Abstract
Extracellular matrix (ECM), a non-living material that fills the space surrounding the cells, plays critical functions in multicellular organisms. On a macroscopic level, a complex mixture of proteins and polysaccharides organized in fibers and mesh-like structures provides biomechanical support to tissues, and defines organ shape and dimensions. However, on a microscopic level ECM is not just a structural element of the cellular environment but an important communication medium between the cells and their surroundings, as well as between the cells themselves. Physiological processes during embryonic development and in the adult require cells to perform their basic functions, such as survival and death, multiplication and migration, and a complex repertoire of matrix proteins and receptors helps the cells attune to the changes in their local setting. However, ECM is also a dynamic system that undergoes constant remodeling, and when that process goes awry it can promote and facilitate numerous pathological conditions. This chapter will explore how this intricate milieu of structurally and functionally divergent molecules regulates endothelial cell biology in health and disease.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339:237–46. doi:10.1007/s00441-009-0821-y.
Wight TN. Cell biology of arterial proteoglycans. Arteriosclerosis. 1989;9:1–20.
Iozzo RV. Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol. 2005;6:646–56. doi:nrm1702 [pii]10.1038/nrm1702.
Couchman JR, Pataki CA. An introduction to proteoglycans and their localization. J Histochem Cytochem. 2012;60:885–97. doi:10.1369/0022155412464638.
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341:126–40. doi:S0012-1606(09)01285-8 [pii]10.1016/j.ydbio.2009.10.026.
Muiznieks LD, Keeley FW. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta. 2013;1832:866–75. doi:S0925-4439(12)00283-9 [pii]10.1016/j.bbadis.2012.11.022.
Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89:957–89. doi:89/3/957 [pii]10.1152/physrev.00041.2008.
Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci. 2002;115:2817–28.
Kostourou V, Papalazarou V. Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochim Biophys Acta. 2014;2014(02):018. doi:S0304-4165.1400079 8 pii101016jbbagen.
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–4200. doi:123/24/4195 [pii]10.1242/jcs.023820.
Smith ML. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 2007;5:e268. doi:07-PLBI-RA-0149 [pii]10.1371/journal.pbio.0050268.
Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002;14:608–16. doi:S0955067402003617 [pii].
Nikolic I, Plate KH, Schmidt MH. EGFL7 meets miRNA-126: an angiogenesis alliance. J Angiogenesis Res. 2010;2:9. doi:10.1186/2040-2384-2-9.
Werneck CC, et al. Mice lacking the extracellular matrix protein MAGP1 display delayed thrombotic occlusion following vessel injury. Blood. 2008;111:4137–44. doi:10.1182/blood-2007-07-101733.
Bradshaw AD, et al. SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol. 2003;120:949–55. doi:12241 [pii]101046j15231747200312241x.
Rios H, et al. periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol. 2005;25:11131–44. doi:25/24/11131 [pii]10.1128/MCB.25.24.11131–11144.2005.
Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev. 2010;29:295–307. doi:10.1007/s10555-010-9221-8.
Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer. 2013;108:755–61. doi:bjc2012592 [pii]10.1038/bjc.2012.592.
Bellon G, Martiny L, Robinet A. Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol. 2004;49:203–20. doi:101016jcritrevonc200310004 S1040842803002762 [pii].
Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–19. doi:326/5957/1216 [pii]10.1126/science.1176009.
Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91–100. doi:10.1038/nrc727.
Stupack DG, Cheresh DA. ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE. 2002. doi:10.1126/stke.2002.119.pe72002/119/pe72002/119/pe7 [pii].
Tkachenko E, Rhodes JM, Simons M. Syndecans: new kids on the signaling block. Circ Res. 2005;96:488–500. doi:96/5/488 [pii]10.1161/01.RES.0000159708.71142.c8.
Hosokawa H, Ninomiya H, Kitamura Y, Fujiwara K, Masaki T. Vascular endothelial cells that express dystroglycan are involved in angiogenesis. J Cell Sci. 2002;115:1487–96.
Flamme I, Risau W. Induction of vasculogenesis and hematopoiesis in vitro. Development. 1992;116:435–9.
Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–95. doi:10.1038/74651.
Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev. Mol Cell Biol. 2011;12:551–64. doi:nrm3176 [pii]10.1038/nrm3176.
Nitta T, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 2003;161:653–60. doi:10.1083/jcb.200302070jcb.200302070 [pii].
Corada M, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A. 1999;96:9815–20.
Darland DC, D'Amore PA. Blood vessel maturation: vascular development comes of age. J Clin Invest. 1999;103:157–8. doi:10.1172/JCI6127.
Myers C, Charboneau A, Cheung I, Hanks D, Boudreau N. Sustained expression of homeobox D10 inhibits angiogenesis. Am J Pathol. 2002;161:2099–109. doi:S0002-9440(10)64488-4 [pii]10.1016/S0002-9440(10)64488-4.
Rhoads K, et al. A role for Hox A5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol. 2005;3:240–52. doi:10.1089/lrb.2005.3.240.
Stoll SJ, Bartsch S, Augustin HG, Kroll J. The transcription factor HOXC9 regulates endothelial cell quiescence and vascular morphogenesis in zebrafish via inhibition of interleukin 8. Circ Res. 2011;108:1367–77. doi:CIRCRESAHA.111.244095 [pii]10.1161/CIRCRESAHA.111.244095.
Patel S, Leal AD, Gorski DH. The homeobox gene Gax inhibits angiogenesis through inhibition of nuclear factor-kappaB-dependent endothelial cell gene expression. Cancer Res. 2005;65:1414–1424. doi:65/4/1414 [pii]10.1158/0008-5472.CAN-04-3431.
Potter MD, Barbero S, Cheresh DA. Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. J Biol Chem. 2005;280:31906–12. doi:M505568200 [pii]10.1074/jbc.M505568200.
Chen XL, et al. VEGF-induced vascular permeability is mediated by FAK. Dev Cell. 2012;22:146–57. doi:S1534-5807(11)00512-0 [pii]10.1016/j.devcel.2011.11.002.
Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA. Induction of the angiogenic phenotype by Hox D3. J Cell Biol. 1997;139:257–64.
Diehl F, Rossig L, Zeiher AM, Dimmeler S, Urbich C. The histone methyltransferase MLL is an upstream regulator of endothelial-cell sprout formation. Blood. 2007;109:1472–78. doi:blood-2006-08-039651 [pii]10.1182/blood-2006-08-039651.
Myers C, Charboneau A, Boudreau N. Homeobox B3 promotes capillary morphogenesis and angiogenesis. J Cell Biol. 2000;148:343–51.
Estrach S, et al. Laminin-binding integrins induce Dll4 expression and Notch signaling in endothelial cells. Circ Res. 2011;109:172–82. doi:CIRCRESAHA.111.240622 [pii]10.1161/CIRCRESAHA.111.240622.
Stenzel D, et al. Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep. 2011;12:1135–43. doi:embor2011194 [pii]10.1038/embor.2011.194.
del Toro R, et al. Identification and functional analysis of endothelial tip cell-enriched genes. Blood. 2010;116:4025–33. doi:blood-2010-02-270819 [pii]10.1182/blood-2010-02-270819.
Nichol D, et al. Impaired angiogenesis and altered Notch signaling in mice overexpressing endothelial Egfl7. Blood. 2010;116:6133–43. doi:10.1182/blood-2010-03-274860.
Schmidt MH, et al. Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat Cell Biol. 2009;11:873–80. doi:10.1038/ncb1896.
Albig AR, Becenti DJ, Roy TG, Schiemann WP. Microfibril-associate glycoprotein-2 (MAGP-2) promotes angiogenic cell sprouting by blocking notch signaling in endothelial cells. Microvasc Res. 2008;76:7–14. doi:10.1016/j.mvr.2008.01.001.
Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem. 1992;267:26031–7.
Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis. 2007;39:212–20. doi:S1079-9796(07)00077-0 [pii]10.1016/j.bcmd.2007.04.001.
Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21:1104–17.
Senger DR, et al. The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol. 2002;160:195–204. doi:S0002-9440(10)64363-5 [pii].
Klemke RL, et al. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol. 1997;137:481–92.
Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100:782–94. doi:100/6/782 [pii]10116101RES0000259593076611e.
De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P. Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol. 2009;29:639–49. doi:ATVBAHA.109.185165 [pii]10.1161/ATVBAHA.109.185165.
Dallas SL, Chen Q, Sivakumar P. Dynamics of assembly and reorganization of extracellular matrix proteins. Curr Topics Dev Biol. 2006;75:1–24. doi:10.1016/S0070-2153(06)75001-3.
Murphy-Ullrich JE, Hook M. Thrombospondin modulates focal adhesions in endothelial cells. J Cell Biol. 1989;109:1309–19.
Murphy-Ullrich JE, et al. Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin. J Cell Biol. 1991;115:1127–36.
Greenwood JA, Murphy-Ullrich JE. Signaling of de-adhesion in cellular regulation and motility. Microsc Res Tech. 1998;43:420–32. doi:10.1002/(SICI)1097-0029(19981201)43:5<420::AID-JEMT8>3.0.CO;2-B [pii]10.1002/(SICI)1097-0029(19981201)43:5<420::AID-JEMT8>3.0.CO;2-B.
DiMilla PA, Barbee K, Lauffenburger DA Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J. 1991;60:15–37. doi:S0006-3495(91)82027-6 [pii]10.1016/S0006-3495(91)82027–6.
Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 1997;385:537–40. doi:10.1038/385537a0.
Nikolic I, et al. EGFL7 ligates alphavbeta3 integrin to enhance vessel formation. Blood. 2013;121:3041–50. doi:blood-2011-11-394882 [pii]10.1182/blood-2011-11-394882.
Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest. 2001;107:785–90. doi:10.1172/JCI12609.
Phng LK, et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell. 2009;16:70–82. doi:S1534-5807(08)00519-4 [pii]10.1016/j.devcel.2008.12.009.
Phng LK, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell. 2009;16:196–208. doi:S1534-5807(09)00043-4 [pii]10.1016/j.devcel.2009.01.015.
Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell. 1996;87:733–43. doi:S0092-8674(00)81392-6 [pii].
Roovers K, Assoian RK. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays. 2000;22:818–26. doi:10.1002/1521-1878(200009)22:9<818::AID-BIES7>3.0.CO;2-6 [pii]10.1002/1521-1878(200009)22:9<818::AID-BIES7>3.0.CO;2-6.
Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 1997;16:2783–93. doi:10.1093/emboj/16.10.2783.
Ilic D, et al. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol. 1998;143:547–60.
Meredith JE Jr, Schwartz MA. Integrins, adhesion and apoptosis. Trends Cell Biol. 1997;7:146–50. doi:S0962-8924(97)01002-7 [pii]10.1016/S0962-8924(97)01002-7.
Bayless KJ, Davis GE. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun. 2003;312:903–13.doi:S0006291X03023659 [pii].
Gerhardt H, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161:1163–77. doi:10.1083/jcb.200302047jcb.200302047 [pii].
Davis GE, Koh W, Stratman AN. Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res C Embryo Today. 2007;81:270–85. doi:10.1002/bdrc.20107.
Davis GE, Camarillo CW. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res. 1996;224:39–51. doi:S0014-4827(96)90109-3 [pii]10.1006/excr.1996.0109.
Kamei M, et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature. 2006;442: 453–456. doi:nature04923 [pii]10.1038/nature04923.
Blum Y, et al. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol. 2008;316:312–22. doi:S0012-1606(08)00079-1 [pii]10.1016/j.ydbio.2008.01.038.
Strilic B, et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell. 2009;17:505–15. doi:S1534-5807(09)00349-9 [pii]10.1016/j.devcel.2009.08.011.
