Skip to main content

Molecular Features of Mesenchymal Tumors of the Breast

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

  • 1570 Accesses

Abstract

Mesenchymal lesions of the breast represent a rare, heterogeneous group of benign and malignant lesions. Most mesenchymal lesions occurring anywhere in the body have also been reported in the breast, the vast majority being of fibroblastic or myofibroblastic origin, reflecting the normal constituents of the breast parenchyma. Other mesenchymal lesions include those of vascular, lipomatous and muscle origin. These lesions resemble their extramammary counterparts, both histologically and immunophenotypically. Additionally, the molecular changes that characterize these extramammary mesenchymal lesions have also been identified in cases that affect the breast. Although the molecular characteristics have been described in most of these lesions, some, such as pseudoangiomatous stromal hyperplasia and hemangiomas, have not been identified. Since detailed discussion of all mesenchymal lesions of the breast is beyond the scope of this chapter, the focus will be on those lesions with identifiable molecular changes with a review of their histological and immunophenotypical profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green JS, Crozier AE, Walker RA. Case report: nodular fasciitis of the breast. Clin Radiol. 1997;52(12):961–2.

    CAS  PubMed  Google Scholar 

  2. Brown V, Carty NJ. A case of nodular fascitis of the breast and review of the literature. Breast. 2005;14(5):384–7.

    CAS  PubMed  Google Scholar 

  3. Kayaselcuk F, Demirhan B, Kayaselcuk U, Ozerdem OR, Tuncer I. Vimentin, smooth muscle actin, desmin, S-100 protein, p53, and estrogen receptor expression in elastofibroma and nodular fasciitis. Ann Diagn Pathol. 2002;6(2):94–9.

    PubMed  Google Scholar 

  4. Birdsall SH, Shipley JM, Summersgill BM, Black AJ, Jackson P, Kissin MW, Gusterson BA. Cytogenetic findings in a case of nodular fasciitis of the breast. Cancer Genet Cytogenet. 1995;81(2):166–8.

    CAS  PubMed  Google Scholar 

  5. Meng GZ, Zhang HY, Zhang Z, Wei B, Bu H. Myofibroblastic sarcoma vs nodular fasciitis: a comparative study of chromosomal imbalances. Am J Clin Pathol. 2009;131(5):701–9.

    PubMed  Google Scholar 

  6. Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, Ye Y, Lau AW, Wang X, Oliveira AM. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest: J Tech Methods Pathol. 2011;91(10):1427–33.

    CAS  Google Scholar 

  7. Oliveira AM, Perez-Atayde AR, Inwards CY, Medeiros F, Derr V, Hsi BL, Gebhardt MC, Rosenberg AE, Fletcher JA. USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol. 2004;165(5):1773–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen CJ, Neff JR, Demetri CD, Rosenberg AE, Bridge JA, Fletcher JA. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene. 2005;24(21):3419–26.

    CAS  PubMed  Google Scholar 

  9. Wilson CA, Tsuchida MA, Allen GM, Barnhart EL, Applegate KT, Yam PT, Ji L, Keren K, Danuser G, Theriot JA. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature. 2010;465(7296):373–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Hu A, Wang F, Sellers JR. Mutations in human nonmuscle myosin IIA found in patients with May-Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function. J Biol Chem. 2002;277(48):46512–7.

    CAS  PubMed  Google Scholar 

  11. Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Raghab A, Chhanabhai M, Rajcan-Separovic E, Raghab J, Delsol G, Espinos E. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosom Cancer. 2003;37(4):427–32.

    CAS  PubMed  Google Scholar 

  12. Heath KE, Campos-Barros A, Toren A, Rozenfeld-Granot G, Carlsson LE, Savige J, Denison JC, Gregory MC, White JG, Barker DF, et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet. 2001;69(5):1033–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Magro G. Mammary myofibroblastoma: a tumor with a wide morphologic spectrum. Arch Pathol Lab Med. 2008;132(11):1813–20.

    PubMed  Google Scholar 

  14. Tavassoli FA, Eusebi V, American Registry of Pathology, Armed Forces Institute of Pathology (U.S.). Tumors of the mammary gland. Washington, D.C.: American Registry of Pathology in collaboration with the Armed Forces Institute of Pathology. 2009.

    Google Scholar 

  15. Magro G, Gurrera A, Bisceglia M. H-caldesmon expression in myofibroblastoma of the breast: evidence supporting the distinction from leiomyoma. Histopathology. 2003;42(3):233–8.

    CAS  PubMed  Google Scholar 

  16. Pauwels P, Sciot R, Croiset F, Rutten H, Van den Berghe H, Dal Cin P. Myofibroblastoma of the breast: genetic link with spindle cell lipoma. J Pathol. 2000;191(3):282–5.

    CAS  PubMed  Google Scholar 

  17. Magro G, Righi A, Casorzo L, Antonietta T, Salvatorelli L, Kacerovska D, Kazakov D, Michal M. Mammary and vaginal myofibroblastomas are genetically related lesions: fluorescence in situ hybridization analysis shows deletion of 13q14 region. Hum Pathol. 2012;43(11):1887–93.

    CAS  PubMed  Google Scholar 

  18. Maggiani F, Debiec-Rychter M, Verbeeck G, Sciot R. Extramammary myofibroblastoma is genetically related to spindle cell lipoma. Virchows Archiv: Int J Pathol. 2006;449(2):244–7.

    Google Scholar 

  19. Jamshed S, Farhan MI, Marshall MB, Nahabedian MY, Liu MC. Fibromatosis of the breast after mammary prosthesis implantation. Clin Adv Hematol Oncol H&O. 2008;6(9):687–94.

    Google Scholar 

  20. Neuman HB, Brogi E, Ebrahim A, Brennan MF, Van Zee KJ. Desmoid tumors (fibromatoses) of the breast: a 25-year experience. Ann Surg Oncol. 2008;15(1):274–80.

    PubMed  Google Scholar 

  21. Rosen PP, Ernsberger D. Mammary fibromatosis. A benign spindle-cell tumor with significant risk for local recurrence. Cancer. 1989;63(7):1363–9.

    CAS  PubMed  Google Scholar 

  22. Wargotz ES, Norris HJ, Austin RM, Enzinger FM. Fibromatosis of the breast. A clinical and pathological study of 28 cases. Am J Surg Pathol. 1987;11(1):38–45.

    CAS  PubMed  Google Scholar 

  23. Abraham SC, Reynolds C, Lee JH, Montgomery EA, Baisden BL, Krasinskas AM, Wu TT. Fibromatosis of the breast and mutations involving the APC/beta-catenin pathway. Hum Pathol. 2002;33(1):39–46.

    CAS  PubMed  Google Scholar 

  24. Lacroix-Triki M, Geyer FC, Lambros MB, Savage K, Ellis IO, Lee AH, Reis-Filho JS. beta-catenin/Wnt signalling pathway in fibromatosis, metaplastic carcinomas and phyllodes tumours of the breast. Mod Pathol: Official J U S Can Acad Pathol Inc. 2010;23(11):1438–48.

    CAS  Google Scholar 

  25. Ng TL, Gown AM, Barry TS, Cheang MC, Chan AK, Turbin DA, Hsu FD, West RB, Nielsen TO. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol: Official J U S Can Acad Pathol Inc. 2005;18(1):68–74.

    CAS  Google Scholar 

  26. Devouassoux-Shisheboran M, Schammel MD, Man YG, Tavassoli FA. Fibromatosis of the breast: age-correlated morphofunctional features of 33 cases. Arch Pathol Lab Med. 2000;124(2):276–80.

    CAS  PubMed  Google Scholar 

  27. Fletcher JA, Naeem R, Xiao S, Corson JM. Chromosome aberrations in desmoid tumors. Trisomy 8 may be a predictor of recurrence. Cancer Genet Cytogenet. 1995;79(2):139–43.

    CAS  PubMed  Google Scholar 

  28. De Wever I, Dal Cin P, Fletcher CD, Mandahl N, Mertens F, Mitelman F, Rosai J, Rydholm A, Sciot R, Tallini G, et al. Cytogenetic, clinical, and morphologic correlations in 78 cases of fibromatosis: a report from the CHAMP Study Group. CHromosomes And Morphology. Mod Pathol: Official J U S Can Acad Pathol Inc. 2000;13(10):1080–5.

    Google Scholar 

  29. Kim T, Jung EA, Song JY, Roh JH, Choi JS, Kwon JE, Kang SY, Cho EY, Shin JH, Nam SJ, et al. Prevalence of the CTNNB1 mutation genotype in surgically resected fibromatosis of the breast. Histopathology. 2012;60(2):347–56.

    PubMed  Google Scholar 

  30. Haj M, Weiss M, Loberant N, Cohen I. Inflammatory pseudotumor of the breast: case report and literature review. Breast J. 2003;9(5):423–5.

    PubMed  Google Scholar 

  31. Khanafshar E, Phillipson J, Schammel DP, Minobe L, Cymerman J, Weidner N. Inflammatory myofibroblastic tumor of the breast. Ann Diagn Pathol. 2005;9(3):123–9.

    PubMed  Google Scholar 

  32. Yoshida A, Shibata T, Wakai S, Ushiku T, Tsuta K, Fukayama M, Makimoto A, Furuta K, Tsuda H. Anaplastic lymphoma kinase status in rhabdomyosarcomas. Mod Pathol: Official J U S Can Acad Pathol Inc. 2013;26(6):772–81.

    CAS  Google Scholar 

  33. Cessna MH, Zhou H, Sanger WG, Perkins SL, Tripp S, Pickering D, Daines C, Coffin CM. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol: Official J U S Can Acad Pathol Inc. 2002;15(9):931–8.

    Google Scholar 

  34. Gleason BC, Hornick JL. Inflammatory myofibroblastic tumours: where are we now? J Clin Pathol. 2008;61(4):428-37.

    Google Scholar 

  35. Li J, Yin WH, Takeuchi K, Guan H, Huang YH, Chan JK. Inflammatory myofibroblastic tumor with RANBP2 and ALK gene rearrangement: a report of two cases and literature review. Diagn Pathol. 2013;8:147.

    PubMed Central  PubMed  Google Scholar 

  36. Kahng HC, Chin NW, Opitz LM, Pahuja M, Goldberg SL. Cellular angiolipoma of the breast: immunohistochemical study and review of the literature. Breast J. 2002;8(1):47–9.

    PubMed  Google Scholar 

  37. Kryvenko ON, Chitale DA, VanEgmond EM, Gupta NS, Schultz D, Lee MW. Angiolipoma of the female breast: clinicomorphological correlation of 52 cases. Int J Surg Pathol. 2011;19(1):35–43.

    PubMed  Google Scholar 

  38. Yu GH, Fishman SJ, Brooks JS. Cellular angiolipoma of the breast. Mod Pathol: Official J U S Can Acad Pathol Inc. 1993;6(4):497–9.

    CAS  Google Scholar 

  39. Chan KW, Ghadially FN, Alagaratnam TT. Benign spindle cell tumour of breast—a variant of spindled cell lipoma or fibroma of breast? Pathology. 1984;16(3):331–6.

    Google Scholar 

  40. Damiani S, Chiodera P, Guaragni M, Eusebi V. Mammary angiomyolipoma. Virchows Archiv: Int J Pathol. 2002;440(5):551–2.

    CAS  Google Scholar 

  41. Padilla-Rodriguez AL. Pure hibernoma of the breast: insights about its origins. Ann Diagn Pathol. 2012;16(4):288–91.

    PubMed  Google Scholar 

  42. Riveros M, Cubilla A, Perotta F, Solalinde V. Hamartoma of the breast. J Surg Oncol. 1989;42(3):197–200.

    CAS  PubMed  Google Scholar 

  43. Zani A, Cozzi DA, Uccini S, Cozzi F. Unusual breast enlargement in an infant: a case of breast lipoblastoma. Pediatr Surg Int. 2007;23(4):361–3.

    PubMed  Google Scholar 

  44. Banev SG, Filipovski VA. Chondrolipoma of the breast—case report and a review of literature. Breast. 2006;15(3):425–6.

    PubMed  Google Scholar 

  45. Bartuma H, Nord KH, Macchia G, Isaksson M, Nilsson J, Domanski HA, Mandahl N, Mertens F. Gene expression and single nucleotide polymorphism array analyses of spindle cell lipomas and conventional lipomas with 13q14 deletion. Genes Chromosom Cancer. 2011;50(8):619–32.

    CAS  PubMed  Google Scholar 

  46. Ashar HR, Fejzo MS, Tkachenko A, Zhou X, Fletcher JA, Weremowicz S, Morton CC, Chada K. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell. 1995;82(1):57–65.

    CAS  PubMed  Google Scholar 

  47. Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, Van de Ven WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet. 1995;10(4):436–44.

    CAS  PubMed  Google Scholar 

  48. Petit MM, Mols R, Schoenmakers EF, Mandahl N, Van de Ven WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics. 1996;36(1):118–29.

    CAS  PubMed  Google Scholar 

  49. Matsui Y, Hasegawa T, Kubo T, Goto T, Yukata K, Endo K, Bando Y, Yasui N. Intrapatellar tendon lipoma with chondro-osseous differentiation: detection of HMGA2-LPP fusion gene transcript. J Clin Pathol. 2006;59(4):434–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Kubo T, Matsui Y, Goto T, Yukata K, Endo K, Sato R, Tsutsui T, Yasui N. MRI characteristics of parosteal lipomas associated with the HMGA2-LPP fusion gene. Anticancer Res. 2006;26(3B):2253–7.

    CAS  PubMed  Google Scholar 

  51. Ida CM, Wang X, Erickson-Johnson MR, Wenger DE, Blute ML, Nascimento AG, Oliveira AM. Primary retroperitoneal lipoma: a soft tissue pathology heresy?: report of a case with classic histologic, cytogenetics, and molecular genetic features. Am J Surg Pathol. 2008;32(6):951–4.

    PubMed  Google Scholar 

  52. Manfioletti G, Giancotti V, Bandiera A, Buratti E, Sautiere P, Cary P, Crane-Robinson C, Coles B, Goodwin GH. cDNA cloning of the HMGI-C phosphoprotein, a nuclear protein associated with neoplastic and undifferentiated phenotypes. Nucleic Acids Res. 1991;19(24):6793–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Chau KY, Patel UA, Lee KL, Lam HY, Crane-Robinson C. The gene for the human architectural transcription factor HMGI-C consists of five exons each coding for a distinct functional element. Nucleic Acids Res. 1995;23(21):4262–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Giancotti V, Bandiera A, Buratti E, Fusco A, Marzari R, Coles B, Goodwin GH. Comparison of multiple forms of the high mobility group I proteins in rodent and human cells. Identification of the human high mobility group I-C protein. Eur J Biochem/FEBS. 1991;198(1):211–6.

    CAS  Google Scholar 

  55. Giancotti V, Bandiera A, Ciani L, Santoro D, Crane-Robinson C, Goodwin GH, Boiocchi M, Dolcetti R, Casetta B. High-mobility-group (HMG) proteins and histone H1 subtypes expression in normal and tumor tissues of mouse. Eur J Biochem/FEBS. 1993;213(2):825–32.

    CAS  Google Scholar 

  56. Rogalla P, Drechsler K, Frey G, Hennig Y, Helmke B, Bonk U, Bullerdiek J. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol. 1996;149(3):775–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Zhou X, Benson KF, Ashar HR, Chada K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature. 1995;376(6543):771–4.

    CAS  PubMed  Google Scholar 

  58. Mitelman F, Johansson B, Mertens F. Catalog of chromosome aberrations in cancer. 5th ed. New York: Wiley-Liss; 1994.

    Google Scholar 

  59. Kubo T, Matsui Y, Naka N, Araki N, Goto T, Yukata K, Endo K, Yasui N, Myoui A, Kawabata H, et al. Expression of HMGA2-LPP and LPP-HMGA2 fusion genes in lipoma: identification of a novel type of LPP-HMGA2 transcript in four cases. Anticancer Res. 2009;29(6):2357–60.

    CAS  PubMed  Google Scholar 

  60. Wang X, Zamolyi RQ, Zhang H, Pannain VL, Medeiros F, Erickson-Johnson M, Jenkins RB, Oliveira AM. Fusion of HMGA1 to the LPP/TPRG1 intergenic region in a lipoma identified by mapping paraffin-embedded tissues. Cancer Genet Cytogenet. 2010;196(1):64–7.

    CAS  PubMed  Google Scholar 

  61. Dahlen A, Debiec-Rychter M, Pedeutour F, Domanski HA, Hoglund M, Bauer HC, Rydholm A, Sciot R, Mandahl N, Mertens F. Clustering of deletions on chromosome 13 in benign and low-malignant lipomatous tumors. Int J Cancer (Journal International du Cancer). 2003;103(5):616–23.

    CAS  Google Scholar 

  62. Fletcher CD, Akerman M, Dal Cin P, de Wever I, Mandahl N, Mertens F, Mitelman F, Rosai J, Rydholm A, Sciot R, et al. Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. Am J Pathol. 1996;148(2):623–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Nord KH, Magnusson L, Isaksson M, Nilsson J, Lilljebjorn H, Domanski HA, Kindblom LG, Mandahl N, Mertens F. Concomitant deletions of tumor suppressor genes MEN1 and AIP are essential for the pathogenesis of the brown fat tumor hibernoma. Proc Natl Acad Sci U S A. 2010;107(49):21122–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Brandal P, Bjerkehagen B, Heim S. Rearrangement of chromosomal region 8q11–13 in lipomatous tumours: correlation with lipoblastoma morphology. J Pathol. 2006;208(3):388–94.

    CAS  PubMed  Google Scholar 

  65. Huang D, Sumegi J, Dal Cin P, Reith JD, Yasuda T, Nelson M, Muirhead D, Bridge JA. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosom Cancer. 2010;49(9):810–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Adeniran A, Al-Ahmadie H, Mahoney MC, Robinson-Smith TM. Granular cell tumor of the breast: a series of 17 cases and review of the literature. Breast J. 2004;10(6):528–31.

    PubMed  Google Scholar 

  67. Brown AC, Audisio RA, Regitnig P. Granular cell tumour of the breast. Surg Oncol. 2011;20(2):97–105.

    PubMed  Google Scholar 

  68. Lack EE, Worsham GF, Callihan MD, Crawford BE, Klappenbach S, Rowden G, Chun B. Granular cell tumor: a clinicopathologic study of 110 patients. J Surg Oncol. 1980;13(4):301–16.

    CAS  PubMed  Google Scholar 

  69. Le BH, Boyer PJ, Lewis JE, Kapadia SB. Granular cell tumor: immunohistochemical assessment of inhibin-alpha, protein gene product 9.5, S100 protein, CD68, and Ki-67 proliferative index with clinical correlation. Arch Pathol Lab Med. 2004;128(7):771–5.

    CAS  PubMed  Google Scholar 

  70. Rickert CH, Paulus W. Genetic characterisation of granular cell tumours. Acta Neuropathol. 2002;103(4):309–12.

    CAS  PubMed  Google Scholar 

  71. Martin RW 3rd, Neldner KH, Boyd AS, Coates PW. Multiple cutaneous granular cell tumors and neurofibromatosis in childhood. A case report and review of the literature. Arch Dermatol. 1990;126(8):1051–6.

    PubMed  Google Scholar 

  72. Marchese C, Montera M, Torrini M, Goldoni F, Mareni C, Forni M, Locatelli L. Granular cell tumor in a PHTS patient with a novel germline PTEN mutation. Am J Med Genet Part A. 2003;120A(2):286–8.

    PubMed  Google Scholar 

  73. Schrader KA, Nelson TN, De Luca A, Huntsman DG, McGillivray BC. Multiple granular cell tumors are an associated feature of LEOPARD syndrome caused by mutation in PTPN11. Clin Genet. 2009;75(2):185–9.

    CAS  PubMed  Google Scholar 

  74. Ramaswamy PV, Storm CA, Filiano JJ, Dinulos JG. Multiple granular cell tumors in a child with Noonan syndrome. Pediatr Dermatol. 2010;27(2):209–11.

    PubMed  Google Scholar 

  75. Sidwell RU, Rouse P, Owen RA, Green JS. Granular cell tumor of the scrotum in a child with Noonan syndrome. Pediatr Dermatol. 2008;25(3):341–3.

    PubMed  Google Scholar 

  76. Papachristou DJ, Palekar A, Surti U, Cieply K, McGough RL, Rao UN. Malignant granular cell tumor of the ulnar nerve with novel cytogenetic and molecular genetic findings. Cancer Genet Cytogenet. 2009;191(1):46–50.

    CAS  PubMed  Google Scholar 

  77. Di Tommaso L, Magrini E, Consales A, Poppi M, Pasquinelli G, Dorji T, Benedetti G, Baccarini P. Malignant granular cell tumor of the lateral femoral cutaneous nerve: report of a case with cytogenetic analysis. Hum Pathol. 2002;33(12):1237–40.

    PubMed  Google Scholar 

  78. Nasser H, Danforth RD Jr, Sunbuli M, Dimitrijevic O. Malignant granular cell tumor: case report with a novel karyotype and review of the literature. Ann Diagn Pathol. 2010;14(4):273–8.

    PubMed  Google Scholar 

  79. Dhingra KK, Mandal S, Roy S, Khurana N. Malignant peripheral nerve sheath tumor of the breast: case report. World J Surg Oncol. 2007;5:142.

    PubMed Central  PubMed  Google Scholar 

  80. Fangfang L, Danhua S, Songlin L, Yanfeng Z. An unusual breast malignant peripheral nerve sheath tumour and review of the literature. J Clin Pathol. 2010;63(7):663–4.

    PubMed  Google Scholar 

  81. Medina-Franco H, Gamboa-Dominguez A, de La Medina AR. Malignant peripheral nerve sheath tumor of the breast. Breast J. 2003;9(4):332.

    PubMed  Google Scholar 

  82. Thanapaisal C, Koonmee S, Siritunyaporn S. Malignant peripheral nerve sheath tumor of breast in patient without Von Recklinghausen’s neurofibromatosis: a case report. J Med Assoc Thailand = Chotmaihet Thangphaet. 2006;89(3):377–9.

    CAS  Google Scholar 

  83. Wang H, Ge J, Chen L, Xie P, Chen F, Chen Y. Melanocytic malignant peripheral nerve sheath tumor of the male breast. Breast Care. 2009;4(4):260–2.

    PubMed Central  PubMed  Google Scholar 

  84. Carter JM, O’Hara C, Dundas G, Gilchrist D, Collins MS, Eaton K, Judkins AR, Biegel JA, Folpe AL. Epithelioid malignant peripheral nerve sheath tumor arising in a schwannoma, in a patient with “neuroblastoma-like” schwannomatosis and a novel germline SMARCB1 mutation. Am J Surg Pathol. 2012;36(1):154–60.

    PubMed Central  PubMed  Google Scholar 

  85. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35(10):e47–63.

    PubMed  Google Scholar 

  86. Mertens F, Dal Cin P, De Wever I, Fletcher CD, Mandahl N, Mitelman F, Rosai J, Rydholm A, Sciot R, Tallini G. Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP study group. J Pathol. 2000;190(1):31–8.

    CAS  PubMed  Google Scholar 

  87. Cancer Genome Anatomy Project (CGAP). http://cgap.nci.nih.gov/cgap.html.

  88. Rao UN, Surti U, Hoffner L, Yaw K. Cytogenetic and histologic correlation of peripheral nerve sheath tumors of soft tissue. Cancer Genet Cytogenet. 1996;88(1):17–25.

    CAS  PubMed  Google Scholar 

  89. Hulsebos TJ, Plomp AS, Wolterman RA, Robanus-Maandag EC, Baas F, Wesseling P. Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet. 2007;80(4):805–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Brooks DG. The neurofibromatoses: hereditary predisposition to multiple peripheral nerve tumors. Neurosurg Clin N Am. 2004;15(2):145–55.

    PubMed  Google Scholar 

  91. Lothe RA, Slettan A, Saeter G, Brogger A, Borresen AL, Nesland JM. Alterations at chromosome 17 loci in peripheral nerve sheath tumors. J Neuropathol Exp Neurol. 1995;54(1):65–73.

    CAS  PubMed  Google Scholar 

  92. Falconieri G, Lamovec J, Mirra M, Pizzolitto S. Solitary fibrous tumor of the mammary gland: a potential pitfall in breast pathology. Ann Diagn Pathol. 2004;8(3):121–5.

    PubMed  Google Scholar 

  93. Doyle LA, Vivero M, Fletcher CD, Mertens F, Hornick JL. Nuclear expression of STAT6 distinguishes solitary fibrous tumor from histologic mimics. Modern Pathol: Official J U S Can Acad Pathol Inc. 2014;27(3):390–5.

    CAS  Google Scholar 

  94. Vivero M, Doyle LA, Fletcher CD, Mertens F, Hornick JL. GRIA2 is a novel diagnostic marker for solitary fibrous tumour identified through gene expression profiling. Histopathology 2014.

    Google Scholar 

  95. Chmielecki J, Crago AM, Rosenberg M, O’Connor R, Walker SR, Ambrogio L, Auclair D, McKenna A, Heinrich MC, Frank DA, et al. Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors. Nat Genet. 2013;45(2):131–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Mohajeri A, Tayebwa J, Collin A, Nilsson J, Magnusson L, von Steyern FV, Brosjo O, Domanski HA, Larsson O, Sciot R, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosom Cancer. 2013;52(10):873–86.

    CAS  PubMed  Google Scholar 

  97. Robinson DR, Wu YM, Kalyana-Sundaram S, Cao X, Lonigro RJ, Sung YS, Chen CL, Zhang L, Wang R, Su F, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013;45(2):180–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Hajdu M, Singer S, Maki RG, Schwartz GK, Keohan ML, Antonescu CR. IGF2 over-expression in solitary fibrous tumours is independent of anatomical location and is related to loss of imprinting. J Pathol. 2010;221(3):300–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Day NC, Shaw PJ, McCormack AL, Craig PJ, Smith W, Beattie R, Williams TL, Ellis SB, Ince PG, Harpold MM, et al. Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience. 1996;71(4):1013–24.

    CAS  PubMed  Google Scholar 

  100. Chang HJ, Yoo BC, Lim SB, Jeong SY, Kim WH, Park JG. Metabotropic glutamate receptor 4 expression in colorectal carcinoma and its prognostic significance. Clin Cancer Res: Official J Am Assoc Cancer Res. 2005;11(9):3288–95.

    CAS  Google Scholar 

  101. Tanaka H, Grooms SY, Bennett MV, Zukin RS. The AMPAR subunit GluR2: still front and center-stage. Brain Res. 2000;886(1–2):190–207.

    CAS  PubMed  Google Scholar 

  102. Rzeski W, Ikonomidou C, Turski L. Glutamate antagonists limit tumor growth. Biochem Pharmacol. 2002;64(8):1195–200.

    CAS  PubMed  Google Scholar 

  103. Hechtman JF, Xiao GQ, Unger PD, Kinoshita Y, Godbold JH, Burstein DE. Anti-glutamate receptor 2 as a new potential diagnostic probe for prostatic adenocarcinoma: a pilot immunohistochemical study. Appl Immunohistochem Mol Morphol: AIMM/Official Publ Soc Appl Immunohistochem. 2012;20(4):344–9.

    CAS  Google Scholar 

  104. Tsibris JC, Maas S, Segars JH, Nicosia SV, Enkemann SA, O’Brien WF, Spellacy WN. New potential regulators of uterine leiomyomata from DNA arrays: the ionotropic glutamate receptor GluR2. Biochem Biophys Res Commun. 2003;312(1):249–54.

    CAS  PubMed  Google Scholar 

  105. Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, et al. Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci: Official J Soc Neurosci. 2007;27(30):7987–8001.

    CAS  Google Scholar 

  106. Nascimento AF, Raut CP, Fletcher CD. Primary angiosarcoma of the breast: clinicopathologic analysis of 49 cases, suggesting that grade is not prognostic. Am J Surg Pathol. 2008;32(12):1896–904.

    PubMed  Google Scholar 

  107. Rosen PP, Kimmel M, Ernsberger D. Mammary angiosarcoma. The prognostic significance of tumor differentiation. Cancer. 1988;62(10):2145–51.

    CAS  PubMed  Google Scholar 

  108. Adem C, Reynolds C, Ingle JN, Nascimento AG. Primary breast sarcoma: clinicopathologic series from the Mayo Clinic and review of the literature. Br J Cancer. 2004;91(2):237–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Fayette J, Martin E, Piperno-Neumann S, Le Cesne A, Robert C, Bonvalot S, Ranchere D, Pouillart P, Coindre JM, Blay JY. Angiosarcomas, a heterogeneous group of sarcomas with specific behavior depending on primary site: a retrospective study of 161 cases. Ann Oncol: Official J Eur Soc Med Oncol/ESMO. 2007;18(12):2030–6.

    CAS  Google Scholar 

  110. Mery CM, George S, Bertagnolli MM, Raut CP. Secondary sarcomas after radiotherapy for breast cancer: sustained risk and poor survival. Cancer. 2009;115(18):4055–63.

    PubMed  Google Scholar 

  111. Brenn T, Fletcher CD. Postradiation vascular proliferations: an increasing problem. Histopathology. 2006;48(1):106–14.

    CAS  PubMed  Google Scholar 

  112. Brodie C, Provenzano E. Vascular proliferations of the breast. Histopathology. 2008;52(1):30–44.

    CAS  PubMed  Google Scholar 

  113. Fineberg S, Rosen PP. Cutaneous angiosarcoma and atypical vascular lesions of the skin and breast after radiation therapy for breast carcinoma. Am J Clin Pathol. 1994;102(6):757–63.

    CAS  PubMed  Google Scholar 

  114. Mandrell J, Mehta S, McClure S. Atypical vascular lesion of the breast. J Am Acad Dermatol. 2010;63(2):337–40.

    PubMed  Google Scholar 

  115. Patton KT, Deyrup AT, Weiss SW. Atypical vascular lesions after surgery and radiation of the breast: a clinicopathologic study of 32 cases analyzing histologic heterogeneity and association with angiosarcoma. Am J Surg Pathol. 2008;32(6):943–50.

    PubMed  Google Scholar 

  116. Uchin JM, Billings SD. Radiotherapy-associated atypical vascular lesions of the breast. J Cutan Pathol. 2009;36(1):87–8.

    PubMed  Google Scholar 

  117. Weaver J, Billings SD. Postradiation cutaneous vascular tumors of the breast: a review. Semin Diagn Pathol. 2009;26(3):141–9.

    PubMed  Google Scholar 

  118. Brenn T, Fletcher CD. Radiation-associated cutaneous atypical vascular lesions and angiosarcoma: clinicopathologic analysis of 42 cases. Am J Surg Pathol. 2005;29(8):983–96.

    PubMed  Google Scholar 

  119. Requena L, Kutzner H, Mentzel T, Duran R, Rodriguez-Peralto JL. Benign vascular proliferations in irradiated skin. Am J Surg Pathol. 2002;26(3):328–37.

    PubMed  Google Scholar 

  120. Ginter PS, Mosquera JM, MacDonald TY, D’Alfonso TM, Rubin MA, Shin SJ. Diagnostic utility of MYC amplification and anti-MYC immunohistochemistry in atypical vascular lesions, primary or radiation-induced mammary angiosarcomas, and primary angiosarcomas of other sites. Hum Pathol. 2014;45(4):709–16.

    CAS  PubMed  Google Scholar 

  121. Antonescu CR, Yoshida A, Guo T, Chang NE, Zhang L, Agaram NP, Qin LX, Brennan MF, Singer S, Maki RG. KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res. 2009;69(18):7175–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Manner J, Radlwimmer B, Hohenberger P, Mossinger K, Kuffer S, Sauer C, Belharazem D, Zettl A, Coindre JM, Hallermann C, et al. MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol. 2010;176(1):34–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Fernandez AP, Sun Y, Tubbs RR, Goldblum JR, Billings SD. FISH for MYC amplification and anti-MYC immunohistochemistry: useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations. J Cutan Pathol. 2012;39(2):234–42.

    PubMed  Google Scholar 

  124. Guo T, Zhang L, Chang NE, Singer S, Maki RG, Antonescu CR. Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosom Cancer. 2011;50(1):25–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Mentzel T, Schildhaus HU, Palmedo G, Buttner R, Kutzner H. Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol: Official J U S Can Acad Pathol Inc. 2012;25(1):75–85.

    CAS  Google Scholar 

  126. Blanchard DK, Reynolds CA, Grant CS, Donohue JH. Primary nonphylloides breast sarcomas. Am J Surg. 2003;186(4):359–61.

    PubMed  Google Scholar 

  127. Terrier P, Terrier-Lacombe MJ, Mouriesse H, Friedman S, Spielmann M, Contesso G. Primary breast sarcoma: a review of 33 cases with immunohistochemistry and prognostic factors. Breast Cancer Res Treat. 1989;13(1):39–48.

    CAS  PubMed  Google Scholar 

  128. Arbabi L, Warhol MJ. Pleomorphic liposarcoma following radiotherapy for breast carcinoma. Cancer. 1982;49(5):878–80.

    CAS  PubMed  Google Scholar 

  129. Binh MB, Sastre-Garau X, Guillou L, de Pinieux G, Terrier P, Lagace R, Aurias A, Hostein I, Coindre JM. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol. 2005;29(10):1340–7.

    PubMed  Google Scholar 

  130. Thway K, Flora R, Shah C, Olmos D, Fisher C. Diagnostic utility of p16, CDK4, and MDM2 as an immunohistochemical panel in distinguishing well-differentiated and dedifferentiated liposarcomas from other adipocytic tumors. Am J Surg Pathol. 2012;36(3):462–9.

    PubMed  Google Scholar 

  131. Coindre JM, Pedeutour F, Aurias A. Well-differentiated and dedifferentiated liposarcomas. Virchows Archiv: Int J Pathol. 2010;456(2):167–79.

    CAS  Google Scholar 

  132. Dei Tos AP, Doglioni C, Piccinin S, Sciot R, Furlanetto A, Boiocchi M, Dal Cin P, Maestro R, Fletcher CD, Tallini G. Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol. 2000;190(5):531–6.

    CAS  PubMed  Google Scholar 

  133. Coindre JM, Hostein I, Maire G, Derre J, Guillou L, Leroux A, Ghnassia JP, Collin F, Pedeutour F, Aurias A. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histological review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol. 2004;203(3):822–30.

    CAS  PubMed  Google Scholar 

  134. Sirvent N, Coindre JM, Maire G, Hostein I, Keslair F, Guillou L, Ranchere-Vince D, Terrier P, Pedeutour F. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31(10):1476–89.

    PubMed  Google Scholar 

  135. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet Cytogenet. 2004;155(1):1–24.

    CAS  PubMed  Google Scholar 

  136. Heidenblad M, Hallor KH, Staaf J, Jonsson G, Borg A, Hoglund M, Mertens F, Mandahl N. Genomic profiling of bone and soft tissue tumors with supernumerary ring chromosomes using tiling resolution bacterial artificial chromosome microarrays. Oncogene. 2006;25(53):7106–16.

    CAS  PubMed  Google Scholar 

  137. Mariani O, Brennetot C, Coindre JM, Gruel N, Ganem C, Delattre O, Stern MH, Aurias A. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell. 2007;11(4):361–74.

    CAS  PubMed  Google Scholar 

  138. Engstrom K, Willen H, Kabjorn-Gustafsson C, Andersson C, Olsson M, Goransson M, Jarnum S, Olofsson A, Warnhammar E, Aman P. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol. 2006;168(5):1642–53.

    PubMed Central  PubMed  Google Scholar 

  139. Italiano A, Chambonniere ML, Attias R, Chibon F, Coindre JM, Pedeutour F. Monosomy 7 and absence of 12q amplification in two cases of spindle cell liposarcomas. Cancer Genet Cytogenet. 2008;184(2):99–104.

    CAS  PubMed  Google Scholar 

  140. Mentzel T, Palmedo G, Kuhnen C. Well-differentiated spindle cell liposarcoma (‘atypical spindle cell lipomatous tumor’) does not belong to the spectrum of atypical lipomatous tumor but has a close relationship to spindle cell lipoma: clinicopathologic, immunohistochemical, and molecular analysis of six cases. Mod Pathol: Official J U S Can Acad Pathol Inc. 2010;23(5):729–36.

    CAS  Google Scholar 

  141. Mentzel T, Reisshauer S, Rutten A, Hantschke M, Soares de Almeida LM, Kutzner H. Cutaneous clear cell myomelanocytic tumour: a new member of the growing family of perivascular epithelioid cell tumours (PEComas). Clinicopathological and immunohistochemical analysis of seven cases. Histopathology. 2005;46(5):498–504.

    CAS  PubMed  Google Scholar 

  142. Barnes L, Pietruszka M. Rhabdomyosarcoma arising within a cystosarcoma phyllodes. Case report and review of the literature. Am J Surg Pathol. 1978;2(4):423–9.

    CAS  PubMed  Google Scholar 

  143. Foschini MP, Dina RE, Eusebi V. Sarcomatoid neoplasms of the breast: proposed definitions for biphasic and monophasic sarcomatoid mammary carcinomas. Semin Diagn Pathol. 1993;10(2):128–36.

    CAS  PubMed  Google Scholar 

  144. Hays DM, Donaldson SS, Shimada H, Crist WM, Newton WA Jr, Andrassy RJ, Wiener E, Green J, Triche T, Maurer HM. Primary and metastatic rhabdomyosarcoma in the breast: neoplasms of adolescent females, a report from the Intergroup Rhabdomyosarcoma Study. Med Pediatr Oncol. 1997;29(3):181–9.

    CAS  PubMed  Google Scholar 

  145. Cessna MH, Zhou H, Perkins SL, Tripp SR, Layfield L, Daines C, Coffin CM. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25(9):1150–7.

    CAS  PubMed  Google Scholar 

  146. Morotti RA, Nicol KK, Parham DM, Teot LA, Moore J, Hayes J, Meyer W, Qualman SJ. Children’s Oncology G: an immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: the Children’s Oncology Group experience. Am J Surg Pathol. 2006;30(8):962–8.

    PubMed  Google Scholar 

  147. Bahrami A, Gown AM, Baird GS, Hicks MJ, Folpe AL. Aberrant expression of epithelial and neuroendocrine markers in alveolar rhabdomyosarcoma: a potentially serious diagnostic pitfall. Mod Pathol: Official J U S Can Acad Pathol Inc. 2008;21(7):795–806.

    CAS  Google Scholar 

  148. Sullivan LM, Atkins KA, LeGallo RD. PAX immunoreactivity identifies alveolar rhabdomyosarcoma. Am J Surg Pathol. 2009;33(5):775–80.

    PubMed  Google Scholar 

  149. Gallego Melcon S, de Toledo Sanchez, Codina J. Molecular biology of rhabdomyosarcoma. Clin Transl Oncol: Official Publ Fed Span Oncol Soc Natl Cancer Inst Mex. 2007;9(7):415–9.

    CAS  Google Scholar 

  150. Davicioni E, Anderson MJ, Finckenstein FG, Lynch JC, Qualman SJ, Shimada H, Schofield DE, Buckley JD, Meyer WH, Sorensen PH, et al. Molecular classification of rhabdomyosarcoma–genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group. Am J Pathol. 2009;174(2):550–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Parham DM, Ellison DA. Rhabdomyosarcomas in adults and children: an update. Arch Pathol Lab Med. 2006;130(10):1454–65.

    PubMed  Google Scholar 

  152. Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett. 2008;270(1):10–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Skapek SX, Anderson J, Barr FG, Bridge JA, Gastier-Foster JM, Parham DM, Rudzinski ER, Triche T, Hawkins DS. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children’s oncology group report. Pediatr Blood Cancer. 2013;60(9):1411–7.

    PubMed  Google Scholar 

  154. Barr FG, Qualman SJ, Macris MH, Melnyk N, Lawlor ER, Strzelecki DM, Triche TJ, Bridge JA, Sorensen PH. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res. 2002;62(16):4704–10.

    CAS  PubMed  Google Scholar 

  155. Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M, Hou SJ, Papenhausen PR, Pascasio JM, Punnett HH, et al. FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol: Official J U S Can Acad Pathol Inc. 2011;24(10):1327–35.

    CAS  Google Scholar 

  156. Sumegi J, Streblow R, Frayer RW, Dal Cin P, Rosenberg A, Meloni-Ehrig A, Bridge JA. Recurrent t(2; 2) and t(2; 8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes Chromosom Cancer. 2010;49(3):224–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Wachtel M, Dettling M, Koscielniak E, Stegmaier S, Treuner J, Simon-Klingenstein K, Buhlmann P, Niggli FK, Schafer BW. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2; 2)(q35; p23) translocation fusing PAX3 to NCOA1. Cancer Res. 2004;64(16):5539–45.

    CAS  PubMed  Google Scholar 

  158. Mitani K, Kurosawa H, Suzuki A, Hayashi Y, Hanada R, Yamamoto K, Komatsu A, Kobayashi N, Nakagome Y, Yamada M. Amplification of N-myc in a rhabdomyosarcoma. Jpn J Cancer Res: Gann. 1986;77(11):1062–5.

    CAS  PubMed  Google Scholar 

  159. Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen CL, Sung YS, Wexler LH, LaQuaglia MP, Edelman M, Sreekantaiah C, et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosom Cancer. 2013;52(6):538–50.

    CAS  PubMed  Google Scholar 

  160. Silver SA, Tavassoli FA. Primary osteogenic sarcoma of the breast: a clinicopathologic analysis of 50 cases. Am J Surg Pathol. 1998;22(8):925–33.

    CAS  PubMed  Google Scholar 

  161. Jacob S, Japa D. Primary osteogenic sarcoma of the breast. Indian J Pathol Microbiol. 2010;53(4):785–6.

    PubMed  Google Scholar 

  162. Conner JR, Hornick JL. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours. Histopathology. 2013;63(1):36–49.

    PubMed  Google Scholar 

  163. Hiddemann W, Roessner A, Wormann B, Mellin W, Klockenkemper B, Bosing T, Buchner T, Grundmann E. Tumor heterogeneity in osteosarcoma as identified by flow cytometry. Cancer. 1987;59(2):324–8.

    CAS  PubMed  Google Scholar 

  164. Stark A, Kreicbergs A, Nilsonne U, Silfversward C. The age of osteosarcoma patients is increasing. An epidemiological study of osteosarcoma in Sweden 1971 to 1984. J Bone Joint Surg Br. 1971;72(1):89–93.

    Google Scholar 

  165. Boehm AK, Neff JR, Squire JA, Bayani J, Nelson M, Bridge JA. Cytogenetic findings in 36 osteosarcoma specimens and a review of the literature. Pediatr Pathol Mol Med. 2000;19(5):359–76.

    Google Scholar 

  166. Tarkkanen M, Elomaa I, Blomqvist C, Kivioja AH, Kellokumpu-Lehtinen P, Bohling T, Valle J, Knuutila S. DNA sequence copy number increase at 8q: a potential new prognostic marker in high-grade osteosarcoma. Int J Cancer (Journal International du Cancer). 1999;84(2):114–21.

    CAS  Google Scholar 

  167. Tan ML, Choong PF, Dass CR. Osteosarcoma: Conventional treatment vs. gene therapy. Cancer Biol Ther. 2009;8(2):106–17.

    CAS  PubMed  Google Scholar 

  168. Greenspan A, Jundt G, Remagen W, Greenspan A. Differential diagnosis in orthopaedic oncology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  169. German J, Crippa LP, Bloom D. Bloom’s syndrome. III. Analysis of the chromosome aberration characteristic of this disorder. Chromosoma. 1974;48(4):361–6.

    CAS  PubMed  Google Scholar 

  170. Fukuchi K, Martin GM, Monnat RJ Jr. Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A. 1989;86(15):5893–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Smida J, Baumhoer D, Rosemann M, Walch A, Bielack S, Poremba C, Remberger K, Korsching E, Scheurlen W, Dierkes C, et al. Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma. Clin Cancer Res: Official J Am Assoc Cancer Res. 2010;16(16):4256–67.

    CAS  Google Scholar 

  172. Ta HT, Dass CR, Choong PF, Dunstan DE. Osteosarcoma treatment: state of the art. Cancer Metastasis Reviews. 2009;28(1–2):247–63.

    PubMed  Google Scholar 

  173. Alberts B, Wilson JH, Hunt T. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008.

    Google Scholar 

  174. Hauben EI, Arends J, Vandenbroucke JP, van Asperen CJ, van Marck E, Hogendoorn PC. Multiple primary malignancies in osteosarcoma patients. Incidence and predictive value of osteosarcoma subtype for cancer syndromes related with osteosarcoma. Eur J Hum Genet: EJHG. 2003;11(8):611–8.

    CAS  PubMed  Google Scholar 

  175. McIntyre JF, Smith-Sorensen B, Friend SH, Kassell J, Borresen AL, Yan YX, Russo C, Sato J, Barbier N, Miser J, et al. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clinical Oncol: Official J Am Soc Clin Oncol. 1994;12(5):925–30.

    CAS  Google Scholar 

  176. Ende L, Mercado C, Axelrod D, Darvishian F, Levine P, Cangiarella J. Intraparenchymal leiomyoma of the breast: a case report and review of the literature. Ann Clin Lab Sci. 2007;37(3):268–73.

    PubMed  Google Scholar 

  177. Rane SU, Batra C, Saikia UN. Primary leiomyosarcoma of breast in an adolescent girl: a case report and review of the literature. Case Rep Pathol. 2012;2012:491984.

    PubMed Central  PubMed  Google Scholar 

  178. Yang J, Du X, Chen K, Ylipaa A, Lazar AJ, Trent J, Lev D, Pollock R, Hao X, Hunt K, et al. Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett. 2009;275(1):1–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  179. El-Rifai W, Sarlomo-Rikala M, Knuutila S, Miettinen M. DNA copy number changes in development and progression in leiomyosarcomas of soft tissues. Am J Pathol. 1998;153(3):985–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Otano-Joos M, Mechtersheimer G, Ohl S, Wilgenbus KK, Scheurlen W, Lehnert T, Willeke F, Otto HF, Lichter P, Joos S. Detection of chromosomal imbalances in leiomyosarcoma by comparative genomic hybridization and interphase cytogenetics. Cytogenet Cell Genet. 2000;90(1–2):86–92.

    CAS  PubMed  Google Scholar 

  181. Wang R, Lu YJ, Fisher C, Bridge JA, Shipley J. Characterization of chromosome aberrations associated with soft-tissue leiomyosarcomas by twenty-four-color karyotyping and comparative genomic hybridization analysis. Genes Chromosom Cancer. 2001;31(1):54–64.

    PubMed  Google Scholar 

  182. Lee J, Li S, Torbenson M, Liu QZ, Lind S, Mulvihill JJ, Bane B, Wang J. Leiomyosarcoma of the breast: a pathologic and comparative genomic hybridization study of two cases. Cancer Genet Cytogenet. 2004;149(1):53–7.

    CAS  PubMed  Google Scholar 

  183. Hu J, Rao UN, Jasani S, Khanna V, Yaw K, Surti U. Loss of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study. Cancer Genet Cytogenet. 2005;161(1):20–7.

    CAS  PubMed  Google Scholar 

  184. Larramendy ML, Kaur S, Svarvar C, Bohling T, Knuutila S. Gene copy number profiling of soft-tissue leiomyosarcomas by array-comparative genomic hybridization. Cancer Genet Cytogenet. 2006;169(2):94–101.

    CAS  PubMed  Google Scholar 

  185. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.

    CAS  PubMed  Google Scholar 

  186. Meza-Zepeda LA, Kresse SH, Barragan-Polania AH, Bjerkehagen B, Ohnstad HO, Namlos HM, Wang J, Kristiansen BE, Myklebost O. Array comparative genomic hybridization reveals distinct DNA copy number differences between gastrointestinal stromal tumors and leiomyosarcomas. Cancer Res. 2006;66(18):8984–93.

    CAS  PubMed  Google Scholar 

  187. Amant F, de la Rey M, Dorfling CM, van der Walt L, Dreyer G, Dreyer L, Vergote I, Lindeque BG, Van Rensburg EJ. PTEN mutations in uterine sarcomas. Gynecol Oncol. 2002;85(1):165–9.

    CAS  PubMed  Google Scholar 

  188. Saito T, Oda Y, Kawaguchi K, Takahira T, Yamamoto H, Tamiya S, Tanaka K, Matsuda S, Sakamoto A, Iwamoto Y, et al. PTEN/MMAC1 gene mutation is a rare event in soft tissue sarcomas without specific balanced translocations. Int J Cancer (Journal International du Cancer). 2003;104(2):175–8.

    CAS  Google Scholar 

  189. Kawaguchi K, Oda Y, Saito T, Takahira T, Yamamoto H, Tamiya S, Iwamoto Y, Tsuneyoshi M. Genetic and epigenetic alterations of the PTEN gene in soft tissue sarcomas. Hum Pathol. 2005;36(4):357–63.

    CAS  PubMed  Google Scholar 

  190. Hernando E, Charytonowicz E, Dudas ME, Menendez S, Matushansky I, Mills J, Socci ND, Behrendt N, Ma L, Maki RG, et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med. 2007;13(6):748–53.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Kandil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mirzabeigi, M., Khan, A., Kandil, D. (2015). Molecular Features of Mesenchymal Tumors of the Breast. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics