Skip to main content

Molecular Pathology of Breast Cancer Metastasis

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

Abstract

Breast cancer metastasis is a complex multistep process that starts early with acquisition of molecular changes in the malignant cells within the confinement of the ductolobular units that allow them to invade basement membrane and interact with surrounding stroma and matrix. Stromal invasion is followed by invasion of lymphatic/blood vessel walls through interaction with stromal cells, immune cells and endothelial cells. Vessel invasion in breast cancer is mainly lymphatic with less than 10 % of cases showing blood vessel invasion. Intra-vascular tumour cells circulate in the blood and/or lymph to reach distant sites, often draining lymph nodes, where extravasation of tumour cells takes place. Extravasated tumour cells at metastatic sites start to grow again and invade surrounding structure. Metastatic tumour continues to spread through further tumour growth and infiltration of the surrounding tissue at the metastatic sites and by spreading to other distant sites through lymphovascular spaces. The most common distant metastatic sites include lungs, liver, brain and bone. This metastatic process involves a number of molecular alterations, which are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Sledge GW, Miller KD. Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur J Cancer. 2003;39(12):1668–75.

    Article  PubMed  Google Scholar 

  3. Beckmann MW, Niederacher D, Schnürch HG, Gusterson BA, Bender HG. Multistep carcinogenesis of breast cancer and tumour heterogeneity. J Mol Med. 1997;75(6):429–39.

    Article  CAS  PubMed  Google Scholar 

  4. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.

    Article  CAS  PubMed  Google Scholar 

  5. Weinberg RA. Mechanisms of malignant progression. Carcinogenesis. 2008;29(6):1092–1095. PubMed PMID: 18453542. Epub 2008/05/06. eng.

    Google Scholar 

  6. Rabbani SA, Mazar AP. Evaluating distant metastases in breast cancer: from biology to outcomes. Cancer Metastasis Rev. 2007;26(3–4):663–674. PubMed PMID: 17823779. Epub 2007/09/08. eng.

    Google Scholar 

  7. Nicolini A, Giardino R, Carpi A, Ferrari P, Anselmi L, Colosimo S, et al. Metastatic breast cancer: an updating. Biomed Pharmacother. 2006;60(9):548–556. PubMed PMID: 16950593. Epub 2006/09/05. eng.

    Google Scholar 

  8. Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602. PubMed PMID: 16056258. Epub 2005/08/02. eng.

    Google Scholar 

  9. Duffy MJ, McGowan PM, Gallagher WM. Cancer invasion and metastasis: changing views. J Pathol. 2008;214(3):283–293. PubMed PMID: 18095256. Epub 2007/12/21. eng.

    Google Scholar 

  10. Virnig BA, Tuttle TM, Shamliyan T, Kane RL. Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst. 2010;102(3):170–8.

    Article  PubMed  Google Scholar 

  11. Christofori G. New signals from the invasive front. Nature. 2006;441(7092):444–450. PubMed PMID: 16724056. Epub 2006/05/26. eng.

    Google Scholar 

  12. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–695. PubMed PMID: 17110329. Epub 2006/11/18. eng.

    Google Scholar 

  13. Shchors K, Evan G. Tumor angiogenesis: cause or consequence of cancer? Cancer Res. 2007;67(15):7059–7061. PubMed PMID: 17671171. Epub 2007/08/03. eng.

    Google Scholar 

  14. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–454. PubMed PMID: 12189386. Epub 2002/08/22. eng.

    Google Scholar 

  15. Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev Genet. 2007;8(5):341–52.

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt S, Friedl P. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res. 2010;339(1):83–92. PubMed PMID: 19921267. Epub 2009/11/19. eng.

    Google Scholar 

  17. Knust E. Regulation of epithelial cell shape and polarity by cell-cell adhesion (Review). Mol Membr Biol. 2002;19(2):113–120. PubMed PMID: 12126229. Epub 2002/07/20. eng.

    Google Scholar 

  18. Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol. 2004;16(1):14–23. PubMed PMID: 15037300. Epub 2004/03/24. eng.

    Google Scholar 

  19. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–142. PubMed PMID: 16493418. Epub 2006/02/24. eng.

