Skip to main content

Specimens for Molecular Testing in Breast Cancer

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

  • 1574 Accesses

Abstract

Molecular testing can be performed on different specimen types. DNA- and RNA-based ancillary studies play an important role in identifying molecular portraits of breast carcinoma and in influencing routine therapies. Preanalytical factors coupled with differences in chemical and physical conditions have a significant impact on the quality of the nucleic acids. Although there are different types of fixative for surgical specimens in breast pathology, the 10 % neutral buffered formalin (NBF) is the preferred and most widely used fixative, which most molecular assays have been optimized for. Among different molecular testing methods, in situ hybridization (ISH) and reverse-transcription polymerase chain reaction (PCR) assays are more commonly used. However, next generation sequencing (NGS) set the pace in changing our understanding of the molecular traits of tumors at the genomic, transcriptomic, and epigenetic levels and is rapidly gaining pace in clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cornejo KM, et al. Theranostic and molecular classification of breast cancer. Arch Pathol Lab Med. 2014;138(1):44–56.

    Article  PubMed  Google Scholar 

  2. Khoury T, et al. Delay to formalin fixation effect on breast biomarkers. Mod Pathol. 2009;22(11):1457–67.

    Article  CAS  PubMed  Google Scholar 

  3. Tong LC, et al. The effect of prolonged fixation on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast cancer: a prospective study. Am J Surg Pathol. 2011;35(4):545–52.

    Article  PubMed  Google Scholar 

  4. Wolff AC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.

    Article  PubMed  Google Scholar 

  5. Wolff AC, et al. American society of clinical oncology/college of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131(1):18–43.

    CAS  PubMed  Google Scholar 

  6. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zoon CK, et al. Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev Mol Diagn. 2009;9(5):455–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hammond ME, et al. American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med. 2010;134(6):907–22.

    PubMed Central  PubMed  Google Scholar 

  9. Wolff AC, et al. American society of clinical oncology/college of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.

    Article  CAS  PubMed  Google Scholar 

  10. Apple S, et al. The effect of delay in fixation, different fixatives, and duration of fixation in estrogen and progesterone receptor results in breast carcinoma. Am J Clin Pathol. 2011;135(4):592–8.

    Article  PubMed  Google Scholar 

  11. Yaziji H, et al. Consensus recommendations on estrogen receptor testing in breast cancer by immunohistochemistry. Appl Immunohistochem Mol Morphol. 2008;16(6):513–20.

    Article  CAS  PubMed  Google Scholar 

  12. Bass BP, et al. A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen? Arch Pathol Lab Med. 2014;138(11):1520–30.

    Article  PubMed  Google Scholar 

  13. Khoury T, Liu Q, Liu S. Delay to formalin fixation effect on HER2 test in breast cancer by dual-color silver-enhanced in situ hybridization (dual-ISH). Appl Immunohistochem Mol Morphol. 2014;22(9):688–95.

    Article  CAS  PubMed  Google Scholar 

  14. Rakha EA, et al. The updated ASCO/CAP guideline recommendations for HER2 testing in the management of invasive breast cancer: a critical review of their implications for routine practice. Histopathology. 2014;64(5):609–15.

    Article  PubMed  Google Scholar 

  15. Bramwell NH, Burns BF. The effects of fixative type and fixation time on the quantity and quality of extractable DNA for hybridization studies on lymphoid tissue. Exp Hematol. 1988;16(8):730–2.

    CAS  PubMed  Google Scholar 

  16. Douglas MP, Rogers SO. DNA damage caused by common cytological fixatives. Mutat Res. 1998;401(1–2):77–88.

    Article  CAS  PubMed  Google Scholar 

  17. Ross JS. Clinical implementation of KRAS testing in metastatic colorectal carcinoma: the pathologist’s perspective. Arch Pathol Lab Med. 2012;136(10):1298–307.

    Article  CAS  PubMed  Google Scholar 

  18. Yagi N, et al. The role of DNase and EDTA on DNA degradation in formaldehyde fixed tissues. Biotech Histochem. 1996;71(3):123–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez-Navarro I, et al. Comparison of gene expression profiling by reverse transcription quantitative PCR between fresh frozen and formalin-fixed, paraffin-embedded breast cancer tissues. Biotechniques. 2010;48(5):389–97.

