The Rodent Vibrissal System as a Model to Study Motor Cortex Function

  • Shubhodeep Chakrabarti
  • Cornelius Schwarz


The function of mammalian motor cortex was one of the first problems studied in neuroscience. But until today, the major principles of the workings of motor cortex have remained conjectural. It is clear that motor cortex holds a topographic map of body parts. However, does that necessarily imply that motor cortex itself undertakes the challenging task of converting movement plans (i.e. intended trajectories and effects of actions) into low level motor commands appropriate for driving the muscles? Many decades of research on motor function has shown that this is not entirely true by revealing the existence of dedicated networks, the so-called central pattern generators (CPGs) . Many, if not all of them, are located sub-cortically, and are likely to take over this task. Unfortunately the detailed circuitry and cellular elements of CPGs are only vaguely known. More recent work has elucidated continuous as well as discontinuous (discrete) mapping of motor cortex to movement. In the quest to understand motor cortex-CPG interactions, discontinuities are important because they allow us to dissect how neighboring motor cortex sites connect to different CPGs for different purposes—driving the very same muscles. The rodent whisker motor system is a decidedly modular system. Neighboring cortical areas drive very distinct whisker movements used by the animals in different contexts. We review the state of art in this system and argue that the modularity of the whisker system together with its great accessibility makes it a promising candidate for a model system for the investigation of motor cortex—CPG interactions on the cellular and network level—a highly valuable tool for the subsequent understanding of the more complex and continuously organized motor cortex of the arm/hand/finger system in primates.


Motor cortex Whisking Central pattern generator Topography Motor planning Rhythmic whisking region 


  1. 1.
    Jackson JH (1958) On the anatomical and physiological localisation of movements in the brain. In: Taylor J, Holmes G, Walsche FMR (eds) Selected writings of John Hughlings Jackson on epilepsy and epileptiform convulsions. Basic Books, New York, pp 37–76Google Scholar
  2. 2.
    Fritsch G, Hitzig E (1870) Über die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Med Wiss, 37, 300–332Google Scholar
  3. 3.
    Ferrier D (1873) Experimental researches in cerebral physiology and pathology. J Anat Physiol 8:152–155PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ferrier D (1874) On the localisation of the functions of the brain. Br Med J 2:766–767PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sherrington CS, Grunbaum AS (1901) An ADDRESS on LOCALISATION in the “MOTOR” CEREBRAL CORTEX: Delivered to the Pathological Society of London, December 17th, 1901. Br Med J 2:1857–1859PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Beevor CE (1903) The Croonian Lectures ON MUSCULAR MOVEMENTS AND THEIR REPRESENTATION IN THE CENTRAL NERVOUS SYSTEM: Delivered before the Royal College of Physicians of London. Br Med J 2:12–16PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Horsley V, Schäfer EA (1886) Experiments on the character of the muscular contractions which are evoked by excitation of the various parts of the motor tract. J Physiol 7:96–110PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ferrier D (1876) Functions of the brain. Smith, Elder & Co, LondonCrossRefGoogle Scholar
  9. 9.
    Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, New YorkGoogle Scholar
  10. 10.
    Rasmussen T, Penfield W (1947) The human sensorimotor cortex as studied by electrical stimulation. Fed Proc 6:184PubMedGoogle Scholar
  11. 11.
    Schott GD (1993) Penfield’s homunculus: a note on cerebral cartography. J Neurol Neurosurg Psychiatry 56:329–333PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Asanuma H, Rosen I (1972) Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp Brain Res 14:243–256PubMedCrossRefGoogle Scholar
  13. 13.
    Woolsey CN, Settlage PH, Meyer DR, Sencer W, Pinto Hamuy T, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264PubMedGoogle Scholar
  14. 14.
    Buxton DF, Goodman DC (1967) Motor function and the corticospinal tracts in the dog and raccoon. J Comp Neurol 129:341–360PubMedCrossRefGoogle Scholar
  15. 15.
    Delgado JM (1952) Responses evoked in waking cat by electrical stimulation of motor cortex. Am J Physiol 171:436–446PubMedGoogle Scholar
  16. 16.
    Delgado JM, Livingston RB (1955) Motor representation in the frontal sulci of the cat. Yale J Biol Med 28:245–252PubMedPubMedCentralGoogle Scholar
  17. 17.
    Li CX, Waters RS (1991) Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping. Can J Neurol Sci 18:28–38PubMedGoogle Scholar
  18. 18.
    Pronichev IV, Lenkov DN (1996) Functional mapping of the motor cortex in the white mouse by microstimulation. Fiziol Zh Im I M Sechenova 82:28–35PubMedGoogle Scholar
  19. 19.
    Pronichev IV, Lenkov DN (1998) Functional mapping of the motor cortex of the white mouse by a microstimulation method. Neurosci Behav Physiol 28:80–85PubMedCrossRefGoogle Scholar
  20. 20.
    Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38CrossRefGoogle Scholar
  21. 21.
    Asanuma H, Arnold A, Zarzecki P (1976) Further study on the excitation of pyramidal tract cells by intracortical microstimulation. Exp Brain Res 26:443–461PubMedCrossRefGoogle Scholar
  22. 22.
    Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2125–2143PubMedGoogle Scholar
  23. 23.
    Stoney SD Jr, Thompson WD, Asanuma H (1968) Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J Neurophysiol 31:659–669PubMedGoogle Scholar
  24. 24.
    Capaday C, Ethier C, Brizzi L, Sik A, van Vreeswijk C, Gingras D (2009) On the nature of the intrinsic connectivity of the cat motor cortex: evidence for a recurrent neural network topology. J Neurophysiol 102:2131–2141PubMedCrossRefGoogle Scholar
  25. 25.
    Murthy VN, Fetz EE (1996) Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol 76:3968–3982PubMedGoogle Scholar
  26. 26.
    Buys EJ, Lemon RN, Mantel GW, Muir RB (1986) Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey. J Physiol 381:529–549PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fetz EE, Cheney PD (1978) Muscle fields of primate corticomotoneuronal cells. J Physiol (Paris) 74:239–245Google Scholar
  28. 28.
    Fetz EE, Cheney PD (1979) Muscle fields and response properties of primate corticomotoneuronal cells. Prog Brain Res 50:137–146PubMedCrossRefGoogle Scholar
  29. 29.
    Lemon R (1988) The output map of the primate motor cortex. Trends Neurosci 11:501–506PubMedCrossRefGoogle Scholar
  30. 30.
    Lemon RN, Mantel GW, Muir RB (1986) Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey. J Physiol 381:497–527PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    McKiernan BJ, Marcario JK, Karrer JH, Cheney PD (1998) Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. J Neurophysiol 80:1961–1980PubMedGoogle Scholar
  32. 32.
    Rathelot JA, Strick PL (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci U S A 103:8257–8262PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537PubMedGoogle Scholar
  34. 34.
    Moran DW, Schwartz AB (1999a) Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82:2693–2704PubMedGoogle Scholar
  35. 35.
    Moran DW, Schwartz AB (1999b) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82:2676–2692PubMedGoogle Scholar
  36. 36.
    Schwartz AB, Moran DW (1999) Motor cortical activity during drawing movements: population representation during lemniscate tracing. J Neurophysiol 82:2705–2718PubMedGoogle Scholar
  37. 37.
    Aflalo TN, Graziano MS (2006) Possible origins of the complex topographic organization of motor cortex: reduction of a multidimensional space onto a two-dimensional array. J Neurosci 26:6288–6297PubMedCrossRefGoogle Scholar
  38. 38.
    Graziano M (2006) The organization of behavioral repertoire in motor cortex. Annu Rev Neurosci 29:105–134PubMedCrossRefGoogle Scholar
  39. 39.
    Graziano MS, Aflalo TN (2007) Mapping behavioral repertoire onto the cortex. Neuron 56:239–251PubMedCrossRefGoogle Scholar
  40. 40.
    Graziano MS, Taylor CS, Moore T (2002a) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851PubMedCrossRefGoogle Scholar
  41. 41.
    Graziano MS, Taylor CS, Moore T (2002b) Probing cortical function with electrical stimulation. Nat Neurosci 5:921PubMedCrossRefGoogle Scholar
  42. 42.
    Bizzi E, Cheung VC, d’Avella A, Saltiel P, Tresch M (2008) Combining modules for movement. Brain Res Rev 57:125–133PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bizzi E, Mussa-Ivaldi FA, Giszter S (1991) Computations underlying the execution of movement: a biological perspective. Science 253:287–291PubMedCrossRefGoogle Scholar
  44. 44.
    Butovas S, Schwarz C (2003) Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J Neurophysiol 90:3024–3039PubMedCrossRefGoogle Scholar
  45. 45.
    Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766PubMedCrossRefGoogle Scholar
  46. 46.
    Huang CS, Hiraba H, Murray GM, Sessle BJ (1989) Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis). J Neurophysiol 61:635–650PubMedGoogle Scholar
  47. 47.
    Moore JD, Deschenes M, Furuta T, Huber D, Smear MC et al (2013) Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497:205–210PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Haiss F, Schwarz C (2005) Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex. J Neurosci 25:1579–1587PubMedCrossRefGoogle Scholar
  49. 49.
    Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond 84:308–319CrossRefGoogle Scholar
  50. 50.
    Sherrington CS (1947) The integrative action of the nervous system. Yale University Press, New Haven. p. xxiv, 433 ppGoogle Scholar
  51. 51.
    Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304PubMedGoogle Scholar
  52. 52.
    Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501PubMedGoogle Scholar
  53. 53.
    Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P et al (2012) Neural population dynamics during reaching. Nature 487:51–56PubMedPubMedCentralGoogle Scholar
  54. 54.
    Shenoy KV, Sahani M, Churchland MM (2013) Cortical control of arm movements: a dynamical systems perspective. Annu Rev Neurosci 36:337–359PubMedCrossRefGoogle Scholar
  55. 55.
    Kalaska JF, Cohen DA, Hyde ML, Prud’homme M (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9:2080–2102PubMedGoogle Scholar
  56. 56.
    Scott SH (2000) Role of motor cortex in coordinating multi-joint movements: is it time for a new paradigm? Can J Physiol Pharmacol 78:923–933PubMedCrossRefGoogle Scholar
  57. 57.
    Settlage PH, Bingham WG, Suckle HM, Borge AF, Woolsey CN. (1949) The pattern of localization in the motor cortex of the rat. Fed Proc 8, 144Google Scholar
  58. 58.
    Gioanni Y, Lamarche M (1985) A reappraisal of rat motor cortex organization by intracortical microstimulation. Brain Res 344:49–61PubMedCrossRefGoogle Scholar
  59. 59.
    Hicks SP, D’Amato CJ (1977) Locating corticospinal neurons by retrograde axonal transport of horseradish peroxidase. Exp Neurol 56:410–420PubMedCrossRefGoogle Scholar
  60. 60.
    Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G et al (1986) The organization of the rat motor cortex: a microstimulation mapping study. Brain Res 396:77–96PubMedCrossRefGoogle Scholar
  61. 61.
    Neafsey EJ, Sievert C (1982) A second forelimb motor area exists in rat frontal cortex. Brain Res 232:151–156PubMedCrossRefGoogle Scholar
  62. 62.
    Sapienza S, Talbi B, Jacquemin J, Albe-Fessard D (1981) Relationship between input and output of cells in motor and somatosensory cortices of the chronic awake rat. A study using glass micropipettes. Exp Brain Res 43:47–56PubMedCrossRefGoogle Scholar
  63. 63.
    Donoghue JP, Wise SP (1982) The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88PubMedCrossRefGoogle Scholar
  64. 64.
    Smith JB, Alloway KD (2013) Rat whisker motor cortex is subdivided into sensory-input and motor-output areas. Front Neural Circuits 7:4PubMedPubMedCentralGoogle Scholar
  65. 65.
    Zilles K, Zilles B, Schleicher A (1980) A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anat Embryol (Berl) 159:335–360CrossRefGoogle Scholar
  66. 66.
    Brecht M, Schneider M, Sakmann B, Margrie TW (2004b) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427:704–710PubMedCrossRefGoogle Scholar
  67. 67.
    Conde F, Audinat E, Maire-Lepoivre E, Crepel F (1990) Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents. Brain Res Bull 24:341–354PubMedCrossRefGoogle Scholar
  68. 68.
    Conde F, Maire-Lepoivre E, Audinat E, Crepel F (1995) Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352:567–593PubMedCrossRefGoogle Scholar
  69. 69.
    Preuss TM (1995) Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci 7:1–24PubMedCrossRefGoogle Scholar
  70. 70.
    Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17PubMedCrossRefGoogle Scholar
  71. 71.
    Sanderson KJ, Welker W, Shambes GM (1984) Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats. Brain Res 292:251–260PubMedCrossRefGoogle Scholar
  72. 72.
    Brecht M, Krauss A, Muhammad S, Sinai-Esfahani L, Bellanca S, Margrie TW (2004a) Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J Comp Neurol 479:360–373PubMedCrossRefGoogle Scholar
  73. 73.
    Alloway KD, Zhang M, Chakrabarti S (2004) Septal columns in rodent barrel cortex: functional circuits for modulating whisking behavior. J Comp Neurol 480:299–309PubMedCrossRefGoogle Scholar
  74. 74.
    Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CC (2010) Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 31:2221–2233PubMedCrossRefGoogle Scholar
  75. 75.
    Chakrabarti S, Alloway KD (2006) Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI. J Comp Neurol 498:624–636PubMedCrossRefGoogle Scholar
  76. 76.
    Chakrabarti S, Zhang M, Alloway KD (2008) MI neuronal responses to peripheral whisker stimulation: relationship to neuronal activity in si barrels and septa. J Neurophysiol 100:50–63PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Colechio EM, Alloway KD (2009) Differential topography of the bilateral cortical projections to the whisker and forepaw regions in rat motor cortex. Brain Struct Funct 213:423–439PubMedCrossRefGoogle Scholar
  78. 78.
    Koralek KA, Olavarria J, Killackey HP (1990) Areal and laminar organization of corticocortical projections in the rat somatosensory cortex. J Comp Neurol 299:133–150PubMedCrossRefGoogle Scholar
  79. 79.
    Krubitzer LA, Sesma MA, Kaas JH (1986) Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels. J Comp Neurol 250:403–430PubMedCrossRefGoogle Scholar
  80. 80.
    Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K (2011) Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72:111–123PubMedCrossRefGoogle Scholar
  81. 81.
    Miyashita E, Keller A, Asanuma H (1994) Input-output organization of the rat vibrissal motor cortex. Exp Brain Res 99:223–232PubMedCrossRefGoogle Scholar
  82. 82.
    Reep RL, Goodwin GS, Corwin JV (1990) Topographic organization in the corticocortical connections of medial agranular cortex in rats. J Comp Neurol 294:262–280PubMedCrossRefGoogle Scholar
  83. 83.
    Tennant KA, Adkins DL, Donlan NA, Asay AL, Thomas N et al (2011) The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. Cereb Cortex 21:865–876PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Farkas T, Kis Z, Toldi J, Wolff JR (1999) Activation of the primary motor cortex by somatosensory stimulation in adult rats is mediated mainly by associational connections from the somatosensory cortex. Neuroscience 90:353–361PubMedCrossRefGoogle Scholar
  85. 85.
    Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56:339–355PubMedCrossRefGoogle Scholar
  86. 86.
    Hoffer ZS, Hoover JE, Alloway KD (2003) Sensorimotor corticocortical projections from rat barrel cortex have an anisotropic organization that facilitates integration of inputs from whiskers in the same row. J Comp Neurol 466:525–544PubMedCrossRefGoogle Scholar
  87. 87.
    Sato TR, Svoboda K (2010) The functional properties of barrel cortex neurons projecting to the primary motor cortex. J Neurosci 30:4256–4260PubMedCrossRefGoogle Scholar
  88. 88.
    Zagha E, Casale AE, Sachdev RN, McGinley MJ, McCormick DA. (2013) Motor cortex feedback influences sensory processing by modulating network state. Neuron 79(3):567–78PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gerdjikov TV, Schwarz C (2013) Rhythmic whisking area (RW) in rat primary motor cortex: an internal monitor of movement-related signals. J Neurosci 33(35):14193–14204PubMedCrossRefGoogle Scholar
  90. 90.
    Fabri M, Burton H (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311:405–424PubMedCrossRefGoogle Scholar
  91. 91.
    Reep RL, Chandler HC, King V, Corwin JV (1994) Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100:67–84PubMedCrossRefGoogle Scholar
  92. 92.
    Kyuhou S, Gemba H (2002) Projection from the perirhinal cortex to the frontal motor cortex in the rat. Brain Res 929:101–104PubMedCrossRefGoogle Scholar
  93. 93.
    McIntyre DC, Kelly ME, Staines WA (1996) Efferent projections of the anterior perirhinal cortex in the rat. J Comp Neurol 369:302–318PubMedCrossRefGoogle Scholar
  94. 94.
    Porter LL, White EL (1983) Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse. J Comp Neurol 214:279–289PubMedCrossRefGoogle Scholar
  95. 95.
    Gao P, Hattox AM, Jones LM, Keller A, Zeigler HP (2003) Whisker motor cortex ablation and whisker movement patterns. Somatosens Mot Res 20:191–198PubMedCrossRefGoogle Scholar
  96. 96.
    Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc Biol Sci 274:1035–1041PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Towal RB, Hartmann MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate head movements. J Neurosci 26:8838–8846PubMedCrossRefGoogle Scholar
  98. 98.
    Alloway KD, Olson ML, Smith JB (2008) Contralateral corticothalamic projections from MI whisker cortex: potential route for modulating hemispheric interactions. J Comp Neurol 510:100–116PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Alloway KD, Smith JB, Beauchemin KJ, Olson ML (2009) Bilateral projections from rat MI whisker cortex to the neostriatum, thalamus, and claustrum: forebrain circuits for modulating whisking behavior. J Comp Neurol 515:548–564PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cicirata F, Angaut P, Cioni M, Serapide MF, Papale A (1986) Functional organization of thalamic projections to the motor cortex. An anatomical and electrophysiological study in the rat. Neuroscience 19:81–99PubMedCrossRefGoogle Scholar
  101. 101.
    Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GM (2013) Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J Neurosci 33:748–760PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rouiller EM, Liang FY, Moret V, Wiesendanger M (1991) Patterns of corticothalamic terminations following injection of Phaseolus vulgaris leucoagglutinin (PHA-L) in the sensorimotor cortex of the rat. Neurosci Lett 125:93–97PubMedCrossRefGoogle Scholar
  103. 103.
    Lavallee P, Urbain N, Dufresne C, Bokor H, Acsady L, Deschenes M (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J Neurosci 25:7489–7498PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Trageser JC, Burke KA, Masri R, Li Y, Sellers L, Keller A (2006) State-dependent gating of sensory inputs by zona incerta. J Neurophysiol 96:1456–1463PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Urbain N, Deschenes M (2007) A new thalamic pathway of vibrissal information modulated by the motor cortex. J Neurosci 27:12407–12412PubMedCrossRefGoogle Scholar
  106. 106.
    Schwarz C, Mock M (2001) Spatial arrangement of cerebro-pontine terminals. J Comp Neurol 435:418–432PubMedCrossRefGoogle Scholar
  107. 107.
    Alloway KD, Lou L, Nwabueze-Ogbo F, Chakrabarti S (2006) Topography of cortical projections to the dorsolateral neostriatum in rats: multiple overlapping sensorimotor pathways. J Comp Neurol 499:33–48PubMedCrossRefGoogle Scholar
  108. 108.
    Smith JB, Alloway KD (2010) Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex. J Neurosci 30:16832–16844PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Smith JB, Radhakrishnan H, Alloway KD (2012) Rat claustrum coordinates but does not integrate somatosensory and motor cortical information. J Neurosci 32:8583–8588PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Alloway KD, Smith JB, Beauchemin KJ (2010) Quantitative analysis of the bilateral brainstem projections from the whisker and forepaw regions in rat primary motor cortex. J Comp Neurol 518:4546–4566PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Grinevich V, Brecht M, Osten P (2005) Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing. J Neurosci 25:8250–8258PubMedCrossRefGoogle Scholar
  112. 112.
    Hattox AM, Priest CA, Keller A (2002) Functional circuitry involved in the regulation of whisker movements. J Comp Neurol 442:266–276PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Reep RL, Corwin JV, Hashimoto A, Watson RT (1987) Efferent connections of the rostral portion of medial agranular cortex in rats. Brain Res Bull 19:203–221PubMedCrossRefGoogle Scholar
  114. 114.
    Passingham RE, Myers C, Rawlins N, Lightfoot V, Fearn S (1988) Premotor cortex in the rat. Behav Neurosci 102:101–109PubMedCrossRefGoogle Scholar
  115. 115.
    Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CC (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56:907–923PubMedCrossRefGoogle Scholar
  116. 116.
    Cramer NP, Keller A (2006) Cortical control of a whisking central pattern generator. J Neurophysiol 96:209–217PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Friedman WA, Zeigler HP, Keller A (2012) Vibrissae motor cortex unit activity during whisking. J Neurophysiol 107:551–563PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Matyas F, Sreenivasan V, Marbach F, Wacongne C, Barsy B et al (2010) Motor control by sensory cortex. Science 330:1240–1243PubMedCrossRefGoogle Scholar
  119. 119.
    Kleinfeld D, Sachdev RN, Merchant LM, Jarvis MR, Ebner FF (2002) Adaptive filtering of vibrissa input in motor cortex of rat. Neuron 34:1021–1034PubMedCrossRefGoogle Scholar
  120. 120.
    Ahrens KF, Kleinfeld D (2004) Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat. J Neurophysiol 92:1700–1707PubMedCrossRefGoogle Scholar
  121. 121.
    Hill DN, Curtis JC, Moore JD, Kleinfeld D (2011) Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72:344–356PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Erlich JC, Bialek M, Brody CD (2011) A cortical substrate for memory-guided orienting in the rat. Neuron 72:330–343PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2015

Authors and Affiliations

  1. 1.Systems Neurophysiology Group, Department of Cognitive NeurologyWerner Reichardt Center for Integrative Neuroscience, University of Tübingen, Hertie Institute for Clinical Brain Research, Bernstein Center for Computational NeuroscienceTübingenGermany

Personalised recommendations