    Google Scholar 

  20. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–1520. PubMed PMID: 17645776. Epub 2007/07/25. eng.

    Google Scholar 

  21. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. 2006 20060222 DCOM- 20060317(1471-0072 (Print)). eng.

    Google Scholar 

  22. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101(2):293–239. PubMed PMID: 19961486. Epub 2009/12/08. eng.

    Google Scholar 

  23. Cardiff R. The Pathology of EMT in Mouse Mammary Tumorigenesis. J Mammary Gland Biol Neoplasia. 2010;15(2):225–33.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Tomaskovic-Crook E, Thompson EW, Thiery JP. Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res. 2009;11(6):213. PubMed PMID: 19909494. Epub 2009/11/17. eng.

    Google Scholar 

  25. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–273. PubMed PMID: 19262571. Epub 2009/03/06. eng.

    Google Scholar 

  26. Barak V, Goike H, Panaretakis KW, Einarsson R. Clinical utility of cytokeratins as tumor markers. Clin Biochem. 2004;37(7):529–540. PubMed PMID: 15234234. Epub 2004/07/06. eng.

    Google Scholar 

  27. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–733. PubMed PMID: 18461349. Epub 2008/05/08. eng.

    Google Scholar 

  28. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Zhou BP. New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin (Shanghai). 2008;40(7):643–650. PubMed PMID: 18604456. Epub 2008/07/08. eng.

    Google Scholar 

  30. Xue C, Plieth D, Venkov C, Xu C, Neilson EG. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res. 2003;63(12):3386–3394. PubMed PMID: 12810675. Epub 2003/06/18. eng.

    Google Scholar 

  31. Tarin D. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 2005;65(14):5996–6001.

    Article  CAS  PubMed  Google Scholar 

  32. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell. 2006;9(4):261–272. PubMed PMID: 16616332. Epub 2006/04/18. eng.

    Google Scholar 

  33. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGF[beta] signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101(4):816-29. PubMed PMID: 17243120. Epub 2007/01/24. eng.

    Google Scholar 

  35. Wendt MK, Smith JA, Schiemann WP. Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene. 2010;29(49):6485–6498. PubMed PMID: 20802523. Epub 2010/08/31. eng.

    Google Scholar 

  36. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–939. PubMed PMID: 15210113. Epub 2004/06/24. eng.

    Google Scholar 

  37. Lamouille S, Derynck R. Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-beta-induced epithelial-mesenchymal transition. Cells Tissues Organs. 2011;193(1–2):8–22. PubMed PMID: 21041997. Epub 2010/11/03. eng.

    Google Scholar 

  38. Albasri A, Seth R, Jackson D, Benhasouna A, Crook S, Nateri AS, et al. C-terminal Tensin-like (CTEN) is an oncogene which alters cell motility possibly through repression of E-cadherin in colorectal cancer. J Pathol. 2009;218(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  39. Moyret-Lalle C, Ruiz E, Puisieux A. Epithelial-mesenchymal transition transcription factors and miRNAs: “Plastic surgeons” of breast cancer. World J Clin Oncol. 2014;5(3):311–322. PubMed PMID: 25114847. Pubmed Central PMCID: PMC4127603. Epub 2014/08/13. eng.

    Google Scholar 

  40. Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004;48(5–6):365–375. PubMed PMID: 15349812. Epub 2004/09/07. eng.

    Google Scholar 

  41. Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in tumor progression. Ann N Y Acad Sci. 2004;1014:155–163. PubMed PMID: 15153430. Epub 2004/05/22. eng.

    Google Scholar 

  42. Aleskandarany M, Green A, Rakha E, Powe D, Ellis I. Epithelial mesenchymal transition in invasive breast carcinoma: molecular pathways and relation to molecular subtypes. J Pathol. 2010;222(S1):S1–51.

    Article  Google Scholar 

  43. Yoder BJ, Wilkinson EJ, Massoll NA. Molecular and morphologic distinctions between infiltrating ductal and lobular carcinoma of the breast. Breast J. 2007;13(2):172–179. PubMed PMID: 17319859.