    Article  CAS  PubMed  Google Scholar 

  20. Ben-Ezra J, et al. Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction. J Histochem Cytochem. 1991;39(3):351–4.

    Article  CAS  PubMed  Google Scholar 

  21. Evers DL, et al. The effect of formaldehyde fixation on RNA: optimization of formaldehyde adduct removal. J Mol Diagn. 2011;13(3):282–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Start RD, Cross SS, Smith JH. Assessment of specimen fixation in a surgical pathology service. J Clin Pathol. 1992;45(6):546–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Noguchi M, et al. Modified formalin and methanol fixation methods for molecular biological and morphological analyses. Pathol Int. 1997;47(10):685–91.

    Article  CAS  PubMed  Google Scholar 

  24. Alers JC, et al. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier. J Histochem Cytochem. 1999;47(5):703–10.

    Article  CAS  PubMed  Google Scholar 

  25. Reineke T, et al. Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol. 2006;30(7):892–6.

    Article  PubMed  Google Scholar 

  26. Brown RS, et al. Routine acid decalcification of bone marrow samples can preserve DNA for FISH and CGH studies in metastatic prostate cancer. J Histochem Cytochem. 2002;50(1):113–5.

    Article  CAS  PubMed  Google Scholar 

  27. Arber JM, et al. The effect of decalcification on in situ hybridization. Mod Pathol. 1997;10(10):1009–14.

    CAS  PubMed  Google Scholar 

  28. Lindeman NI, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the college of American pathologists, International association for the study of lung cancer, and association for molecular pathology. Arch Pathol Lab Med. 2013;137(6):828–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Greer CE, Lund JK, Manos MM. PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies. PCR Methods Appl. 1991;1(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrer I, et al. Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathol. 2007;17(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  31. Masuda N, et al. Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res. 1999;27(22):4436–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. von Weizsacker F, et al. A simple and rapid method for the detection of RNA in formalin-fixed, paraffin-embedded tissues by PCR amplification. Biochem Biophys Res Commun. 1991;174(1):176–80.

    Article  Google Scholar 

  33. Wong C, et al. Mutations in BRCA1 from fixed, paraffin-embedded tissue can be artifacts of preservation. Cancer Genet Cytogenet. 1998;107(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  34. Gillespie JW, et al. Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol. 2002;160(2):449–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gaydosh L, DeLeon V, Golden T, Warren J, Roby R. Metal ions as forensically-relevant inhibitors of PCR-based DNA testing. In: American academy of forensic sciences: 65th anniversary meeting program; 2013.

    Google Scholar 

  36. Greer CE, et al. PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am J Clin Pathol. 1991;95(2):117–24.

    CAS  PubMed  Google Scholar 

  37. Yildiz-Aktas IZ, Dabbs DJ, Bhargava R. The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma. Mod Pathol. 2012;25(8):1098–105.

    Article  CAS  PubMed  Google Scholar 

  38. Portier BP, et al. Delay to formalin fixation ‘cold ischemia time’: effect on ERBB2 detection by in-situ hybridization and immunohistochemistry. Mod Pathol. 2013;26(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  39. Li X, et al. The effect of prolonged cold ischemia time on estrogen receptor immunohistochemistry in breast cancer. Mod Pathol. 2013;26(1):71–8.

    Article  PubMed  Google Scholar 

  40. Paik S. Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncologist. 2007;12(6):631–5.

    Article  CAS  PubMed  Google Scholar 

  41. Paik S, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  42. Bueno-de-Mesquita JM, et al. Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat. 2009;117(3):483–95.

    Article  CAS  PubMed  Google Scholar 

  43. Kittaneh M, Montero AJ, Gluck S. Molecular profiling for breast cancer: a comprehensive review. Biomark Cancer. 2013;5:61–70.

    PubMed Central  PubMed  Google Scholar 

  44. Kaklamani V. A genetic signature can predict prognosis and response to therapy in breast cancer: oncotype DX. Expert Rev Mol Diagn. 2006;6(6):803–9.

    Article  CAS  PubMed  Google Scholar 

  45. Paik S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726–34.

    Article  CAS  PubMed  Google Scholar 

  46. van’t Veer LJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  47. van de Vijver MJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.

    Article  PubMed  Google Scholar 

  48. Sapino A, et al. MammaPrint molecular diagnostics on formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2014;16(2):190–7.