Whelan MC, Senger DR. Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem. 2003;278:327–34. doi:10.1074/jbc.M207554200M207554200 [pii].
Liu Y, Senger DR. Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. FASEB J. 2004;18:457–68. doi:10.1096/fj.03-0948com18/3/457 [pii].
Drake CJ, Davis LA, Little CD. Antibodies to beta 1-integrins cause alterations of aortic vasculogenesis, in vivo. Dev Dyn. 1992;193:83–91. doi:10.1002/aja.1001930111.
Zovein AC, et al. Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell. 2010;18:39–51. doi:S1534-5807(09)00488-2 [pii]10.1016/j.devcel.2009.12.006.
Bayless KJ, Salazar R, Davis GE. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol. 2000;156:1673–83. doi:S0002-9440(10)65038-9 [pii].
Koh W, Mahan RD, Davis GE. Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci. 2008;121:989–1001. doi:jcs.020693 [pii]10.1242/jcs.020693.
Parker LH, et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428:754–8. doi:10.1038/nature02416nature02416 [pii].
Charpentier MS, et al. CASZ1 promotes vascular assembly and morphogenesis through the direct regulation of an EGFL7/RhoA-mediated pathway. Dev Cell. 2013;25:132–43. doi:S1534-5807(13)00134-2 [pii]10.1016/j.devcel.2013.03.003.
Jakobsson L, Domogatskaya A, Tryggvason K, Edgar D, Claesson-Welsh L. Laminin deposition is dispensable for vasculogenesis but regulates blood vessel diameter independent of flow. FASEB J. 2008;22:1530–9. doi:fj.07-9617com [pii]101096fj07-9617com.
Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–93. doi:10.1038/nm0603-685 [pii]nm0603-685 [pii].
Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood. 2009;114:5091–101. doi:blood-2009-05-222364 [pii]10.1182/blood-2009-05-222364.
Zhou Z, et al. Deletion of laminin-8 results in increased tumor neovascularization and metastasis in mice. Cancer Res. 2004;64:4059–63. doi:10.1158/0008-5472.CAN-04-029164/12/4059 [pii].
Li Q, Olsen BR. Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am J Pathol. 2004;165:415–24. doi:S0002-9440(10)63307-X [pii]10.1016/S0002-9440(10)63307–X.
Mettouchi A, et al. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol Cell. 2001;8:115–27. doi:S1097-2765(01)00285-4 [pii].
Klein S, et al. Alpha 5 beta 1 integrin activates an NF-kappa B-dependent program of gene expression important for angiogenesis and inflammation. Mol Cell Biol. 2002;22:5912–22.
Hall-Glenn F, et al. CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One. 2012;7:e30562. doi:10.1371/journal.pone.0030562PONE-D-11-19485 [pii].
Yamaguchi N, et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J. 1999;18:4414–23. doi:10.1093/emboj/18.16.4414.
Taddei L, et al. Inhibitory effect of full-length human endostatin on in vitro angiogenesis. Biochem Biophys Res Commun. 1999;263:340–5. doi:10.1006/bbrc.1999.1342S0006-291X(99)91342-6 [pii].
Pasco S, et al. A specific sequence of the noncollagenous domain of the alpha3(IV) chain of type IV collagen inhibits expression and activation of matrix metalloproteinases by tumor cells. Cancer Res. 2000;60:467–73.
Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol. 2001;17:25–51. doi:10.1146/annurev.cellbio.17.1.2517/1/25 [pii].
Bornstein P. Thrombospondins as matricellular modulators of cell function. J Clin Invest. 2001;107:929–34. doi:10.1172/JCI12749.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.
Morikawa S, et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160:985–1000. doi:10.1016/S0002-9440(10)64920-6.
Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437:497–504. doi:10.1038/nature03987.
Bergers G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44. doi:10.1038/35036374.
Foley CJ, et al. Matrix metalloprotease 1a deficiency suppresses tumor growth and angiogenesis. Oncogene. 2014;33:2264–72. doi:onc2013157 [pii]10.1038/onc.2013.157.
Nakamura T, et al. Stromal metalloproteinase-9 is essential to angiogenesis and progressive growth of orthotopic human pancreatic cancer in parabiont nude mice. Neoplasia. 2007;9:979–86.
Maity G, et al. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization. Sci Rep. 2014;4:4995. doi:srep04995 [pii]10.1038/srep04995.
Johnson L, et al. Anti-EGFL7 antibodies enhance stress-induced endothelial cell death and anti-VEGF efficacy. J Clin Investg. 2013;123:3997–4009. doi:67892 [pii]10.1172/JCI67892.
Kauppila S, Stenback F, Risteli J, Jukkola A, Risteli L. Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol. 1998;186:262–8. doi:10.1002/(SICI)1096-9896(1998110)186:3<262::AID-PATH191>3.0.CO;2-3 [pii]10.1002/(SICI)1096-9896(1998110)186:3<262::AID-PATH191>3.0.CO;2-3.
Yeh YT, et al. Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One. 2012;7:e46889. doi:10.1371/journal.pone.0046889PONE-D-12-16147 [pii].
Seaman S, et al. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell. 2007;11:539–54. doi:S1535-6108(07)00144-4 [pii]10.1016/j.ccr.2007.04.017.
Tanaka K, Hiraiwa N, Hashimoto H, Yamazaki Y, Kusakabe M. Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int J Cancer. 2004;108:31–40. doi:10.1002/ijc.11509.
Schenk S, Chiquet-Ehrismann R, Battegay EJ. The fibrinogen globe of tenascin-C promotes basic fibroblast growth factor-induced endothelial cell elongation. Mol Biol Cell. 1999;10:2933–43.
Brooks PC, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157–64. doi:0092-8674(94)90007-8 [pii].
Kim S, Harris M, Varner JA. Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem. 2000;275:33920–8. doi:10.1074/jbc.M003668200.
Senger DR, et al. Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci U S A. 1997;94:13612–7.
Zhang Z, et al. alpha2beta1 integrin expression in the tumor microenvironment enhances tumor angiogenesis in a tumor cell-specific manner. Blood. 2008;111:1980–8. doi:blood-2007-06-094680 [pii]10.1182/blood-2007-06-094680.
Reynolds LE, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med. 2002;8:27–34. doi:10.1038/nm0102-27nm0102-27 [pii].
Steri V, et al. Acute depletion of endothelial beta3-integrin transiently inhibits tumor growth and angiogenesis in mice. Circ Res. 2014;114:79–91. doi:CIRCRESAHA.114.301591 [pii]10.1161/CIRCRESAHA.114.301591.
Shi Q, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362–7.
Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.
Patenaude A, Parker J, Karsan A. Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res. 2010;79:217–23. doi:10.1016/j.mvr.2010.01.007.
Gao D, et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science. 2008;319:195–98. doi:319/5860/195 [pii]10.1126/science.1150224.
Nolan DJ, et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21:1546–58. doi:21/12/1546 [pii]10.1101/gad.436307.
Bouvard C, et al. alpha6-integrin subunit plays a major role in the proangiogenic properties of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2010;30:1569–75. doi:ATVBAHA.110.209163 [pii]10.1161/ATVBAHA.110.209163.
Caiado F, Dias S. Endothelial progenitor cells and integrins: adhesive needs. Fibrogenesis Tissue Repair. 2012;5:4. doi:1755-1536-5-4 [pii]10.1186/1755-1536-5-4.
Walter DH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002;105:3017–24.
Kokubo T, Uchida H, Choi ET. Integrin alpha(v)beta(3) as a target in the prevention of neointimal hyperplasia. J Vasc Surg. 2007;45 Suppl A:A33–8. doi:S0741-5214(07)00422-3 [pii]10.1016/j.jvs.2007.02.069.
