google Scholar
Daudet, N., & Lewis, J. (2005). Two contrasting roles for Notch activity in chick inner ear development: Specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development, 132(3), 541–551.
Google Scholar
Daudet, N., Ariza-McNaughton, L., & Lewis, J. (2007). Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development, 134(12), 2369–2378.
Google Scholar
Davis, R. L., & Liu, Q. (2011). Complex primary afferents: What the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hearing Research, 276(1–2), 34–43.
Google Scholar
Davis-Dusenbery, B. N., Williams, L. A., Klim, J. R., & Eggan, K. (2014). How to make spinal motor neurons. Development, 141(3), 491–501.
Google Scholar
Defourny, J., Poirrier, A. L., Lallemend, F., Mateo Sanchez, S., Neef, J., Vanderhaeghen, P., Soriano, E., Peuckert, C., Kullander, K., Fritzsch, B., Nguyen, L., Moonen, G., Moser, T., & Malgrange, B. (2013). Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nature Communications, 4, 1438.
Google Scholar
Deng, M., Yang, H., Xie, X., Liang, G., & Gan, L. (2014). Comparative expression analysis of POU4F1, POU4F2 and ISL1 in developing mouse cochleovestibular ganglion neurons. Gene Expression Patterns, 15(1), 31–37.
Google Scholar
Duncan, J. S., & Fritzsch, B. (2013). Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One, 8(4), e62046.
Google Scholar
Duncan, J. S., Lim, K. C., Engel, J. D., & Fritzsch, B. (2011). Limited inner ear morphogenesis and neurosensory development are possible in the absence of GATA3. International Journal of Developmental Biology, 55(3), 297–303.
Google Scholar
Echteler, S. M. (1992). Developmental segregation in the afferent projections to mammalian auditory hair cells. Proceedings of the National Academy of Sciences of the USA, 89(14), 6324–6327.
Google Scholar
Echteler, S. M., Magardino, T., & Rontal, M. (2005). Spatiotemporal patterns of neuronal programmed cell death during postnatal development of the gerbil cochlea. Brain Research. Developmental Brain Research, 157(2), 192–200.
Google Scholar
Ernfors, P., Van De Water, T., Loring, J., & Jaenisch, R. (1995). Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron, 14(6), 1153–1164.
Google Scholar
Evsen, L., Sugahara, S., Uchikawa, M., Kondoh, H., & Wu, D. K. (2013). Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1. Journal of Neuroscience, 33(9), 3879–3890.
Google Scholar
Farinas, I., Jones, K. R., Tessarollo, L., Vigers, A. J., Huang, E., Kirstein, M., de Caprona, D. C., Coppola, V., Backus, C., Reichardt, L. F., & Fritzsch, B. (2001). Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. Journal of Neuroscience, 21(16), 6170–6180.
Google Scholar
Fekete, D. M., & Wu, D. K. (2002). Revisiting cell fate specification in the inner ear. Current Opinion in Neurobiology, 12(1), 35–42.
Google Scholar
Flores-Otero, J., Xue, H. Z., & Davis, R. L. (2007). Reciprocal regulation of presynaptic and postsynaptic proteins in bipolar spiral ganglion neurons by neurotrophins. Journal of Neuroscience, 27(51), 14023–14034.
Google Scholar
Freter, S., Fleenor, S. J., Freter, R., Liu, K. J., & Begbie, J. (2013). Cranial neural crest cells form corridors prefiguring sensory neuroblast migration. Development, 140(17), 3595–3600.
Google Scholar
Freyer, L., Aggarwal, V., & Morrow, B. E. (2011). Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development, 138(24), 5403–5414.
Google Scholar
Freyer, L., Nowotschin, S., Pirity, M. K., Baldini, A., & Morrow, B. E. (2013). Conditional and constitutive expression of a Tbx1–GFP fusion protein in mice. BMC Developmental Biology, 13(1), 33.
Google Scholar
Friedman, R. A., Makmura, L., Biesiada, E., Wang, X., & Keithley, E. M. (2005). Eya1 acts upstream of Tbx1, Neurogenin 1, NeuroD and the neurotrophins BDNF and NT-3 during inner ear development. Mechanisms of Development, 122(5), 625–634.
Google Scholar
Fritzsch, B., & Straka, H. (2014). Evolution of vertebrate mechanosensory hair cells and inner ears: Toward identifying stimuli that select mutation driven altered morphologies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(1), 5–18.
Google Scholar
Fritzsch, B., Barbacid, M., & Silos-Santiago, I. (1998). The combined effects of trkB and trkC mutations on the innervation of the inner ear. International Journal of Developmental Neuroscience, 16(6), 493–505.
Google Scholar
Fritzsch, B., Pan, N., Jahan, I., Duncan, J. S., Kopecky, B. J., Elliott, K. L., Kersigo, J., & Yang, T. (2013). Evolution and development of the tetrapod auditory system: An organ of Corti-centric perspective. Evolution & Development, 15(1), 63–79.
Google Scholar
Green, S. H., Bailey, E., Wang, Q., & Davis, R. L. (2012). The Trk A, B, C’s of neurotrophins in the cochlea. Anatomical Record, 295(11), 1877–1895.
Google Scholar
Groves, A. K., & Fekete, D. M. (2012). Shaping sound in space: The regulation of inner ear patterning. Development, 139(2), 245–257.
Google Scholar
Haddon, C., & Lewis, J. (1996). Early ear development in the embryo of the zebrafish, Danio rerio. Journal of Comparative Neurology, 365(1), 113–128.
Google Scholar
Haddon, C., Jiang, Y. J., Smithers, L., & Lewis, J. (1998). Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: Evidence from the mind bomb mutant. Development, 125(23), 4637–4644.
Google Scholar
Hafidi, A. (1998). Peripherin-like immunoreactivity in type II spiral ganglion cell body and projections. Brain Research, 805(1–2), 181–190.
Google Scholar
Hammond, K. L., & Whitfield, T. T. (2011). Fgf and Hh signalling act on a symmetrical pre-pattern to specify anterior and posterior identity in the zebrafish otic placode and vesicle. Development, 138(18), 3977–3987.
Google Scholar
Hammond, K. L., Loynes, H. E., Folarin, A. A., Smith, J., & Whitfield, T. T. (2003). Hedgehog signalling is required for correct anteroposterior patterning of the zebrafish otic vesicle. Development, 130(7), 1403–1417.
Google Scholar
Hammond, K. L., van Eeden, F. J., & Whitfield, T. T. (2010). Repression of Hedgehog signalling is required for the acquisition of dorsolateral cell fates in the zebrafish otic vesicle. Development, 137(8), 1361–1371.
Google Scholar
Hans, S., Irmscher, A., & Brand, M. (2013). Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development, 140(9), 1936–1945.
Google Scholar
Harada, Y., Kasuga, S., & Tamura, S. (2001). Comparison and evolution of the lagena in various animal species. Acta Oto-Laryngologica, 121(3), 355–363.
Google Scholar
Hartman, B. H., Reh, T. A., & Bermingham-McDonogh, O. (2010). Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proceedings of the National Academy of Sciences of the USA, 107(36), 15792–15797.
Google Scholar
Hatch, E. P., Noyes, C. A., Wang, X., Wright, T. J., & Mansour, S. L. (2007). Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development, 134(20), 3615–3625.
Google Scholar
Hebert, J. M., & McConnell, S. K. (2000). Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Developmental Biology, 222(2), 296–306.
Google Scholar
Hemond, S. G., & Morest, D. K. (1991a). Ganglion formation from the otic placode and the otic crest in the chick embryo: Mitosis, migration, and the basal lamina. Anatomy and Embryology, 184(1), 1–13.
Google Scholar
Hemond, S. G., & Morest, D. K. (1991b). Formation of the cochlea in the chicken embryo: Sequence of innervation and localization of basal lamina-associated molecules. Brain Research. Developmental Brain Research, 61(1), 87–96.
Google Scholar
Hossain, W. A., Brumwell, C. L., & Morest, D. K. (2002). Sequential interactions of fibroblast growth factor-2, brain-derived neurotrophic factor, neurotrophin-3, and their receptors define critical periods in the development of cochlear ganglion cells. Experimental Neurology, 175(1), 138–151.
Google Scholar
Huang, L. C., Thorne, P. R., Housley, G. D., & Montgomery, J. M. (2007). Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development, 134(16), 2925–2933.
Google Scholar
Huang, L. C., Barclay, M., Lee, K., Peter, S., Housley, G. D., Thorne, P. R., & Montgomery, J. M. (2012). Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Development, 7, 38.
Google Scholar
Hurd, E. A., Poucher, H. K., Cheng, K., Raphael, Y., & Martin, D. M. (2010). The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development, 137(18), 3139–3150.
Google Scholar
Jahan, I., Kersigo, J., Pan, N., & Fritzsch, B. (2010a). Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell and Tissue Research, 341(1), 95–110.
Google Scholar
Jahan, I., Pan, N., Kersigo, J., & Fritzsch, B. (2010b). Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One, 5(7), e11661.
Google Scholar
Johnson, S. B., Schmitz, H. M., & Santi, P. A. (2011). TSLIM imaging and a morphometric analysis of the mouse spiral ganglion. Hearing Research, 278(1–2), 34–42.
Google Scholar
Jones, J. M., & Warchol, M. E. (2009). Expression of the Gata3 transcription factor in the acoustic ganglion of the developing avian inner ear. Journal of Comparative Neurology, 516(6), 507–518.
Google Scholar
Kalatzis, V., Sahly, I., El-Amraoui, A., & Petit, C. (1998). Eya1 expression in the developing ear and kidney: Towards the understanding of the pathogenesis of branchio-oto-renal (BOR) syndrome. Developmental Dynamics, 213(4), 486–499.
Google Scholar
Karis, A., Pata, I., van Doorninck, J. H., Grosveld, F., de Zeeuw, C. I., de Caprona, D., & Fritzsch, B. (2001). Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. Journal of Comparative Neurology, 429(4), 615–630.
Google Scholar
Kawase, T., & Liberman, M. C. (1992). Spatial organization of the auditory nerve according to spontaneous discharge rate. Journal of Comparative Neurology, 319(2), 312–318.
Google Scholar
Kiernan, A. E. (2013). Notch signaling during cell fate determination in the inner ear. Seminars in Cell and Developmental Biology, 24(5), 470–479.
Google Scholar
Kiernan, A. E., Pelling, A. L., Leung, K. K., Tang, A. S., Bell, D. M., Tease, C., Lovell-Badge, R., Steel, K. P., & Cheah, K. S. (2005). Sox2 is required for sensory organ development in the mammalian inner ear. Nature, 434(7036), 1031–1035.
Google Scholar
Kim, H. J., Woo, H. M., Ryu, J., Bok, J., Kim, J. W., Choi, S. B., Park, M. H., Park, H. Y., & Koo, S. K. (2013). Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS One, 8(2), e55609.
Google Scholar
Kim, W. Y., Fritzsch, B., Serls, A., Bakel, L. A., Huang, E. J., Reichardt, L. F., Barth, D. S., & Lee, J. E. (2001). NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development, 128(3), 417–426.
Google Scholar
Knowlton, V. Y. (1967). Correlation of the development of membranous and bony labyrinths, acoustic ganglia, nerves, and brain centers of the chick embryo. Journal of Morphology, 121(3), 179–207.
Google Scholar
Koo, S. K., Hill, J. K., Hwang, C. H., Lin, Z. S., Millen, K. J., & Wu, D. K. (2009). Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Developmental Biology, 333(1), 14–25.
Google Scholar
Koundakjian, E. J., Appler, J. L., & Goodrich, L. V. (2007). Auditory neurons make stereotyped wiring decisions before maturation of their targets. Journal of Neuroscience, 27(51), 14078–14088.
Google Scholar
Kuratani, S., Horigome, N., Ueki, T., Aizawa, S., & Hirano, S. (1998). Stereotyped axonal bundle formation and neuromeric patterns in embryos of a cyclostome, Lampetra japonica. Journal of Comparative Neurology, 391(1), 99–114.
Google Scholar
Lawoko-Kerali, G., Rivolta, M. N., & Holley, M. (2002). Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear. Journal of Comparative Neurology, 442(4), 378–391.
Google Scholar
Lawoko-Kerali, G., Rivolta, M. N., Lawlor, P., Cacciabue-Rivolta, D. I., Langton-Hewer, C., van Doorninck, J. H., & Holley, M. C. (2004). GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear. Mechanisms of Development, 121(3), 287–299.
Google Scholar
Layman, W. S., Hurd, E. A., & Martin, D. M. (2010). Chromodomain proteins in development: Lessons from CHARGE syndrome. Clinical Genetics, 78(1), 11–20.
Google Scholar
Leone, D. P., Srinivasan, K., Chen, B., Alcamo, E., & McConnell, S. K. (2008). The determination of projection neuron identity in the developing cerebral cortex. Current Opinion in Neurobiology, 18(1), 28–35.
Google Scholar
Li, C., Van De Water, T., & Ruben, R. (1978). The fate mapping of the eleventh and twelfth day mouse otocyst: An in vitro study of the sites of origin of the embryonic inner ear sensory structures. Journal of Morphology, 157(3), 249–267.
Google Scholar
Li, H., Liu, H., Sage, C., Huang, M., Chen, Z. Y., & Heller, S. (2004). Islet-1 expression in the developing chicken inner ear. Journal of Comparative Neurology, 477(1), 1–10.
Google Scholar
Liberman, L. D., Wang, H., & Liberman, M. C. (2011). Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. Journal of Neuroscience, 31(3), 801–808.
Google Scholar
Liberman, M. C. (1980). Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections. Hearing Research, 3(1), 45–63.
Google Scholar
Liberman, M. C. (1982). Single-neuron labeling in the cat auditory nerve. Science, 216(4551), 1239–1241.
Google Scholar
Liu, M., Pereira, F. A., Price, S. D., Chu, M. J., Shope, C., Himes, D., Eatock, R. A., Brownell, W. E., Lysakowski, A., & Tsai, M. J. (2000). Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes and Development, 14(22), 2839–2854.
Google Scholar
Liu, W., & Davis, R. L. (2014). Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. Journal of Comparative Neurology, 522(10), 2299–2318.
Google Scholar
Liu, Z., Owen, T., Fang, J., & Zuo, J. (2012). Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One, 7(3), e34123.
Google Scholar
Locher, H., Frijns, J. H., van Iperen, L., de Groot, J. C., Huisman, M. A., & Chuva de Sousa Lopes, S. M. (2013). Neurosensory development and cell fate determination in the human cochlea. Neural Development, 8, 20.
Google Scholar
Lu, C. C., Appler, J. M., Houseman, E. A., & Goodrich, L. V. (2011). Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. Journal of Neuroscience, 31(30), 10903–10918.
Google Scholar
Luo, X. J., Deng, M., Xie, X., Huang, L., Wang, H., Jiang, L., Liang, G., Hu, F., Tieu, R., Chen, R., & Gan, L. (2013). GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Human Molecular Genetics, 22(18), 3609–3623.
Google Scholar
Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J. L., & Anderson, D. J. (1998). neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron, 20(3), 469–482.
Google Scholar
Ma, Q., Anderson, D. J., & Fritzsch, B. (2000). Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. Journal of the Association for Research in Otolaryngology, 1(2), 129–143.
Google Scholar
Mahmoud, A., Reed, C., & Maklad, A. (2013). Central projections of lagenar primary neurons in the chick. Journal of Comparative Neurology, 521(15), 3524–3540.
Google Scholar
Mak, A. C., Szeto, I. Y., Fritzsch, B., & Cheah, K. S. (2009). Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expression Patterns, 9(6), 444–453.
Google Scholar
Mao, Y., Reiprich, S., Wegner, M., & Fritzsch, B. (2014). Targeted deletion of Sox10 by Wnt1–cre defects neuronal migration and projection in the mouse inner ear. PLoS One, 9(4), e94580.
Google Scholar
Marovitz, W. F., Khan, K. M., & Schulte, T. (1977). Ultrastructural development of the early rat otocyst. Annals of Otology, Rhinology, and Laryngology, 86(1 Pt 2 Supplement 35), 9–28.
Google Scholar
Matei, V., Pauley, S., Kaing, S., Rowitch, D., Beisel, K. W., Morris, K., Feng, F., Jones, K., Lee, J., & Fritzsch, B. (2005). Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Developmental Dynamics, 234(3), 633–650.
Google Scholar
McCormick, C. A., & Wallace, A. C. (2012). Otolith end organ projections to auditory neurons in the descending octaval nucleus of the goldfish, Carassius auratus: A confocal analysis. Brain, Behavior and Evolution, 80(1), 41–63.
Google Scholar
Molea, D., & Rubel, E. W. (2003). Timing and topography of nucleus magnocellularis innervation by the cochlear ganglion. Journal of Comparative Neurology, 466(4), 577–591.
Google Scholar
Morris, J. K., Maklad, A., Hansen, L. A., Feng, F., Sorensen, C., Lee, K. F., Macklin, W. B., & Fritzsch, B. (2006). A disorganized innervation of the inner ear persists in the absence of ErbB2. Brain Research, 1091(1), 186–199.
Google Scholar
Morsli, H., Choo, D., Ryan, A., Johnson, R., & Wu, D. K. (1998). Development of the mouse inner ear and origin of its sensory organs. Journal of Neuroscience, 18(9), 3327–3335.
Google Scholar
Nadol, J. B., Jr. (1988). Quantification of human spiral ganglion cells by serial section reconstruction and segmental density estimates. American Journal of Otolaryngology, 9(2), 47–51.
Google Scholar
Neves, J., Kamaid, A., Alsina, B., & Giraldez, F. (2007). Differential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick. Journal of Comparative Neurology, 503(4), 487–500.
Google Scholar
Neves, J., Parada, C., Chamizo, M., & Giraldez, F. (2011). Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: A mechanism for sensory organ specification. Development, 138(4), 735–744.
Google Scholar
Neves, J., Abello, G., Petrovic, J., & Giraldez, F. (2013). Patterning and cell fate in the inner ear: A case for Notch in the chicken embryo. Development Growth and Differentiation, 55(1), 96–112.
Google Scholar
Nichols, D. H., Pauley, S., Jahan, I., Beisel, K. W., Millen, K. J., & Fritzsch, B. (2008). Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell and Tissue Research, 334(3), 339–358.
Google Scholar
Nishizaki, K., Anniko, M., Orita, Y., Karita, K., Masuda, Y., & Yoshino, T. (1998). Programmed cell death in the developing epithelium of the mouse inner ear. Acta Oto-Laryngologica, 118(1), 96–100.
Google Scholar
Ohyama, T., & Groves, A. K. (2004). Generation of Pax2–Cre mice by modification of a Pax2 bacterial artificial chromosome. Genesis, 38(4), 195–199.
Google Scholar
Ohyama, T., Mohamed, O. A., Taketo, M. M., Dufort, D., & Groves, A. K. (2006). Wnt signals mediate a fate decision between otic placode and epidermis. Development, 133(5), 865–875.
Google Scholar
Pan, N., Kopecky, B., Jahan, I., & Fritzsch, B. (2012). Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell and Tissue Research, 349(2), 415–432.
Google Scholar
Pan, W., Jin, Y., Stanger, B., & Kiernan, A. E. (2010). Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proceedings of the National Academy of Sciences of the USA, 107(36), 15798–15803.
Google Scholar
Pan, W., Jin, Y., Chen, J., Rottier, R. J., Steel, K. P., & Kiernan, A. E. (2013). Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. Journal of Neuroscience, 33(41), 16146–16157.
Google Scholar
Pauley, S., Wright, T. J., Pirvola, U., Ornitz, D., Beisel, K., & Fritzsch, B. (2003). Expression and function of FGF10 in mammalian inner ear development. Developmental Dynamics, 227(2), 203–215.
Google Scholar
Perkins, R. E., & Morest, D. K. (1975). A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarkski Optics. Journal of Comparative Neurology, 163(2), 129–158.
Google Scholar
Philippidou, P., & Dasen, J. S. (2013). Hox genes: Choreographers in neural development, architects of circuit organization. Neuron, 80(1), 12–34.
Google Scholar
Pirvola, U., Spencer-Dene, B., Xing-Qun, L., Kettunen, P., Thesleff, I., Fritzsch, B., Dickson, C., & Ylikoski, J. (2000). FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. Journal of Neuroscience, 20(16), 6125–6134.
Google Scholar
Popper, A. N., & Hoxter, B. (1984). Growth of a fish ear: 1. Quantitative analysis of hair cell and ganglion cell proliferation. Hearing Research, 15(2), 133–142.
Google Scholar
Puligilla, C., Dabdoub, A., Brenowitz, S. D., & Kelley, M. W. (2010). Sox2 induces neuronal formation in the developing mammalian cochlea. Journal of Neuroscience, 30(2), 714–722.
Google Scholar
Radde-Gallwitz, K., Pan, L., Gan, L., Lin, X., Segil, N., & Chen, P. (2004). Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. Journal of Comparative Neurology, 477(4), 412–421.
Google Scholar
Radosevic, M., Robert-Moreno, A., Coolen, M., Bally-Cuif, L., & Alsina, B. (2011). Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development, 138(3), 397–408.
Google Scholar
Raft, S., Nowotschin, S., Liao, J., & Morrow, B. E. (2004). Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development, 131(8), 1801–1812.
Google Scholar
Raft, S., Koundakjian, E. J., Quinones, H., Jayasena, C. S., Goodrich, L. V., Johnson, J. E., Segil, N., & Groves, A. K. (2007). Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development, 134(24), 4405–4415.
Google Scholar
Rasmussen, A. T. (1940). Studies of the VIIIth cranial nerve of man. The Laryngoscope, 50(1), 67–83.
Google Scholar
Rebillard, M., & Pujol, R. (1983). Innervation of the chicken basilar papilla during its development. Acta Oto-Laryngologica, 96(5–6), 379–388.
Google Scholar
Riccomagno, M. M., Takada, S., & Epstein, D. J. (2005). Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes and Development, 19(13), 1612–1623.
Google Scholar
Romand, M. R., & Romand, R. (1990). Development of spiral ganglion cells in mammalian cochlea. Journal of Electron Microscopy Technique, 15(2), 144–154.
Google Scholar
Romand, R., Dolle, P., & Hashino, E. (2006). Retinoid signaling in inner ear development. Journal of Neurobiology, 66(7), 687–704.
Google Scholar
Ronan, J. L., Wu, W., & Crabtree, G. R. (2013). From neural development to cognition: Unexpected roles for chromatin. Nature Revies Genetics, 14(5), 347–359.
Google Scholar
Ruben, R. J. (1967). Development of the inner ear of the mouse: A radioautographic study of terminal mitoses. Acta Oto-Laryngologica Supplementum, 220, 221–244.
Google Scholar
Sandell, L. L., Butler Tjaden, N. E., Barlow, A. J., & Trainor, P. A. (2014). Cochleovestibular nerve development is integrated with migratory neural crest cells. Developmental Biology, 385(2), 200–210.
Google Scholar
Sapede, D., & Pujades, C. (2010). Hedgehog signaling governs the development of otic sensory epithelium and its associated innervation in zebrafish. Journal of Neuroscience, 30(10), 3612–3623.
Google Scholar
Sapede, D., Dyballa, S., & Pujades, C. (2012). Cell lineage analysis reveals three different progenitor pools for neurosensory elements in the otic vesicle. Journal of Neuroscience, 32(46), 16424–16434.
Google Scholar
Satoh, T., & Fekete, D. M. (2005). Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development, 132(7), 1687–1697.
Google Scholar
Schmidt, J. M. (1985). Cochlear neuronal populations in developmental defects of the inner ear. Implications for cochlear implantation. Acta Oto-Laryngologica, 99(1–2), 14–20.
Google Scholar
Schwanbeck, R., Martini, S., Bernoth, K., & Just, U. (2011). The Notch signaling pathway: Molecular basis of cell context dependency. European Journal of Cell Biology, 90(6–7), 572–581.
Google Scholar
Sher, A. (1972). The embryonic and postnatal development of the inner ear of the mouse. Acta Oto-Laryngologica Supplementum, 285, 1–77.
Google Scholar
Spoendlin, H. (1972). Innervation densities of the cochlea. Acta Oto-Laryngologica, 73(2), 235–248.
Google Scholar
Spoendlin, H., & Schrott, A. (1989). Analysis of the human auditory nerve. Hearing Research, 43(1), 25–38.
Google Scholar
Stevens, C. B., Davies, A. L., Battista, S., Lewis, J. H., & Fekete, D. M. (2003). Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Developmental Biology, 261(1), 149–164.
Google Scholar
Streeter, G. L. (1906). On the development of the membranous labyrinth and the acoustic and facial nerves in the human embryo. American Journal of Anatomy, 6(1), 139–165.
Google Scholar
Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569.
Google Scholar
Varela-Nieto, I., Morales-Garcia, J. A., Vigil, P., Diaz-Casares, A., Gorospe, I., Sanchez-Galiano, S., Canon, S., Camarero, G., Contreras, J., Cediel, R., & Leon, Y. (2004). Trophic effects of insulin-like growth factor-I (IGF-I) in the inner ear. Hearing Research, 196(1–2), 19–25.
Google Scholar
Vazquez-Echeverria, C., Dominguez-Frutos, E., Charnay, P., Schimmang, T., & Pujades, C. (2008). Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Developmental Biology, 322(1), 167–178.
Google Scholar
Vemaraju, S., Kantarci, H., Padanad, M. S., & Riley, B. B. (2012). A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear. PLoS Genetics, 8(11), e1003068.
Google Scholar
Wang, S. Z., Ibrahim, L. A., Kim, Y. J., Gibson, D. A., Leung, H. C., Yuan, W., Zhang, K. K., Tao, H. W., Ma, L., & Zhang, L. I. (2013). Slit/Robo signaling mediates spatial positioning of spiral ganglion neurons during development of cochlear innervation. Journal of Neuroscience, 33(30), 12242–12254.
Google Scholar
Weisz, C., Glowatzki, E., & Fuchs, P. (2009). The postsynaptic function of type II cochlear afferents. Nature, 461(7267), 1126–1129.
Google Scholar
White, P. M., Doetzlhofer, A., Lee, Y. S., Groves, A. K., & Segil, N. (2006). Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature, 441(7096), 984–987.
Google Scholar
Whitehead, M. C., & Morest, D. K. (1981). Dual populations of efferent and afferent cochlear axons in the chicken. Neuroscience, 6(11), 2351–2365.
Google Scholar
Whitehead, M. C., & Morest, D. K. (1985). The development of innervation patterns in the avian cochlea. Neuroscience, 14(1), 255–276.
Google Scholar
Wikstrom, S. O., & Anniko, M. (1987). Early development of the stato-acoustic and facial ganglia. Acta Oto-Laryngologica, 104(1–2), 166–174.
Google Scholar
Wong, E. Y., Ahmed, M., & Xu, P. X. (2013). EYA1–SIX1 complex in neurosensory cell fate induction in the mammalian inner ear. Hearing Research, 297, 13–19.
Google Scholar
Wood, H. B., & Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mechanisms of Development, 86(1–2), 197–201.
Google Scholar
Woods, C., Montcouquiol, M., & Kelley, M. W. (2004). Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nature Neuroscience, 7(12), 1310–1318.
Google Scholar
Wright, T. J., & Mansour, S. L. (2003a). FGF signaling in ear development and innervation. Current Topics in Developmental Biology, 57, 225–259.
Google Scholar
Wright, T. J., & Mansour, S. L. (2003b). Fgf3 and Fgf10 are required for mouse otic placode induction. Development, 130(15), 3379–3390.
Google Scholar
Wu, D. K., Nunes, F. D., & Choo, D. (1998). Axial specification for sensory organs versus non-sensory structures of the chicken inner ear. Development, 125(1), 11–20.
Google Scholar
Wu, L. Q., & Dickman, J. D. (2011). Magnetoreception in an avian brain in part mediated by inner ear lagena. Current Biology, 21(5), 418–423.
Google Scholar
Xu, H., Viola, A., Zhang, Z., Gerken, C. P., Lindsay-Illingworth, E. A., & Baldini, A. (2007). Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Developmental Biology, 302(2), 670–682.
Google Scholar
Yagi, H., Furutani, Y., Hamada, H., Sasaki, T., Asakawa, S., Minoshima, S., Ichida, F., Joo, K., Kimura, M., Imamura, S., Kamatani, N., Momma, K., Takao, A., Nakazawa, M., Shimizu, N., & Matsuoka, R. (2003). Role of TBX1 in human del22q11.2 syndrome. Lancet, 362(9393), 1366–1373.
Google Scholar
Yang, H., Xie, X., Deng, M., Chen, X., & Gan, L. (2010). Generation and characterization of Atoh1–Cre knock-in mouse line. Genesis, 48(6), 407–413.
Google Scholar
Yang, T., Kersigo, J., Jahan, I., Pan, N., & Fritzsch, B. (2011). The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hearing Research, 278(1–2), 21–33.
Google Scholar
Yntema, C. L. (1937). An experimental study of the origin of the cells which constitute the VIIth and VIIIth cranial ganglia and nerves in the embryo of Amblystoma punctatum. Journal of Experimental Zoology, 75(1), 75–101.
Google Scholar
Yu, W. M., Appler, J. M., Kim, Y. H., Nishitani, A. M., Holt, J. R., & Goodrich, L. V. (2013). A Gata3–Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife, 2, e01341.
Google Scholar
Zentner, G. E., Hurd, E. A., Schnetz, M. P., Handoko, L., Wang, C., Wang, Z., Wei, C., Tesar, P. J., Hatzoglou, M., Martin, D. M., & Scacheri, P. C. (2010). CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Human Molecular Genetics, 19(18), 3491–3501.
Google Scholar
Zhang, N., Martin, G. V., Kelley, M. W., & Gridley, T. (2000). A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Current Biology, 10(11), 659–662.
Google Scholar
Zheng, W., Huang, L., Wei, Z. B., Silvius, D., Tang, B., & Xu, P. X. (2003). The role of Six1 in mammalian auditory system development. Development, 130(17), 3989–4000.
Google Scholar
Zhou, X., & Van De Water, T. R. (1987). The effect of target tissues on survival and differentiation of mammalian statoacoustic ganglion neurons in organ culture. Acta Oto-Laryngologica, 104(1–2), 90–98.
Google Scholar
Zou, D., Silvius, D., Fritzsch, B., & Xu, P. X. (2004). Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes. Development, 131(22), 5561–5572.
Google Scholar
Zou, D., Erickson, C., Kim, E. H., Jin, D., Fritzsch, B., & Xu, P. X. (2008). Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear. Human Molecular Genetics, 17(21), 3340–3356.
Google Scholar
Zweier, C., Sticht, H., Aydin-Yaylagul, I., Campbell, C. E., & Rauch, A. (2007). Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. American Journal of Human Genetics, 80(3), 510–517.
Google Scholar