    Article  CAS  PubMed  Google Scholar 

  49. Parker JS, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Nielsen TO, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010;16(21):5222–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Dowsett M, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31(22):2783–90.

    Article  PubMed  Google Scholar 

  52. Kulka J, et al. Detection of HER-2/neu gene amplification in breast carcinomas using quantitative real-time PCR—a comparison with immunohistochemical and FISH results. Pathol Oncol Res. 2006;12(4):197–204.

    Article  CAS  PubMed  Google Scholar 

  53. Susini T, et al. Preoperative assessment of HER-2/neu status in breast carcinoma: the role of quantitative real-time PCR on core-biopsy specimens. Gynecol Oncol. 2010;116(2):234–9.

    Article  CAS  PubMed  Google Scholar 

  54. Vinatzer U, et al. Expression of HER2 and the coamplified genes GRB7 and MLN64 in human breast cancer: quantitative real-time reverse transcription-PCR as a diagnostic alternative to immunohistochemistry and fluorescence in situ hybridization. Clin Cancer Res. 2005;11(23):8348–57.

    Article  CAS  PubMed  Google Scholar 

  55. Pusztai L, et al. Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin Cancer Res. 2003;9(7):2406–15.

    CAS  PubMed  Google Scholar 

  56. Geyer FC, Reis-Filho JS. Microarray-based gene expression profiling as a clinical tool for breast cancer management: are we there yet? Int J Surg Pathol. 2009;17(4):285–302.

    Article  CAS  Google Scholar 

  57. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  CAS  PubMed  Google Scholar 

  58. Reis-Filho JS. Next-generation sequencing. Breast Cancer Res. 2009;11(Suppl 3):S12.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Tan DS, et al. Getting it right: designing microarray (and not ‘microawry’) comparative genomic hybridization studies for cancer research. Lab Invest. 2007;87(8):737–54.

    Article  CAS  PubMed  Google Scholar 

  60. Nakao K, et al. A predictive factor of the quality of microarray comparative genomic hybridization analysis for formalin-fixed paraffin-embedded archival tissue. Diagn Mol Pathol. 2013;22(3):174–80.

    Article  CAS  PubMed  Google Scholar 

  61. Foekens JA, et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA. 2008;105(35):13021–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  63. Caldas C, Brenton JD. Sizing up miRNAs as cancer genes. Nat Med. 2005;11(7):712–4.

    Article  CAS  PubMed  Google Scholar 

  64. Wang L, Wang J. MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene. 2012;31(20):2499–511.

    Article  CAS  PubMed  Google Scholar 

  65. Blenkiron C, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8(10):R214.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Iorio MV, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    Article  CAS  PubMed  Google Scholar 

  67. Huang Q, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10(2):202–10.

    Article  CAS  PubMed  Google Scholar 

  68. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.

    Article  CAS  PubMed  Google Scholar 

  69. Tavazoie SF, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ibberson D, et al. RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnol. 2009;9:102.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Russnes HG, et al. Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest. 2011;121(10):3810–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. ten Bosch JR, Grody WW. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn. 2008;10(6):484–92.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Curtis C, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55(4):641–58.

    Article  CAS  PubMed  Google Scholar 

  75. Desmedt C, et al. Next-generation sequencing in breast cancer: first take home messages. Curr Opin Oncol. 2012;24(6):597–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Radovich M. Next-generation sequencing in breast cancer: translational science and clinical integration. Pharmacogenomics. 2012;13(6):637–9.

    Article  PubMed  Google Scholar 

  77. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74(12):5463–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Parkinson NJ, et al. Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA. Genome Res. 2012;22(1):125–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Bieche I, Lidereau R. Genome-based and transcriptome-based molecular classification of breast cancer. Curr Opin Oncol. 2011;23(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  80. Miller WR. Controversies in breast cancer 2009. Breast Cancer Res. 2009;11(Suppl 3):S1.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Cameron D. Proceedings of controversies in breast cancer held in Edinburgh UK, 7–8 September 2009. Breast Cancer Res, 2009. 11 Suppl 3: pp. S1–25.doi:10.1186/bcr2442

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ediz F. Cosar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakhdari, A., Hutchinson, L., Cosar, E.F. (2015). Specimens for Molecular Testing in Breast Cancer. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics