Skip to main content

The Molecular Pathology of Chemoresistance During the Therapeutic Response in Breast Cancer

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

  • 1566 Accesses

Abstract

Chemoresistance to conventional agents is a challenge for the successful treatment of breast cancer. The response, or absence of response, can be quantified through the use of conventional histopathology. However, there are currently no molecular markers that can improve on current routine pathology practice. Nevertheless, much is being revealed about the underlying biology of chemoresistance due to the rise in neoadjuvant therapy and the opportunities this affords researchers to examine tumour responses to therapy at the molecular level. Novel molecular markers of tumour response to therapy may become the mainstay of pathological practice in the coming years. Tumour resistance to chemotherapy may be innate or acquired after exposure to therapeutic insult and is the result of several molecular mechanisms responding to the presence of a cytotoxic compound. Systemically, resistance can be the consequence of detoxification in the liver where CYP clearance enzymes metabolize many chemotherapy agents. At the level of the tumour itself, drug efflux pumps are able to export many common frontline chemotherapeutics and so limit their cytotoxicity. However, many efflux pumps exist with broad and overlapping substrate ranges; redundancy in this system has hampered previous studies. There is a persuasive need for gene network analyses to gain understanding in this area. The complexity of the development of chemoresistance is further augmented by the existence of compartments of cells within many tumours that are able to reseed tumour growth after therapy has been completed. These cells, which may either be cancer stem cells or normal tumour cells induced to undergo the epithelial–mesenchymal transition, are characterized by chemoresistance and their ability to reseed tumour growth. Heterogeneous responses to chemotherapy are in part explained by the activation of multiple signalling pathways which, in a tumour, work to promote cell survival. Notch and AKT signalling for example are activated by multiple chemotherapeutics, induce expression of drug detoxification mechanisms, suppress apoptosis and enhance cancer stem-cell features. The heterogenic activation of such pathways both intra- and inter-tumourally emphasizes the need for network approaches to improve our understanding of these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarado-Cabrero I, Alderete-Vazquez G, Quintal-Ramirez M, Patino M, Ruiz E. Incidence of pathologic complete response in women treated with preoperative chemotherapy for locally advanced breast cancer: correlation of histology, hormone receptor status, Her2/Neu, and gross pathologic findings. Ann Diagn Pathol. 2009;13(3):151–7.

    Article  PubMed  Google Scholar 

  2. Pinder SE, Provenzano E, Earl H, Ellis IO. Laboratory handling and histology reporting of breast specimens from patients who have received neoadjuvant chemotherapy. Histopathology. 2007;50(4):409–17.

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Closas M, Couch FJ, Lindstrom S, et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 2013;45(4):392–8, 398e1–2.

    Google Scholar 

  4. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.

    Article  PubMed  Google Scholar 

  5. Chang J, Clark GM, Allred DC, Mohsin S, Chamness G, Elledge RM. Survival of patients with metastatic breast carcinoma: importance of prognostic markers of the primary tumor. Cancer. 2003;97(3):545–53.

    Article  PubMed  Google Scholar 

  6. Copson E, Eccles B, Maishman T, Gerty S, Stanton L, Cutress RI, Altman DG, Durcan L, Simmonds P, Lawrence G, Jones L, Bliss J, Eccles D. Prospective observational study of breast cancer treatment outcomes for UK women aged 18–40 years at diagnosis: the POSH study. J Natl Cancer Inst. 2013;105(13):978–88.

    Article  CAS  PubMed  Google Scholar 

  7. Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharmacal Res. 2005;28(3):249–68.

    Article  CAS  Google Scholar 

  8. Voon PJ, Yap HL, Ma CY, Lu F, Wong AL, Sapari NS, Soong R, Soh TI, Goh BC, Lee HS, Lee SC. Correlation of aldo-ketoreductase (AKR) 1C3 genetic variant with doxorubicin pharmacodynamics in Asian breast cancer patients. Br J Clin Pharmacol. 2013;75(6):1497–505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Serafino A, Sinibaldi-Vallebona P, Gaudiano G, Koch TH, Rasi G, Garaci E, Ravagnan G. Cytoplasmic localization of anthracycline antitumor drugs conjugated with reduced glutathione: a possible correlation with multidrug resistance mechanisms. Anticancer Res. 1998;18(2A):1159–66.

    CAS  PubMed  Google Scholar 

  10. Priebe W, Krawczyk M, Kuo MT, Yamane Y, Savaraj N, Ishikawa T. Doxorubicin- and daunorubicin-glutathione conjugates, but not unconjugated drugs, competitively inhibit leukotriene C-4 transport mediated by MRP/GS-X pump. Biochem Bioph Res Co. 1998;247(3):859–63.

    Article  CAS  Google Scholar 

  11. Mirski SE, Gerlach JH, Cole SP. Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res. 1987;47(10):2594–8.

    CAS  PubMed  Google Scholar 

  12. Davey RA, Longhurst TJ, Davey MW, Belov L, Harvie RM, Hancox D, Wheeler H. Drug resistance mechanisms and MRP expression in response to epirubicin treatment in a human leukaemia cell line. Leuk Res. 1995;19(4):275–82.

    Article  CAS  PubMed  Google Scholar 

  13. Munoz M, Henderson M, Haber M, Norris M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life. 2007;59(12):752–7.

    Article  CAS  PubMed  Google Scholar 

  14. Gaudiano G, Koch TH, Lo Bello M, Nuccetelli M, Ravagnan G, Serafino A, Sinibaldi-Vallebona P. Lack of glutathione conjugation to adriamycin in human breast cancer MCF-7/DOX cells—inhibition of glutathione S-transferase P1-1 by glutathione conjugates from anthracyclines. Biochem Pharmacol. 2000;60(12):1915–23.

    Article  CAS  PubMed  Google Scholar 

  15. Asakura T, Ohkawa K, Takahashi N, Takada K, Inoue T, Yokoyama S. Glutathione-doxorubicin conjugate expresses potent cytotoxicity by suppression of glutathione S-transferase activity: comparison between doxorubicin-sensitive and -resistant rat hepatoma cells. Brit J Cancer. 1997;76(10):1333–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Goldstein I, Rivlin N, Shoshana OY, Ezra O, Madar S, Goldfinger N, Rotter V. Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis. 2013;34(1):190–8.

    Article  CAS  PubMed  Google Scholar 

  17. Dees EC, Watkins PB. Role of cytochrome P450 phenotyping in cancer treatment. J Clin Oncol. 2005;23(6):1053–5 (official journal of the American Society of Clinical Oncology).

    Article  PubMed  Google Scholar 

  18. Zhang D, Ly VT, Lago M, Tian Y, Gan J, Humphreys WG, Comezoglu SN. CYP3A4-mediated ester cleavage as the major metabolic pathway of the oral taxane 3′-tert-butyl-3′-N-tert-butyloxycarbonyl-4-deacetyl-3′-dephenyl-3′-N-debenzoyl-4-O-methoxycarbonyl-paclitaxel (BMS-275183). Drug Metab Dispos. 2009;37(4):710–8.

    Article  CAS  PubMed  Google Scholar 

  19. Harmsen S, Meijerman I, Beijnen JH, Schellens JH. Nuclear receptor mediated induction of cytochrome P450 3A4 by anticancer drugs: a key role for the pregnane X receptor. Cancer Chemother Pharmacol. 2009;64(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  20. Riddick DS, Lee C, Ramji S, Chinje EC, Cowen RL, Williams KJ, Patterson AV, Stratford IJ, Morrow CS, Townsend AJ, Jounaidi Y, Chen CS, Su T, Lu H, Schwartz PS, Waxman DJ. Cancer chemotherapy and drug metabolism. Drug Metab Dispos. 2005;33(8):1083–96.

    Article  CAS  PubMed  Google Scholar 

  21. Buschini A, Poli P, Rossi C. Saccharomyces cerevisiae as an eukaryotic cell model to assess cytotoxicity and genotoxicity of three anticancer anthraquinones. Mutagenesis. 2003;18(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  22. Yao D, Ding S, Burchell B, Wolf CR, Friedberg T. Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: implications for the development of drug resistance. J Pharmacol Exp Ther. 2000;294(1):387–95.

    CAS  PubMed  Google Scholar 

  23. AbuHammad S, Zihlif M. Gene expression alterations in doxorubicin resistant MCF7 breast cancer cell line. Genomics. 2013;101(4):213–20.

    Article  CAS  PubMed  Google Scholar 

  24. Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 2005;5:30.