    Google Scholar 

  44. Mahler-Araujo B, Savage K, Parry S, Reis-Filho JS. Reduction of E-cadherin expression is associated with non-lobular breast carcinomas of basal-like and triple negative phenotype. J Clin Pathol. 2008;61(5):615–20.

    Article  CAS  PubMed  Google Scholar 

  45. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–997. PubMed PMID: 18281472. Epub 2008/02/19. eng.

    Google Scholar 

  46. Aleskandarany MA, Negm OH, Green AR, Ahmed MA, Nolan CC, Tighe PJ, et al. Epithelial mesenchymal transition in early invasive breast cancer: an immunohistochemical and reverse phase protein array study. Breast Cancer Res Treat. 2014;145(2):339–348. PubMed PMID: 24771047. Epub 2014/04/29. eng.

    Google Scholar 

  47. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–5596. PubMed PMID: 23420197. Epub 2013/02/20. eng.

    Google Scholar 

  48. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006 05//print;6(5):392–401.

    Google Scholar 

  49. Drake LE, Macleod KF. Tumour suppressor gene function in carcinoma-associated fibroblasts: from tumour cells via EMT and back again? J Pathol. 2014;232(3):283–8.

    Article  CAS  PubMed  Google Scholar 

  50. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nature Genet. 2002;32(3):355–357. PubMed PMID: 12379854. Epub 2002/10/16. eng.

    Google Scholar 

  51. Phan-Lai V, Florczyk SJ, Kievit FM, Wang K, Gad E, Disis ML, et al. Three-dimensional scaffolds to evaluate tumor associated fibroblast-mediated suppression of breast tumor specific T cells. Biomacromolecules. 2013;14(5):1330–1337. PubMed PMID: 23517456. Pubmed Central PMCID: PMC3664178. Epub 2013/03/23. eng.

    Google Scholar 

  52. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the absence of epithelial-mesenchymal transition: Podoplanin-mediated remodeling of the actin cytoskeleton. Cancer cell. 2006;9(4):261–272.

    Google Scholar 

  53. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    Google Scholar 

  54. Schoenborn JR, Wilson CB. Regulation of interferon‐γ during innate and adaptive immune responses. In: Frederick WA, editor. Advances in immunology 96: Academic Press; 2007. p. 41–101.

    Google Scholar 

  55. Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the thymus. Nat Rev Immunol. 2012;12(3):157–167. PubMed PMID: 22322317. Epub 2012/02/11. eng.

    Google Scholar 

  56. Jaberipour M, Habibagahi M, Hosseini A, Habibabad SR, Talei A, Ghaderi A. Increased CTLA-4 and FOXP3 transcripts in peripheral blood mononuclear cells of patients with breast cancer. Pathol Oncol Res. 2010;16(4):547–551. PubMed PMID: 20306312. Epub 2010/03/23. eng.

    Google Scholar 

  57. Campbell DJ, Koch MA. Treg cells: patrolling a dangerous neighborhood. 2011.

    Google Scholar 

  58. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat. 2012;132(2):545–553. PubMed PMID: 21671016. Epub 2011/06/15. eng.

    Google Scholar 

  59. Andre F, Dieci MV, Dubsky P, Sotiriou C, Curigliano G, Denkert C, et al. Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin Cancer Res. 2013;19(1):28–33. PubMed PMID: 23258741. Epub 2012/12/22. eng.

    Google Scholar 

  60. Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res. 2011;71(10):3505–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Joimel U, Gest C, Soria J, Pritchard LL, Alexandre J, Laurent M, et al. Stimulation of angiogenesis resulting from cooperation between macrophages and MDA-MB-231 breast cancer cells: proposed molecular mechanism and effect of tetrathiomolybdate. BMC Cancer. 2010;10:375. PubMed PMID: 20637124. Pubmed Central PMCID: PMC2918575. Epub 2010/07/20. eng.

    Google Scholar 

  62. Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol. 2008;84(3):623–630. PubMed PMID: 18467655. Pubmed Central PMCID: PMC2516896. Epub 2008/05/10. eng.

    Google Scholar 

  63. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 2004;113(7):1040–1050. PubMed PMID: 15057311. Pubmed Central PMCID: PMC379325. Epub 2004/04/02. eng.

    Google Scholar 

  64. Cheung KJ, Ewald AJ. Illuminating breast cancer invasion: diverse roles for cell–cell interactions. Curr Opin Cell Biol. 2014;30(0):99–111.

    Google Scholar 

  65. Cekic C, Day YJ, Sag D, Linden J. Myeloid expression of Adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 2014. PubMed PMID: 25377469. Epub 2014/11/08. Eng.

    Google Scholar 

  66. Kozlowska A, Mackiewicz J, Mackiewicz A. Therapeutic gene modified cell based cancer vaccines. Gene. 2013;525(2):200–207. PubMed PMID: 23566846. Epub 2013/04/10. eng.

    Google Scholar 

  67. Lochter A, Bissell MJ. Involvement of extracellular matrix constituents in breast cancer. Semin Cancer Biol. 1995;6(3):165–173.

    Google Scholar 

  68. Fu H, Moss J, Shore I, Slade MJ, Coombes RC, Coombes RC. Ultrastructural localization of laminin and type IV collagen in normal human breast. 2002 20020530 DCOM- 20021107(0191-3123 (Print)). eng.

    Google Scholar 

  69. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. PubMed PMID: 22351925. Pubmed Central PMCID: PMC3283993. Epub 2012/02/22. eng.

    Google Scholar 

  70. Gehler S, Ponik SM, Riching KM, Keely PJ. Bi-directional signaling: extracellular matrix and integrin regulation of breast tumor progression. Critical reviews in eukaryotic gene expression. 2013;23(2):139–57. PubMed PMID: 23582036. Epub 2013/04/16. eng.

    Google Scholar 

  71. Pouliot N, Kusuma N. Laminin-511: a multi-functional adhesion protein regulating cell migration, tumor invasion and metastasis. Cell Adhes Migr. 2013;7(1):142–149. PubMed PMID: 23076212. Pubmed Central PMCID: PMC3544778. Epub 2012/10/19. eng.

    Google Scholar 

  72. Gritsenko PG, Ilina O, Friedl P. Interstitial guidance of cancer invasion. J Pathol. 2012;226(2):185–199. PubMed PMID: 22006671. Epub 2011/10/19. eng.

    Google Scholar 

  73. Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis. Breast (Edinburgh, Scotland). 2013;22 Suppl 2:S66–72. PubMed PMID: 24074795. Epub 2013/10/01. eng.

    Google Scholar 

  74. Rothberg JM, Sameni M, Moin K, Sloane BF. Live-cell imaging of tumor proteolysis: impact of cellular and non-cellular microenvironment. Biochim et Biophys Acta. 2012;1824(1):123–132. PubMed PMID: 21854877. Pubmed Central PMCID: PMC3232330. Epub 2011/08/23. eng.

    Google Scholar 

  75. Tang L, Han X. The urokinase plasminogen activator system in breast cancer invasion and metastasis. Biomed Pharmacother. 2013;67(2):179–182. PubMed PMID: 23201006. Epub 2012/12/04. eng.

    Google Scholar 

  76. Agrawal AK, Ekonjo GB, Teterycz E, Zyoeko D, Grzebieniak Z, Milan M, et al. Cysteine peptidases and their inhibitors in breast and genital cancer. Folia Histochem et Cytobiologica/Pol Acad Sci Pol Histochem Cytochemical Soc. 2010;48(3):323–327. PubMed PMID: 21071333. Epub 2010/11/13. eng.

    Google Scholar 

  77. Dian D, Heublein S, Wiest I, Barthell L, Friese K, Jeschke U. Significance of the tumor protease cathepsin D for the biology of breast cancer. Histol Histopathology. 2014;29(4):433–438. PubMed PMID: 24265119. Epub 2013/11/23. eng.

    Google Scholar 

  78. Lebeau A, Nerlich AG, Sauer U, Lichtinghagen R, Lohrs U. Tissue distribution of major matrix metalloproteinases and their transcripts in human breast carcinomas. Anticancer Res. 1999;19(5B):4257–4264. PubMed PMID: 10628384. Epub 2000/01/11. eng.

    Google Scholar 

  79. Roy DM, Walsh LA. Candidate prognostic markers in breast cancer: focus on extracellular proteases and their inhibitors. Breast Cancer (Dove Med Press). 2014;6:81–91. PubMed PMID: 25114586. Pubmed Central PMCID: PMC4090043. Epub 2014/08/13. eng.

    Google Scholar 

  80. Davies KJ. The complex interaction of matrix metalloproteinases in the migration of cancer cells through breast tissue stroma. Int J Breast Cancer. 2014;2014:839094. PubMed PMID: 24800085. Pubmed Central PMCID: PMC3985306. Epub 2014/05/07. eng.

    Google Scholar 

  81. Velinov N, Poptodorov G, Gabrovski N, Gabrovski S. The role of matrixmetalloproteinases in the tumor growth and metastasis. Khirurgiia. 2010 (1):44–49. PubMed PMID: 21972705. Epub 2010/01/01. bul.

    Google Scholar 

  82. Friedl P, Wolf K. Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev. 2009;28(1–2):129–135. PubMed PMID: 19153672. Epub 2009/01/21. eng.

    Google Scholar 

  83. Stylli SS, Kaye AH, Lock P. Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci Official J Neurosurg Soc Australas. 2008;15(7):725–737. PubMed PMID: 18468901. Epub 2008/05/13. eng.

    Google Scholar 

  84. Davies KJ. Methods of cell propulsion through the local stroma in breast cancer. Int J Breast Cancer. 2014;2014:6.

    Google Scholar 

  85. Rakha EA, Martin S, Lee AH, Morgan D, Pharoah PD, Hodi Z, et al. The prognostic significance of lymphovascular invasion in invasive breast carcinoma. Cancer. 2012;118(15):3670–3680. PubMed PMID: 22180017. Epub 2011/12/20. eng.

    Google Scholar 

  86. Mohammed RA, Martin SG, Mahmmod AM, Macmillan RD, Green AR, Paish EC, et al. Objective assessment of lymphatic and blood vascular invasion in lymph node-negative breast carcinoma: findings from a large case series with long-term follow-up. J Pathol. 2010 Oct 14. PubMed PMID: 21132836.

    Google Scholar 

  87. Gujam FJ, Going JJ, Edwards J, Mohammed ZM, McMillan DC. The role of lymphatic and blood vessel invasion in predicting survival and methods of detection in patients with primary operable breast cancer. Crit Rev Oncol/Hematol. 2014;89(2):231–241. PubMed PMID: 24075309. Epub 2013/10/01. eng.

    Google Scholar 

  88. Mohammed RA, Ellis IO, Lee AH, Martin SG. Vascular invasion in breast cancer; an overview of recent prognostic developments and molecular pathophysiological mechanisms. Histopathology. 2009;55(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  89. Gujam FJ, Going JJ, Mohammed ZM, Orange C, Edwards J, McMillan DC. Immunohistochemical detection improves the prognostic value of lymphatic and blood vessel invasion in primary ductal breast cancer. BMC Cancer. 2014;14:676. PubMed PMID: 25234410. Pubmed Central PMCID: PMC4177173. Epub 2014/09/23. eng.

    Google Scholar 

  90. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 2014;14(3):159–172.

    Google Scholar 

  91. Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 2010;140(4):460–476. PubMed PMID: 20178740. Epub 2010/02/25. eng.

    Google Scholar 

  92. Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–584. PubMed PMID: 21756109. Epub 2011/07/16. eng.

    Google Scholar 

  93. Shayan R, Inder R, Karnezis T, Caesar C, Paavonen K, Ashton MW, et al. Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis. Clin Exp Metastasis. 2013;30(3):345–356. PubMed PMID: 23124573. Epub 2012/11/06. eng.

    Google Scholar 

  94. Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev. 2006;25(4):677–694. PubMed PMID: 17160713. Epub 2006/12/13. eng.

    Google Scholar 

  95. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell. 2007;11(6):526–38.

    Article  CAS  PubMed  Google Scholar 

  96. Ugras S, Stempel M, Patil S, Morrow M. Estrogen receptor, progesterone receptor, and HER2 status predict lymphovascular invasion and lymph node involvement. Ann Surg Oncol. 2014 2014/11/01;21(12):3780–3786. English.

