Skip to main content

Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression

  • Conference paper
Book cover Oxygen Transport to Tissue XXXVII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 876))

Abstract

Systematic studies on the oxygenation status of solid tumors have shown that the development of hypoxic/anoxic tissue subvolumes is a pathophysiological trait in a wide range of human malignancies. As a result of this characteristic property, adenosine (ADO) accumulation (range: 50–100 μM) occurs caused by intra- and extracellular generation of ADO. Extracellular nucleotide catabolism by hypoxia-/HIF-1α-sensitive, membrane-associated ecto- 5′- nucleotidases most probably is the major source of ADO in the halo of cancer cells upon specific genetic alterations taking place during tumor growth. Extracellular ADO can act through autocrine and paracrine pathways following receptor-binding and involving different intracellular signalling cascades. Hypoxia-driven receptor activation can lead to a broad spectrum of strong immune-suppressive properties facilitating tumor escape from immune control (e.g., inhibition of CD4+, CD8+, NK and dendritic cells, stimulation of Treg cells). In addition, tumor growth and progression is promoted by ADO-driven direct stimulation of tumor cell proliferation, migration, invasion, metastatic dissemination, and an increase in the production of molecules stimulating tumor angiogenesis. Hypoxia- driven ADO accumulation in the tumor microenvironment thus plays a critical role in tumor growth and progression at multiple pathophysiological levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9(8):1221–1235

    Article  CAS  PubMed  Google Scholar 

  2. Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239

    Article  CAS  PubMed  Google Scholar 

  4. Höckel M et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515

    PubMed  Google Scholar 

  5. Mayer A, Vaupel P (2013) Hypoxia, lactate accumulation, and acidosis: siblings or accomplices driving tumor progression and resistance to therapy? Adv Exp Med Biol 789:203–209

    Article  CAS  PubMed  Google Scholar 

  6. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hauber W (2002) Adenosin: ein Purinnukleosid mit neuromodulatorischen Wirkungen. Neuroforum 8:228–234

    CAS  Google Scholar 

  8. Schulte G (2004) Adenosin, Adenosinrezeptoren und Adenosinrezeptor-aktivierte Signalwege. Biospektrum 2(40):159–161

    Google Scholar 

  9. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57(13):2602–2605

    CAS  PubMed  Google Scholar 

  10. Lasley RD et al (1998) Comparison of interstitial fluid and coronary venous adenosine levels in in vivo porcine myocardium. J Mol Cell Cardiol 30(6):1137–1147

    Article  CAS  PubMed  Google Scholar 

  11. MacLean DA, Sinoway LI, Leuenberger U (1998) Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans. Circulation 98(19):1990–1992

    Article  CAS  PubMed  Google Scholar 

  12. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87(2–3):161–173

    Article  CAS  PubMed  Google Scholar 

  13. Ghiringhelli F et al (2012) Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. J Biomed Biotechnol. doi:10.1155/2012/473712

    PubMed  PubMed Central  Google Scholar 

  14. Di Virgilio F (2012) Purines, purinergic receptors, and cancer. Cancer Res 72(21):5441–5447

    Article  PubMed  Google Scholar 

  15. Busse M, Vaupel P (1996) Accumulation of purine catabolites in solid tumors exposed to therapeutic hyperthermia. Experientia 52(5):469–473

    Article  CAS  PubMed  Google Scholar 

  16. Vaupel P (1994) Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors, vol 23, Lecture. Ernst Schering Research Foundation, Berlin

    Google Scholar 

  17. Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827

    Article  CAS  PubMed  Google Scholar 

  18. Gessi S et al (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808(5):1400–1412

    Article  CAS  PubMed  Google Scholar 

  19. Muller-Haegele S, Muller L, Whiteside TL (2014) Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Rev Clin Immunol 10(7):897–914

    Article  CAS  PubMed  Google Scholar 

  20. Antonioli L et al (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13(12):842–857

    Article  CAS  PubMed  Google Scholar 

  21. Allard B, Turcotte M, Stagg J (2012) CD73-generated adenosine: orchestrating the tumor-stroma interplay to promote cancer growth. J Biomed Biotechnol. doi:10.1155/2012/485156

    PubMed  PubMed Central  Google Scholar 

  22. Lee C-T, Mace T, Repasky EA (2010) Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer? Int J Hyperthermia 26(3):232–246

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sitkovsky MV et al (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14(19):5947–5952

    Article  CAS  PubMed  Google Scholar 

  24. Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9(2):145–165

    Article  CAS  PubMed  Google Scholar 

  25. Young A et al (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4(8):879–888

    Article  CAS  PubMed  Google Scholar 

  26. Sikovsky MV et al (2014) Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res 2(7):598–605

    Article  Google Scholar 

  27. Ohta A, Sitkovsky M (2014) Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol. doi:10.3389/fimmu.2014.00304

    PubMed  PubMed Central  Google Scholar 

  28. Antonioli L et al (2014) Adenosine pathway and cancer: where to go from here? Expert Opin Ther Targets 18(9):973–977

    Article  CAS  PubMed  Google Scholar 

  29. Iannone R et al (2013) Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15(12):1400–1409

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sitkovsky M et al (2008) Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 153(S1):S457–S464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Merighi S et al (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100(1):31–48

    Article  CAS  PubMed  Google Scholar 

  32. Häusler SF et al (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res 6(2):129–139

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Vaupel or Arnulf Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, New York

About this paper

Cite this paper

Vaupel, P., Mayer, A. (2016). Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression. In: Elwell, C.E., Leung, T.S., Harrison, D.K. (eds) Oxygen Transport to Tissue XXXVII. Advances in Experimental Medicine and Biology, vol 876. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3023-4_22

Download citation

Publish with us

Policies and ethics