    Google Scholar 

  25. Kim B, Fatayer H, Hanby AM, Horgan K, Perry SL, Valleley EM, Verghese ET, Williams BJ, Thorne JL, Hughes TA. Neoadjuvant chemotherapy induces expression levels of breast cancer resistance protein that predict disease-free survival in breast cancer. PLoS ONE. 2013;8(5):e62766.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Litviakov NV, Garbukov E, Slonimskaia EM, Tsyganov MM, Denisov EV, Vtorushin SV, Khristenko K, Zav’ialova MV, Cherdyntseva NV. Correlation of metastasis-free survival in patients with breast cancer and changes in the direction of expression of multidrug resistance genes during neoadjuvant chemotherapy. Vopr Onkol. 2013;59(3):334–40.

    CAS  PubMed  Google Scholar 

  27. Maciejczyk A, Szelachowska J, Ekiert M, Matkowski R, Halon A, Surowiak P. Analysis of BCRP expression in breast cancer patients. Ginekol Pol. 2012;83(9):681–7.

    PubMed  Google Scholar 

  28. Jaeger W. Classical resistance mechanisms. Int J Clin Pharmacol Ther. 2009;47(1):46–8.

    Article  CAS  PubMed  Google Scholar 

  29. Porro A, Haber M, Diolaiti D, et al. Direct and coordinate regulation of ATP-binding cassette transporter genes by Myc factors generates specific transcription signatures that significantly affect the chemoresistance phenotype of cancer cells. J Biol Chem. 2010;285(25):19532–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Fatima S, Zhou S, Sorrentino BP. Abcg2 expression marks tissue-specific stem cells in multiple organs in a mouse progeny tracking model. Stem Cells. 2012;30(2):210–21.

    Article  CAS  PubMed  Google Scholar 

  31. Oshiro C, Marsh S, McLeod H, Carrillo MW, Klein T, Altman R. Taxane pathway. Pharmacogenet Genomics. 2009;19(12):979–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Masuyama H, Suwaki N, Tateishi Y, Nakatsukasa H, Segawa T, Hiramatsu Y. The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion. Mol Endocrinol. 2005;19(5):1170–80.

    Article  CAS  PubMed  Google Scholar 

  33. Chang H, Rha SY, Jeung HC, Im CK, Ahn JB, Kwon WS, Yoo NC, Roh JK, Chung HC. Association of the ABCB1 gene polymorphisms 2677G> T/A and 3435C> T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol. 2009;20(2):272–7 (official journal of the European Society for Medical Oncology/ESMO).

    Article  CAS  PubMed  Google Scholar 

  34. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13(8B):2236–52.

    Article  PubMed  Google Scholar 

  36. Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res. 2005;65(14):6207–19.

    Article  CAS  PubMed  Google Scholar 

  38. Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E, Chung IY, Kim IA, Kim EJ, Choi Y, Ryu HS, Park SY. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Brit J Cancer. 2011;104(11):1730–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rivera E. Implications of anthracycline-resistant and taxane-resistant metastatic breast cancer and new therapeutic options. Breast J. 2010;16(3):252–63.

    Article  CAS  PubMed  Google Scholar 

  40. Magni M, Shammah S, Schiro R, Mellado W, Dalla-Favera R, Gianni AM. Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood. 1996;87(3):1097–103.

    CAS  PubMed  Google Scholar 

  41. Tang L, Bergevoet SM, Gilissen C, de Witte T, Jansen JH, van der Reijden BA, Raymakers RA. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells. BMC Pharmacol. 2010;10:12.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010;86(17–18):631–7.

    Article  CAS  PubMed  Google Scholar 

  43. An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol. 2009;5(12):1529–42.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.

    Article  CAS  PubMed  Google Scholar 

  45. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101(39):14228–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zen Y, Fujii T, Yoshikawa S, Takamura H, Tani T, Ohta T, Nakanuma Y. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. Am J Pathol. 2007;170(5):1750–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Aulmann S, Waldburger N, Penzel R, Andrulis M, Schirmacher P, Sinn HP. Reduction of CD44(+)/CD24(−) breast cancer cells by conventional cytotoxic chemotherapy. Hum Pathol. 2010;41(4):574–81.

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi CI, Suda T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 2012;227(2):421–30.

    Article  CAS  PubMed  Google Scholar 

  49. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;4:265–73.

    Article  Google Scholar 

  50. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D’Alessio AC, Young RA, Weinberg RA. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154(1):61–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Smalley M, Piggott L, Clarkson R. Breast cancer stem cells: obstacles to therapy. Cancer Lett. 2013;338(1):57–62.

    Google Scholar 

  52. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20.