    Google Scholar 

  97. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–352.

    Google Scholar 

  98. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res: BCR. 2010;12(5):R68. PubMed PMID: 20813035. Pubmed Central PMCID: PMC3096954. Epub 2010/09/04. eng.

    Google Scholar 

  99. Holm-Rasmussen EV, Jensen MB, Balslev E, Kroman N, Tvedskov TF. Reduced risk of axillary lymphatic spread in triple-negative breast cancer. Breast Cancer Res Treat. 2015;149(1):229–236. PubMed PMID: 25488719. Epub 2014/12/10. eng.

    Google Scholar 

  100. Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19(11):1450–1464. PubMed PMID: 24202397. Epub 2013/11/10. eng.

    Google Scholar 

  101. Douma S, van Laar T, Zevenhoven J, Meuwissen R, van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–1039.

    Google Scholar 

  102. Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 2006;10(5):355–362. PubMed PMID: 17097558. Epub 2006/11/14. eng.

    Google Scholar 

  103. Chao MP, Weissman IL, Majeti R. The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24(2):225–232. PubMed PMID: 22310103. Pubmed Central PMCID: PMC3319521. Epub 2012/02/09. eng.

    Google Scholar 

  104. Hiratsuka S, Goel S, Kamoun WS, Maru Y, Fukumura D, Duda DG, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci USA. 2011;108(9):3725–3730. PubMed PMID: 21321210. Pubmed Central PMCID: PMC3048115. Epub 2011/02/16. eng.

    Google Scholar 

  105. Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012:676731. PubMed PMID: 22505933. Pubmed Central PMCID: PMC3296185. Epub 2012/04/17. eng.

    Google Scholar 

  106. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22. PubMed PMID: 20029421. Epub 2009/12/24. eng.

    Google Scholar 

  107. Takayama S, Ishii S, Ikeda T, Masamura S, Doi M, Kitajima M. The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res. 2005;25(1A):79–83. PubMed PMID: 15816522. Epub 2005/04/09. eng.

    Google Scholar 

  108. Sloan EK, Pouliot N, Stanley KL, Chia J, Moseley JM, Hards DK, et al. Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res. 2006;8(2):R20. PubMed PMID: 16608535. Pubmed Central PMCID: PMC1557720. Epub 2006/04/13. eng.

    Google Scholar 

  109. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell. 2006;126(3):489–502. PubMed PMID: 16901783. Epub 2006/08/12. eng.

    Google Scholar 

  110. Yoon SO, Shin S, Lipscomb EA. A novel mechanism for integrin-mediated ras activation in breast carcinoma cells: the alpha6beta4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling. Cancer Res. 2006;66(5):2732–2739. PubMed PMID: 16510594. Epub 2006/03/03. eng.

    Google Scholar 

  111. Lee YT. Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol. 1983;23(3):175–180. PubMed PMID: 6345937. Epub 1983/07/01. eng.

    Google Scholar 

  112. Lu X, Kang Y. Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):153–162. PubMed PMID: 17566854. Epub 2007/06/15. eng.

    Google Scholar 

  113. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–56. PubMed PMID: 11242036. Epub 2001/03/10. eng.

    Google Scholar 

  114. Mukherjee D, Zhao J. The Role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res. 2013;3(1):46–57. PubMed PMID: 23359227. Pubmed Central PMCID: PMC3555200. Epub 2013/01/30. eng.

    Google Scholar 

  115. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904.

    Article  CAS  PubMed  Google Scholar 

  116. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–549. PubMed PMID: 12842083. Epub 2003/07/05. eng.

    Google Scholar 

  117. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, et al. Basic Mechanisms Responsible for Osteolytic and Osteoblastic Bone Metastases. Clin Cancer Res. 2006;12(20):6213s–6s.

    Article  CAS  PubMed  Google Scholar 

  118. Yin JJ, Pollock CB, Kelly K. Mechanisms of cancer metastasis to the bone. Cell Res. 2005;15(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  119. Dallas SL, Rosser JL, Mundy GR, Bonewald LF. Proteolysis of latent transforming growth factor-β (TGF-β)-binding Protein-1 by osteoclasts: a cellular mechanism for release of TGF-β from bone matrix. J Biol Chem. 2002;277(24):21352–60.

    Article  CAS  PubMed  Google Scholar 

  120. Brackstone M, Townson J, Chambers A. Tumour dormancy in breast cancer: an update. Breast Cancer Res. 2007;9(3):208. PubMed PMID. doi:10.1186/bcr1677.

  121. Wikman H, Vessella R, Pantel K. Cancer micrometastasis and tumour dormancy. APMIS. 2008;116(7–8):754–770. PubMed PMID: 18834417. Epub 2008/10/07. eng.

    Google Scholar 

  122. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1(2):149–153. PubMed PMID: 7585012. Epub 1995/02/01. eng.

    Google Scholar 

  123. Townson JL, Chambers AF. Dormancy of solitary metastatic cells. Cell Cycle. 2006;5(16):1744–1750. PubMed PMID: 16861927. Epub 2006/07/25. eng.

    Google Scholar 

  124. Bernards R, Weinberg RA. Metastasis genes: a progression puzzle. Nature. 2002;418(6900):823.

    Article  CAS  PubMed  Google Scholar 

  125. Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, van’t Veer LJ. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA. 2003;100(26):15901–15905. PubMed PMID: 14665696.

    Google Scholar 

  126. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA. 2003;100(10):5974–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Weigelt B, van’t Veer LJ. Hard-wired genotype in metastatic breast cancer. Cell Cycle. 2004;3(6):756–757. PubMed PMID: 15153810. Epub 2004/05/22. eng.

    Google Scholar 

  128. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–3277. PubMed PMID: 20498394. Epub 2010/05/26. eng.

    Google Scholar 

  129. Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, et al. Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res. 2009;15(7):2302–10.

    Article  CAS  PubMed  Google Scholar 

  130. Yaman S, Gumuskaya B, Ozkan C, Aksoy S, Guler G, Altundag K. Lymphatic and capillary invasion patterns in triple negative breast cancer. Am Surg. 2012;78(11):1238–1242. PubMed PMID: 23089442. Epub 2012/10/24. eng.

    Google Scholar 

  131. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2011;24(2):157–167.

    Google Scholar 

  132. Rodenhiser DI, Andrews Jd, Vandenberg TA, Chambers AF. Gene signatures of breast cancer progression and metastasis. Breast Cancer Res. 2011 20111115 DCOM- 20140325(1465-542X (Electronic)). eng.

    Google Scholar 

  133. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009. PubMed PMID: ISI:000179874500003.

    Google Scholar 

  134. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98(17):1183–1192.

    Google Scholar 

  135. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365(9460):671–679. PubMed PMID: 15721472.

    Google Scholar 

  136. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98(4):262–72.

    Article  CAS  PubMed  Google Scholar 

  137. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  138. Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol. 2008;26(5):721–8.

    Article  PubMed  Google Scholar 

  139. Ross JS, Hatzis C, Symmans WF, Pusztai L, Hortobagyi GN. Commercialized multigene predictors of clinical outcome for breast cancer. Oncologist. 2008;13(5):477–493. PubMed PMID: 18515733. Epub 2008/06/03. eng.

    Google Scholar 

  140. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 2008;10(4):R65.

    Article  PubMed Central  PubMed  Google Scholar 

  141. Haibe-Kains B, Desmedt C, Piette F, Buyse M, Cardoso F, Van’t Veer L, et al. Comparison of prognostic gene expression signatures for breast cancer. BMC Genom. 2008;9:394.

    Article  Google Scholar 

  142. Mefford D, Mefford J. Stromal genes add prognostic information to proliferation and histoclinical markers: a basis for the next generation of breast cancer gene signatures. PloS One. 2012;7(6):e37646. PubMed PMID: 22719844. Pubmed Central PMCID: PMC3377707. Epub 2012/06/22. eng.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad A. Rakha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aleskandarany, M.A., Ellis, I.O., Rakha, E.A. (2015). Molecular Pathology of Breast Cancer Metastasis. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics