Advertisement

On a Fluid-Particle Interaction Model: Global in Time Weak Solutions Within a Moving Domain in \(\mathbb{R}^{3}\)

  • Stefan Doboszczak
  • Konstantina TrivisaEmail author
Part of the Fields Institute Communications book series (FIC, volume 75)

Abstract

A fluid-particle interaction model is presented for the evolution of particles dispersed in a fluid. The fluid flow is governed by the Navier-Stokes equations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation. The coupling between the dispersed and dense phases is obtained through the drag forces that the fluid and particles exert mutually. In the present context, the flow occupies a physical domain Ω t with boundary Γ t both of which vary in time. Global-in-time weak solutions are obtained using an approach based on penalization of the boundary behavior and viscosity in the weak formulation.

Keywords

Weak Solution Weak Formulation Compressible Fluid Energy Inequality Moving Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work of S.D. was supported in part by the National Science Foundation under the grant DMS-1211519 and by the John Osborn Memorial Summer Fellowship. K.T. gratefully acknowledges the support in part by the National Science Foundation under the grant DMS-1211519 and by the Simons Foundation under the Simons Fellows in Mathematics Award 267399.

References

  1. 1.
    Amsden, A.A.: Kiva-3V Release 2, Improvements to Kiva-3V. Technical Report, Los Alamos National Laboratory (1999)CrossRefGoogle Scholar
  2. 2.
    Amsden, A.A., O’Rourke, P.J., Butler, T.D.: Kiva-2, a computer program for chemical reactive flows with sprays. Technical Report. Los Alamos National Laboratory (1989)Google Scholar
  3. 3.
    Angot, P., Bruneau, Ch.-H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (4), 497–520 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ballew, J., Trivisa, K.: Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system. Nonlinear Anal. 91, 1–19 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Baranger, C.: Modélisation, étude mathématique et simulation des collisions dans les fluides complexes. Théses ENS Cachan, Juin (2004)Google Scholar
  6. 6.
    Berres, S., Bürger, R., Karlsen, K.H., Rory, E.M.: Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64, 41–80 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Caflisch, R., Papanicolaou, G.: Dynamic theory of suspensions with brownian effects. SIAM J. Appl. Math. 43, 885–906 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Carrillo, J.A., Goudon, T.: Stability and asymptotic analysis of a fluid-particle interaction model. Commun. Partial Differ. Equ. 31, 1349–1379 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Carrillo, J.A., Goudon, T., Lafitte, P.: Simulation of fluid and particles flows: asymptotic preserving schemes for bubbling and flowing regimes. J. Comput. Phys. 227, 7929–7951 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Carrillo, J.A., Karper, T., Trivisa, K.: On the dynamics of a fluid-particle interaction model: The bubbling regime. Nonlinear Anal. 74, 2778–2801 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Donatelli, D., Trivisa, K.: On a nonlinear model for tumor growth: Global in time weak solutions. J. Math. Fluid Mech. 16(4), 787–803 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Donatelli, D., Trivisa, K.: On a nonlinear model for tumor growth with drug application. To appear in Nonlinearity (2015)Google Scholar
  14. 14.
    Donatelli, D., Trivisa, K.: On a nonlinear model for tumor growth in a cellular medium. Preprint (2015)Google Scholar
  15. 15.
    Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  16. 16.
    Feiresl, E., Neustupa, J., Stebel, J.: Convergence of a Brinkman-type penalization for compressible fluid flows. J. Differ. Equ. 250(1), 596–606 (2011)CrossRefGoogle Scholar
  17. 17.
    Feireisl, E., Kreml, O., Necasova, S., Neustupa, J., Stebel, J.: Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains. J. Differ. Equ. 254, 125–140 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Friedman, A.: A hierarchy of cancer models and their mathematical challenges. Discrete Contin. Dyn. Syst. 4(1), 147–159 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lions, P.L.: Mathematical Topics in Fluid Dynamics Compressible Models, vol. 2. Oxford Science Publication, Oxford (1998)Google Scholar
  20. 20.
    Mellet, A., Vasseur, A.: Asymptotic analysis for a Vlasov-Fokker-Planck compressible Navier-Stokes system of equations. Commun. Math. Phys. 281, 573–596 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Mellet, A., Vasseur, A.: Global weak solutions for a Vlasov-Fokker-Planck Navier-Stokes system of equations. Math. Models Methods Appl. Sci. 17, 1039–1063 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Osher, S., Fedwik, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Science, vol. 153. Springer, New York (2003)Google Scholar
  23. 23.
    Williams, F.A.: Combustion Theory. Benjamin/Cummings, Menlo Park, CA (1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations