Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 75))

Abstract

Our overall objective is to find mathematical models that describe accurately how waves in nature propagate and evolve. One process that affects evolution is dissipation (Segur et al., J Fluid Mech 539:229–271, 2005), so in this paper we explore several models in the literature that incorporate various dissipative physical mechanisms. In particular, we seek theoretical models that (1) agree with measured dissipation rates in laboratory and field experiments, and (2) have the mathematical properties required to be of use in weakly nonlinear models of the evolution of waves with narrow-banded spectra, as they propagate over long distances on deep water.

We dedicate this paper to our friend and colleague, Walter Craig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin, B., Feir, F.: The disintegration of wavetrains in deep water. Part 1. J. Fluid Mech. 27, 417–430 (1967)

    Google Scholar 

  2. Benney, D., Newell, A.: The propagation of nonlinear wave envelopes. J. Math. Phys. Stud. Appl. Math. 46, 133–139 (1967)

    MATH  MathSciNet  Google Scholar 

  3. Bonnet, J.-P., Devesvre, L., Artaud, J., Moulin, P.: Dynamic viscosity of olive oil as a function of composition and temperature: a first approach. Eur. J. Lipid Sci. Technol. 113, 1019–1025 (2011)

    Article  Google Scholar 

  4. Collard, F., Ardhuin, F., Chapron, B: Monitoring and analysis of ocean swell fields from space: new methods for routine observations. J. Geophys. Res. 114, C07023 (2009)

    Google Scholar 

  5. Davies, J.T., Vose, R.M.: On the damping of capillary waves by surface films. Proc. Roy. Soc. Lond. A286, 218 (1965)

    Article  Google Scholar 

  6. Dias, F., Dyachenko, A., Zakharov, V.: Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions. Phys. Lett. A372, 1297–1302 (2008)

    Article  Google Scholar 

  7. Dore, B.: Some effects of the air-water interface on gravity waves. Geophys. Astophys. Fluid Dyn. 10, 213–230 (1978)

    Article  Google Scholar 

  8. Dysthe, K.: Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. Roy. Soc. Lond. A369, 105–114 (1979)

    Article  Google Scholar 

  9. Gramstad, O., Trulsen, K.: Fourth-order coupled nonlinear Schrödinger equations for gravity waves on deep water. Phys. Fluids. 23, 062102–062111 (2011)

    Article  Google Scholar 

  10. Henderson, D., Segur, H.: The role of dissipation in the evolution of ocean swell. J. Geo. Res: Oceans 118, 5074–5091 (2013)

    Article  Google Scholar 

  11. Henderson, D., Segur, H., Carter, J.: Experimental evidence of stable wave patterns on deep water. J. Fluid Mech. 658, 247–278 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Henderson, D.M.: Effects of surfactants on Faraday-wave dynamics. J. Fluid Mech. 365, 89–107 (1998)

    Article  MATH  Google Scholar 

  13. Huhnerfuss, H., Lange, P.A., Walters, W.: Relaxation effects in monolayers and their contribution to water wave damping. II. The Marangoni phenomenon and gravity wave attenuation. J. Coll. Int. Sci. 108, 442–450 (1985)

    Google Scholar 

  14. Jenkins, A.D., Jacobs, S.J.: Wave damping by a thin layer of viscous fluid. Phys. Fluids 9, 1256–1264 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lamb, H.: Hydrodynamics, 6th edn. Dover, New York (1932)

    MATH  Google Scholar 

  16. Lo, E., Mei, C.C.: A numerical study of water-wave modulations based on a higher-order nonlinear Schrödinger equation. J. Fluid Mech. 150, 395–415 (1985)

    Article  MATH  Google Scholar 

  17. Ma, Y., Dong, G., Perlin, M., Ma, X., Wang, G.: Experimental investigation on the evolution of the modulation instability with dissipation. J. Fluid Mech. 711, 101–121 (2012)

    Article  MATH  Google Scholar 

  18. Miles, J.: Surface-wave damping in closed basins. Proc. Roy. Soc. Lond. A297, 459–475 (1967)

    Article  Google Scholar 

  19. Ostrovsky, L.: Propagation of wave packets and space-time self-focussing in a nonlinear medium. Sov. J. Exp. Theor. Phys. 24, 797–800 (1967)

    Google Scholar 

  20. Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C.-M., Pheiff, D., Socha, K.: Stabilizing the Benjamin-Feir instability. J. Fluid Mech. 539, 229–271 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stokes, G.G.: On the theory of oscillatory waves. Trans. Camb. Phil. Soc 8, 441 (1847)

    Google Scholar 

  22. Snodgrass, F.E., Groves, G.W., Hasselmann, K., Miller, G.R., Munk, W.H., Powers, W.H.: Propagation of ocean swell across the Pacific. Phil. Trans. Roy. Soc. Lond. A259, 431–497 (1966)

    Article  Google Scholar 

  23. Trulsen, K., Dysthe, K.: A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281–289 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. van Dorn, W.G.: Boundary dissipation of oscillatory waves. J. Fluid Mech. 24, 769–779 (1966)

    Article  Google Scholar 

  25. Wu, G., Liu, Y., Yue, D.: A note on stabilizing the Benjamin-Feir instability. J. Fluid Mech. 556, 45–54 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zakharov, V.: The wave stability in nonlinear media. Sov. J. Exp. Theor. Phys. 24, 455–459 (1967)

    Google Scholar 

  27. Zakharov, V.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 2, 190–194 (1968)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation, DMS-1107379 and DMS-1107354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henderson, D., Rajan, G.K., Segur, H. (2015). Dissipation of Narrow-Banded Surface Water Waves. In: Guyenne, P., Nicholls, D., Sulem, C. (eds) Hamiltonian Partial Differential Equations and Applications. Fields Institute Communications, vol 75. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2950-4_6

Download citation

Publish with us

Policies and ethics