Di Santo S, et al. Oxidized low density lipoprotein impairs endothelial progenitor cell function by downregulation of E-selectin and integrin alpha(v)beta5. Biochem Biophys Res Commun. 2008;373:528–32. doi:S0006-291X(08)01213-8 [pii]10.1016/j.bbrc.2008.06.066.
Igreja C, et al. Detailed molecular characterization of cord blood-derived endothelial progenitors. Exp Hematol. 2008;36:193–203. doi:S0301-472X(07)00558-9 [pii]10.1016/j.exphem.2007.09.001.
Wijelath ES, et al. Fibronectin promotes VEGF-induced CD34 cell differentiation into endothelial cells. J Vasc Surg. 2004;39:655–60. doi:10.1016/j.jvs.2003.10.042.
Yu Y, et al. CCN1 promotes the differentiation of endothelial progenitor cells and reendothelialization in the early phase after vascular injury. Basic Res Cardiol. 105:713–724. doi:10.1007/s00395-010-0117-0(2010).
Caiado F, et al. The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials. 2011;32:7096–105. doi:S0142-9612(11)00687-9 [pii]10.1016/j.biomaterials.2011.06.022.
Wang R, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468:829–33. doi:nature09624 [pii]10.1038/nature09624.
Ricci-Vitiani L, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8. doi:nature09557 [pii]10.1038/nature09557.
McGuire TF, Sajithlal GB, Lu J, Nicholls RD, Prochownik EV. In vivo evolution of tumor-derived endothelial cells. PLoS One. 2012;7:e37138. doi:10.1371/journal.pone.0037138PONE-D-12-03955 [pii].
Maniotis AJ, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52. doi:10.1016/S0002-9440(10)65173-5.
Shirakawa K, et al. Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res. 2001;61:445–51.
Sood AK, et al. The clinical significance of tumor cell-lined vasculature in ovarian carcinoma: implications for anti-vasculogenic therapy. Cancer Biol Ther. 2002;1:661–4. doi:316 [pii].
van der Schaft DW, et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res. 2005;65:11520–8. doi:65/24/11520 [pii]10.1158/0008-5472.CAN-05-2468.
Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14:467–73. doi:10.1038/nrm3620.
Pezzolo A, et al. Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells. Cell Res. 2011;21:1470–86. doi:10.1038/cr.2011.38.
Mourad-Zeidan AA, Melnikova VO, Wang H, Raz A, Bar-Eli M. Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. Am J Pathol. 2008;173:1839–52. doi:S0002-9440(10)61567-2 [pii]10.2353/ajpath.2008.080380.
Seftor EA, et al. Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Res. 2005;65:10164–9. doi:65/22/10164 [pii]10.1158/0008-5472.CAN-05-2497.
Seftor RE, et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res. 2001;61:6322–7.
Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol Sci. 2012;33:405–12. doi:S0165-6147(12)00057-0 [pii]10.1016/j.tips.2012.04.002.
Bach-Gansmo T, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J Nucl Med. 2006;47:1434–9. doi:47/9/1434 [pii].
Cheresh DA, Stupack DG. Tumor angiogenesis: putting a value on plastic GEMMs. Circ Res. 2014;114:9–11. doi:CIRCRESAHA.113.302812 [pii]10.1161/CIRCRESAHA.113.302812.
Reynolds AR, et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med. 2009;15:392–400. doi:nm.1941 [pii]10.1038/nm.1941.
Dornhofer N, et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2006;66:5816–27. doi:66/11/5816 [pii]10.1158/0008-5472.CAN-06-0081.
Neri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer. 2005;5:436–46. doi:nrc1627 [pii]10.1038/nrc1627.
Ghajar CM, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15:807–17. doi:ncb2767 [pii]10.1038/ncb2767.
Boyerinas B, et al. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood. 2013;121:4821–31. doi:blood-2012-12-475483 [pii]10.1182/blood-2012-12-475483.
Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 2001;61:8917–23.
Tian C, et al. Overexpression of connective tissue growth factor WISP-1 in Chinese primary rectal cancer patients. World J Gastroenterol. 2007;13:3878–82.
Hashimoto Y, et al. Expression of the Elm1 gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses In vivo tumor growth and metastasis of K-1735 murine melanoma cells. J Exp Med. 1998;187:289–96.
Gupta N, et al. Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV). Mol Pathol. 2001;54:293–9.
Vallacchi V, et al. CCN3/nephroblastoma overexpressed matricellular protein regulates integrin expression, adhesion, and dissemination in melanoma. Cancer Res. 2008;68:715–23. doi:68/3/715 [pii]10.1158/0008-5472.CAN-07-2103.
Shevde LA, Das S, Clark DW, Samant RS. Osteopontin: an effector and an effect of tumor metastasis. Curr Mol Med. 2010;10:71–81. doi:CMM#07 [pii].
Naba A, et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11:M111.014647. doi:M111.014647 [pii]10.1074/mcp.M111.014647.
Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. Elife. 2014;3:e01308.
Heino J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol. 2000;19:319–23. doi:S0945-053X(00)00076-7 [pii].
Kern A, Eble J, Golbik R, Kuhn K. Interaction of type IV collagen with the isolated integrins alpha 1 beta 1 and alpha 2 beta 1. Eur J Biochem. 1993;215:151–9.
Fukuda K, Koshihara Y, Oda H, Ohyama M, Ooyama T. Type V collagen selectively inhibits human endothelial cell proliferation. Biochem Biophys Res Commun. 1988;151:1060–8. doi:S0006-291X(88)80473-X [pii].
Kielty CM, Whittaker SP, Grant ME, Shuttleworth CA. Attachment of human vascular smooth muscles cells to intact microfibrillar assemblies of collagen VI and fibrillin. J Cell Sci. 1992;103(Pt 2):445–51.
Midwood KS, Schwarzbauer JE. Elastic fibers: building bridges between cells and their matrix. Curr Biol. 2002;12:R279–R81. doi:S096098220200800X..
Jovanovic J, et al. alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity. J Biol Chem. 2007;282:6743–51. doi:M607008200 [pii]10.1074/jbc.M607008200.
Timpl R, Sasaki T, Kostka G, Chu ML. Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol. 2003;4:479–89. doi:10.1038/nrm1130nrm1130 [pii].
Zou L, Cao S, Kang N, Huebert RC, Shah VH. Fibronectin induces endothelial cell migration through beta1 integrin and Src-dependent phosphorylation of fibroblast growth factor receptor-1 at tyrosines 653/654 and 766. J Biol Chem. 2012;287:7190–202. doi:M111.304972 [pii]10.1074/jbc.M111.304972.
Wang J, Milner R. Fibronectin promotes brain capillary endothelial cell survival and proliferation through alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. J Neurochem. 2006;96:148–59. doi:JNC3521 [pii]10.1111/j.1471-4159.2005.03521.x.
Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and—2. Cold Spring Harb Perspect Med. 2012;2:a006627. doi:10.1101/cshperspect.a006627a006627 [pii].
Chaqour B. Molecular control of vascular development by the matricellular proteins () and (). Trends Dev Biol. 2013;7:59–72.
Van Obberghen-Schilling E, et al. Fibronectin and tenascin-C: accomplices in vascular morphogenesis during development and tumor growth. Int J Dev Biol. 2011;55:511–25. doi:103243eo [pii]10.1387/ijdb.103243eo.
Williams KJ. Arterial wall chondroitin sulfate proteoglycans: diverse molecules with distinct roles in lipoprotein retention and atherogenesis. Curr Opin Lipidol. 2001;12:477–87.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this chapter
Cite this chapter
Nikolic, I. (2015). More than a Scaffold: Extracellular Matrix in Vascular Signaling. In: Schmidt, M., Liebner, S. (eds) Endothelial Signaling in Development and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2907-8_7
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2907-8_7
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-2906-1
Online ISBN: 978-1-4939-2907-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)