    Article  CAS  PubMed  Google Scholar 

  53. Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M, Stanford J, Cook RS, Arteaga CL. TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Investig. 2013;123(3):1348–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wang FY, Arisawa T, Tahara T, Takahama K, Watanabe M, Hirata I, Nakano H. Aberrant DNA methylation in ulcerative colitis without neoplasia. Hepatogastroenterology. 2008;55(81):62–5.

    CAS  PubMed  Google Scholar 

  55. Rogers KM, Thomas M, Galligan L, Wilson TR, Allen WL, Sakai H, Johnston PG, Longley DB. Cellular FLICE-inhibitory protein regulates chemotherapy-induced apoptosis in breast cancer cells. Mol Cancer Ther. 2007;6(5):1544–51.

    Article  CAS  PubMed  Google Scholar 

  56. Ellis PA, Smith IE, McCarthy K, Detre S, Salter J, Dowsett M. Preoperative chemotherapy induces apoptosis in early breast cancer. Lancet. 1997;349(9055):849.

    Article  CAS  PubMed  Google Scholar 

  57. Buchholz TA, Davis DW, McConkey DJ, Symmans WF, Valero V, Jhingran A, Tucker SL, Pusztai L, Cristofanilli M, Esteva FJ, Hortobagyi GN, Sahin AA. Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy. Cancer J. 2003;9(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  58. Tiezzi DG, De Andrade JM, Candido dos Reis FJ, Marana HR, Ribeiro-Silva A, Tiezzi MG, Pereira AP. Apoptosis induced by neoadjuvant chemotherapy in breast cancer. Pathology. 2006;38(1):21–7.

    Article  PubMed  Google Scholar 

  59. Teixeira C, Reed JC, Pratt MA. Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res. 1995;55(17):3902–7.

    CAS  PubMed  Google Scholar 

  60. Hahm HA, Davidson NE, Giguere JK, DiBernardo C, O’Reilly S. Breast cancer metastatic to the choroid. J Clin Oncol. 1998;16(6):2280–2 (official journal of the American Society of Clinical Oncology).

    CAS  PubMed  Google Scholar 

  61. Miller WR, Dixon JM, Macfarlane L, Cameron D, Anderson TJ. Pathological features of breast cancer response following neoadjuvant treatment with either letrozole or tamoxifen. Eur J Cancer. 2003;39(4):462–8.

    Article  CAS  PubMed  Google Scholar 

  62. Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms intermediacy of H(2)O(2)− and p53-dependent pathways. J Biol Chem. 2004;279(24):25535–43.

    Article  CAS  PubMed  Google Scholar 

  63. Merlo GR, Basolo F, Fiore L, Duboc L, Hynes NE. p53-dependent and p53-independent activation of apoptosis in mammary epithelial cells reveals a survival function of EGF and insulin. J Cell Biol. 1995;128(6):1185–96.

    Article  CAS  PubMed  Google Scholar 

  64. Bailey ST, Shin HJ, Westerling T, Liu XS, Brown M. Estrogen receptor prevents p53-dependent apoptosis in breast cancer. P Natl Acad Sci USA. 2012;109(44):18060–5.

    Article  CAS  Google Scholar 

  65. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Griffith C, Boeddinghaus I, Salter J, Detre S, Hills M, Ashley S, Francis S, Walsh G, A’Hern R. Proliferation and apoptosis as markers of benefit in neoadjuvant endocrine therapy of breast cancer. Clin Cancer Res. 2006;12(3 Pt 2):1024s–30s (an official journal of the American Association for Cancer Research).

    Article  CAS  PubMed  Google Scholar 

  66. Tanei T, Shimomura A, Shimazu K, Nakayama T, Kim SJ, Iwamoto T, Tamaki Y, Noguchi S. Prognostic significance of Ki67 index after neoadjuvant chemotherapy in breast cancer. Euro J Surg Oncol J Euro Soc Surg Oncol Br Assoc Surg Oncol. 2011;37(2):155–61.

    CAS  Google Scholar 

  67. Sayeed A, Konduri SD, Liu W, Bansal S, Li F, Das GM. Estrogen receptor alpha inhibits p53-mediated transcriptional repression: implications for the regulation of apoptosis. Cancer Res. 2007;67(16):7746–55.

    Article  CAS  PubMed  Google Scholar 

  68. Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996;2(7):811–4.

    Article  CAS  PubMed  Google Scholar 

  69. Elledge RM, Gray R, Mansour E, Yu Y, Clark GM, Ravdin P, Osborne CK, Gilchrist K, Davidson NE, Robert N, et al. Accumulation of p53 protein as a possible predictor of response to adjuvant combination chemotherapy with cyclophosphamide, methotrexate, fluorouracil, and prednisone for breast cancer. J Natl Cancer Inst. 1995;87(16):1254–6.

    Article  CAS  PubMed  Google Scholar 

  70. Elledge RM, Lock-Lim S, Allred DC, Hilsenbeck SG, Cordner L. p53 mutation and tamoxifen resistance in breast cancer. Clin Cancer Res. 1995;1(10):1203–8 (an official journal of the American Association for Cancer Research).

    CAS  PubMed  Google Scholar 

  71. King AE, Collins F, Klonisch T, Sallenave JM, Critchley HO, Saunders PT. An additive interaction between the NFkappaB and estrogen receptor signalling pathways in human endometrial epithelial cells. Hum Reprod. 2010;25(2):510–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Long MD, Thorne JL, Russell J, Battaglia S, Singh PK, Sucheston-Campbell LE, Campbell MJ. Cooperative behavior of the nuclear receptor superfamily and its deregulation in prostate cancer. Carcinogenesis. 2014;35(2):262–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Rizzo P, Miao H, D’Souza G, Osipo C, Song LL, Yun J, Zhao H, Mascarenhas J, Wyatt D, Antico G, Hao L, Yao K, Rajan P, Hicks C, Siziopikou K, Selvaggi S, Bashir A, Bhandari D, Marchese A, Lendahl U, Qin JZ, Tonetti DA, Albain K, Nickoloff BJ, Miele L. Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 2008;68(13):5226–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Sisci D, Maris P, Cesario MG, Anselmo W, Coroniti R, Trombino GE, Romeo F, Ferraro A, Lanzino M, Aquila S, Maggiolini M, Mauro L, Morelli C, Ando S. The estrogen receptor alpha is the key regulator of the bifunctional role of FoxO3a transcription factor in breast cancer motility and invasiveness. Cell Cycle. 2013;12(21):3405–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Troester MA, Herschkowitz JI, Oh DS, He X, Hoadley KA, Barbier CS, Perou CM. Gene expression patterns associated with p53 status in breast cancer. BMC Cancer. 2006;6:276.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Cave JW. Selective repression of Notch pathway target gene transcription. Developmental biology. 2011;360(1):123–31.

    Article  CAS  PubMed  Google Scholar 

  77. Groth C, Fortini ME. Therapeutic approaches to modulating Notch signaling. Semin Cell Dev Biol. 2012;23(4):465–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Callahan Raafat. Notch signaling in mammary gland tumorigenesis. Journal of mammary gland biology and neoplasia. 2001;6(1):23–36.

    Article  CAS  PubMed  Google Scholar 

  79. Landor SKJ, Mutvei AP, Mamaeva V, Jin S, Busk M, Borra R, Gronroos TJ, Kronqvist P, Lendahl U, Sahlgren CM. Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. PNAS USA 2011;108(46):18814–9.

    Google Scholar 

  80. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65(18):8530–7.

    Article  CAS  PubMed  Google Scholar 

  81. Reedijk M, Pinnaduwage D, Dickson BC, Mulligan AM, Zhang H, Bull SB, O’Malley FP, Egan SE, Andrulis IL. JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Res Treat. 2008;111(3):439–48.

    Article  CAS  PubMed  Google Scholar 

  82. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res (BCR). 2004;6(6):R605–15.

    Article  CAS  Google Scholar 

  83. Liu S, Wicha MS. Targeting breast cancer stem cells. J Clin Oncol. 2010;28(25):4006–12 (official journal of the American Society of Clinical Oncology).

    Article  CAS  PubMed  Google Scholar 

  84. Gonzalez-Angulo AM, Iwamoto T, Liu S, Chen H, Do KA, Hortobagyi GN, Mills GB, Meric-Bernstam F, Symmans WF, Pusztai L. Gene expression, molecular class changes, and pathway analysis after NACT for breast cancer. Clinical Cancer Res. 2012;18(4):1109–19 (an official journal of the American Association for Cancer Research).

    Article  CAS  Google Scholar 

  85. Cho S, Lu M, He X, Ee PL, Bhat U, Schneider E, Miele L, Beck WT. Notch1 regulates the expression of ABCC1/MRP1 in cultured cancer cells. PNAS USA 2011;108(51):20778–83.

    Google Scholar 

  86. Leonessa C. ABC transporters and drug resistance in breast cancer. Endocr-Relat Cancer. 2003;10(1):43–73.

    Article  CAS  PubMed  Google Scholar 

  87. Mao J, Song B, Shi Y, Wang B, Fan S, Yu X, Tang J, Li L. ShRNA targeting Notch1 sensitizes breast cancer stem cell to paclitaxel. Int J Biochem Cell Biol. 2013;45(6):1064–73.

    Article  CAS  PubMed  Google Scholar 

  88. Qiu M, Peng Q, Jiang I, Carroll C, Han G, Rymer I, Lippincott J, Zachwieja J, Gajiwala K, Kraynov E, Thibault S, Stone D, Gao Y, Sofia S, Gallo J, Li G, Yang J, Li K, Wei P. Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells. Cancer Lett. 2013;328(2):261–70.

    Article  CAS  PubMed  Google Scholar 

  89. Campbell IG, Russell SE, Choong DYH, Montgomery KG, Ciavarella ML, Hooi CSF, Cristiano BE, Pearson RB, Phillips WA. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64(21):7678–81.

    Article  CAS  PubMed  Google Scholar 

  90. Jiang BH, Liu LZ. PI3 K/PTEN signaling in tumorigenesis and angiogenesis. Bba-Proteins Proteom. 2008;1784(1):150–8.

    Article  CAS  Google Scholar 

  91. Winograd-Katz SE, Levitzki A. Cisplatin induces PKB/Akt activation and p38(MAPK) phosphorylation of the EGF receptor. Oncogene. 2006;25(56):7381–90.

    Article  CAS  PubMed  Google Scholar 

  92. Plo I, Bettaieb A, Payrastre B, Mansat-De Mas V, Bordier C, Rousse A, Kowalski-Chauvel A, Laurent G, Lautier D. The phosphoinositide 3-kinase/Akt pathway is activated by daunorubicin in human acute myeloid leukemia cell lines. FEBS Lett. 1999;452(3):150–4.

    Article  CAS  PubMed  Google Scholar 

  93. Clark AS, West K, Streicher S, Dennis PA. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther. 2002;1(9):707–17.

    CAS  PubMed  Google Scholar 

  94. Mabuchi S, Ohmichi M, Kimura A, Hisamoto K, Hayakawa J, Nishio Y, Adachi K, Takahashi K, Arimoto-Ishida E, Nakatsuji Y, Tasaka K, Murata Y. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J Biol Chem. 2002;277(36):33490–500.

    Article  CAS  PubMed  Google Scholar 

  95. Datta SR, Dudek H, Tao X, Masters S, Fu HA, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  96. delPeso L, GonzalezGarcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997;278(5338):687–9.

    Google Scholar 

  97. Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, Marrack P, Bratton DL, Henson PM. Phosphorylation of Bax Ser(184) by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem. 2004;279(20):21085–95.

    Article  CAS  PubMed  Google Scholar 

  98. Zhou BHP, Liao Y, Xia WY, Zou YY, Spohn B, Hung MC. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001;3(11):973–82.

    Article  CAS  PubMed  Google Scholar 

  99. Garcia MG, Alaniz LD, Russo RIC, Alvarez E, Hajos SE. PI3K/Akt inhibition modulates multidrug resistance and activates NF-kappa B in murine lymphoma cell lines. Leukemia Res. 2009;33(2):288–96.

    Article  CAS  Google Scholar 

  100. Takada T, Suzuki H, Gotoh Y, Sugiyama Y. Regulation of the cell surface expression of human BCRP/ABCG2 by the phosphorylation state of Akt in polarized cells. Drug Metab Dispos. 2005;33(7):905–9.

    Article  CAS  PubMed  Google Scholar 

  101. Mogi M, Yang J, Lambert JF, Colvin GA, Shiojima I, Skurk C, Summer R, Fine A, Quesenberry PJ, Walsh K. Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem. 2003;278(40):39068–75.

    Article  CAS  PubMed  Google Scholar 

  102. Nakanishi T, Chumsri S, Khakpour N, Brodie AH, Leyland-Jones B, Hamburger AW, Ross DD, Burger AM. Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Brit J Cancer. 2010;102(5):815–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Hanby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thorne, J.L., Hanby, A.M., Hughes, T.A. (2015). The Molecular Pathology of Chemoresistance During the Therapeutic Response in Breast Cancer. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics