Skip to main content

Molecular Pathology of Fibroepithelial Neoplasms of the Breast

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

  • 1571 Accesses

Abstract

Fibroepithelial neoplasms (FEN) of the breast including fibroadenoma (FA) and phyllodes tumor (PT) are commonly encountered lesions in surgical pathology practice. FA is the most common benign tumor of the breast and shares many histomorphologic features with less commonly encountered PT. PT is further classified into benign, borderline and malignant PT. Distinction between FA and PT and accurate classification of PT is critical to predict behavior and appropriate management. A subset of FA may progress to PT and rarely epithelial malignancy may be seen associated with FA. In this chapter we discuss molecular pathways involved in tumorigenesis and progression of FEN and also review the literature with respect to biomarkers that may assist in the differential diagnosis of this group of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dupont WD, Page DL, Parl FF, Vnencak-Jones CL, Plummer WD Jr, Rados MS, Schuyler PA. Long-term risk of breast cancer in women with fibroadenoma. N Engl J Med. 1994;331(1):10–5.

    Article  CAS  PubMed  Google Scholar 

  2. Noguchi S, Yokouchi H, Aihara T, Motomura K, Inaji H, Imaoka S, Koyama H. Progression of fibroadenoma to phyllodes tumor demonstrated by clonal analysis. Cancer. 1995;76(10):1779–85.

    Article  CAS  PubMed  Google Scholar 

  3. Giri D. Recurrent challenges in the evaluation of fibroepithelial lesions. Arch Pathol Lab Med. 2009;133(5):713–21.

    PubMed  Google Scholar 

  4. Komenaka IK, El-Tamer M, Pile-Spellman E, Hibshoosh H. Core needle biopsy as a diagnostic tool to differentiate phyllodes tumor from fibroadenoma. Arch Surg. 2003;138(9):987–90.

    Article  PubMed  Google Scholar 

  5. Jacobs TW, Chen YY, Guinee DG Jr, Holden JA, Cha I, Bauermeister DE, Hashimoto B, Wolverton D, Hartzog G. Fibroepithelial lesions with cellular stroma on breast core needle biopsy: are there predictors of outcome on surgical excision? Am J Clin Pathol. 2005;124(3):342–54.

    Article  PubMed  Google Scholar 

  6. Tsang AK, Chan SK, Lam CC, Lui PC, Chau HH, Tan PH, Tse GM. Phyllodes tumours of the breast—differentiating features in core needle biopsy. Histopathology. 2011;59(4):600–8.

    Article  PubMed  Google Scholar 

  7. Jara-Lazaro AR, Akhilesh M, Thike AA, Lui PC, Tse GM, Tan PH. Predictors of phyllodes tumours on core biopsy specimens of fibroepithelial neoplasms. Histopathology. 2010;57(2):220–32.

    Article  PubMed  Google Scholar 

  8. Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H. Clonal analysis of fibroadenoma and phyllodes tumor of the breast. Cancer Res. 1993;53(17):4071–4.

    CAS  PubMed  Google Scholar 

  9. Noguchi S, Aihara T, Koyama H, Motomura K, Inaji H, Imaoka S. Clonal analysis of benign and malignant human breast tumors by means of polymerase chain reaction. Cancer Lett. 1995;90(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  10. Kuijper A, Buerger H, Simon R, Schaefer KL, Croonen A, Boecker W, van der Wall E, van Diest PJ. Analysis of the progression of fibroepithelial tumours of the breast by PCR-based clonality assay. J Pathol. 2002;197(5):575–81.

    Article  PubMed  Google Scholar 

  11. Flint DJ, Tonner E, Beattie J, Allan GJ. Role of insulin-like growth factor binding proteins in mammary gland development. J Mammary Gland Biol Neoplasia. 2008;13(4):443–53.

    Article  CAS  PubMed  Google Scholar 

  12. Gross JM, Yee D. The type-1 insulin-like growth factor receptor tyrosine kinase and breast cancer: biology and therapeutic relevance. Cancer Metastasis Rev. 2003;22(4):327–36.

    Article  CAS  PubMed  Google Scholar 

  13. Allan GJ, Beattie J, Flint DJ. The role of IGFBP-5 in mammary gland development and involution. Domest Anim Endocrinol. 2004;27(3):257–66.

    Article  CAS  PubMed  Google Scholar 

  14. Mohanraj L, Oh Y. Targeting IGF-I, IGFBPs and IGF-I receptor system in cancer: the current and future in breast cancer therapy. Recent Pat Anticancer Drug Discov. 2011;6(2):166–77.

    Article  CAS  PubMed  Google Scholar 

  15. Sawyer EJ, Hanby AM, Poulsom R, Jeffery R, Gillett CE, Ellis IO, Ellis P, Tomlinson IP. Beta-catenin abnormalities and associated insulin-like growth factor overexpression are important in phyllodes tumours and fibroadenomas of the breast. J Pathol. 2003;200(5):627–32.

    Article  CAS  PubMed  Google Scholar 

  16. Sawyer EJ, Hanby AM, Ellis P, Lakhani SR, Ellis IO, Boyle S, Tomlinson IP. Molecular analysis of phyllodes tumors reveals distinct changes in the epithelial and stromal components. Am J Pathol. 2000;156(3):1093–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sawhney N, Garrahan N, Douglas-Jones AG, Williams ED. Epithelial–stromal interactions in tumors. A morphologic study of fibroepithelial tumors of the breast. Cancer. 1992;70(8):2115–20.

    Article  CAS  PubMed  Google Scholar 

  18. Paul S, Dey A. Wnt signaling and cancer development: therapeutic implication. Neoplasma. 2008;55(3):165–76.

    CAS  PubMed  Google Scholar 

  19. Howe LR, Brown AM. Wnt signaling and breast cancer. Cancer Biol Ther. 2004;3(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  20. Karim RZ, Gerega SK, Yang YH, Horvath L, Spillane A, Carmalt H, Scolyer RA, Lee CS. Proteins from the Wnt pathway are involved in the pathogenesis and progression of mammary phyllodes tumours. J Clin Pathol. 2009;62(11):1016–20.

    Article  CAS  PubMed  Google Scholar 

  21. Mahipal A, Kothari N, Gupta S. Epidermal growth factor receptor inhibitors: coming of age. Cancer Control. 2014;21(1):74–9.

    PubMed  Google Scholar 

  22. Kersting C, Kuijper A, Schmidt H, Packeisen J, Liedtke C, Tidow N, Gustmann C, Hinrichs B, Wulfing P, Tio J, et al. Amplifications of the epidermal growth factor receptor gene (egfr) are common in phyllodes tumors of the breast and are associated with tumor progression. Lab Invest. 2006;86(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  23. Zelada-Hedman M, Werer G, Collins P, Backdahl M, Perez I, Franco S, Jimenez J, Cruz J, Torroella M, Nordenskjold M, et al. High expression of the EGFR in fibroadenomas compared to breast carcinomas. Anticancer Res. 1994;14(5A):1679–88.

    CAS  PubMed  Google Scholar 

  24. Nielsen FC, Nielsen J, Christiansen J. A family of IGF-II mRNA binding proteins (IMP) involved in RNA trafficking. Scand J Clin Lab Invest Suppl. 2001;234:93–9.

    Article  CAS  PubMed  Google Scholar 

  25. Dai N, Rapley J, Angel M, Yanik MF, Blower MD, Avruch J. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev. 2011;25(11):1159–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Liao B, Hu Y, Herrick DJ, Brewer G. The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem. 2005;280(18):18517–24.

    Article  CAS  PubMed  Google Scholar 

  27. Liao B, Hu Y, Brewer G. RNA-binding protein insulin-like growth factor mRNA-binding protein 3 (IMP-3) promotes cell survival via insulin-like growth factor II signaling after ionizing radiation. J Biol Chem. 2011;286(36):31145–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Vikesaa J, Hansen TV, Jonson L, Borup R, Wewer UM, Christiansen J, Nielsen FC. RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J. 2006;25(7):1456–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lu D, Yang X, Jiang NY, Woda BA, Liu Q, Dresser K, Mercurio AM, Rock KL, Jiang Z. IMP3, a new biomarker to predict progression of cervical intraepithelial neoplasia into invasive cancer. Am J Surg Pathol. 2011;35(11):1638–45.

    Article  PubMed  Google Scholar 

  30. Samanta S, Sharma VM, Khan A, Mercurio AM. Regulation of IMP3 by EGFR signaling and repression by ERbeta: implications for triple-negative breast cancer. Oncogene 2012; 1–9 (Epub ahead of print).

    Google Scholar 

  31. Findeis-Hosey JJ, Xu H. The use of insulin like-growth factor II messenger RNA binding protein-3 in diagnostic pathology. Hum Pathol. 2011;42(3):303–14.

    Article  CAS  PubMed  Google Scholar 

  32. Walter O, Prasad M, Lu S, Quinlan RM, Edmiston KL, Khan A. IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol. 2009;40(11):1528–33.

    Article  CAS  PubMed  Google Scholar 

  33. Jin T, George Fantus I, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal. 2008;20(10):1697–704.

    Article  CAS  PubMed  Google Scholar 

  34. Regel I, Eichenmuller M, Joppien S, Liebl J, Haberle B, Muller-Hocker J, Vollmar A, von Schweinitz D, Kappler R. IGFBP3 impedes aggressive growth of pediatric liver cancer and is epigenetically silenced in vascular invasive and metastatic tumors. Mol Cancer. 2012;11(1):9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jardim DL, Conley A, Subbiah V. Comprehensive characterization of malignant phyllodes tumor by whole genomic and proteomic analysis: biological implications for targeted therapy opportunities. Orphanet J Rare Dis. 2013;8:112.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Huo L, Gilcrease MZ. Fibroepithelial lesions of the breast with pleomorphic stromal giant cells: a clinicopathologic study of 4 cases and review of the literature. Ann Diagn Pathol. 2009;13(4):226–32.

    Article  PubMed  Google Scholar 

  37. Niezabitowski A, Lackowska B, Rys J, Kruczak A, Kowalska T, Mitus J, Reinfuss M, Markiewicz D. Prognostic evaluation of proliferative activity and DNA content in the phyllodes tumor of the breast: immunohistochemical and flow cytometric study of 118 cases. Breast Cancer Res Treat. 2001;65(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  38. Lynch BJ, Guinee DG Jr, Holden JA. Human DNA topoisomerase II-alpha: a new marker of cell proliferation in invasive breast cancer. Hum Pathol. 1997;28(10):1180–8.

    Article  CAS  PubMed  Google Scholar 

  39. Kang Y, Kim JH, Lee TH, Kim TS, Jung WH, Chung HC, Park BW, Sheen SS, Han JH. Expression of anaphase-promoting complex7 in fibroadenomas and phyllodes tumors of breast. Hum Pathol. 2009;40(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  40. Tse GM, Putti TC, Lui PC, Lo AW, Scolyer RA, Law BK, Karim R, Lee CS. Increased c-kit (CD117) expression in malignant mammary phyllodes tumors. Mod Pathol. 2004;17(7):827–31.

    Article  PubMed  Google Scholar 

  41. Tan PH, Jayabaskar T, Yip G, Tan Y, Hilmy M, Selvarajan S, Bay BH. p53 and c-kit (CD117) protein expression as prognostic indicators in breast phyllodes tumors: a tissue microarray study. Mod Pathol. 2005;18(12):1527–34.

    CAS  PubMed  Google Scholar 

  42. Chen CM, Chen CJ, Chang CL, Shyu JS, Hsieh HF, Harn HJ. CD34, CD117, and actin expression in phyllodes tumor of the breast. J Surg Res. 2000;94(2):84–91.

    Article  CAS  PubMed  Google Scholar 

  43. Korcheva VB, Levine J, Beadling C, Warrick A, Countryman G, Olson NR, Heinrich MC, Corless CL, Troxell ML. Immunohistochemical and molecular markers in breast phyllodes tumors. Appl Immunohistochem Mol Morphol. 2011;19(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  44. Djordjevic B, Hanna WM. Expression of c-kit in fibroepithelial lesions of the breast is a mast cell phenomenon. Mod Pathol. 2008;21(10):1238–45.

    Article  CAS  PubMed  Google Scholar 

  45. Bose P, Dunn ST, Yang J, Allen R, El-Khoury C, Tfayli A. c-Kit expression and mutations in phyllodes tumors of the breast. Anticancer Res. 2010;30(11):4731–6.

    CAS  PubMed  Google Scholar 

  46. Agelopoulos K, Kersting C, Korsching E, Schmidt H, Kuijper A, August C, Wulfing P, Tio J, Boecker W, van Diest PJ, et al. Egfr amplification specific gene expression in phyllodes tumours of the breast. Cell Oncol. 2007;29(6):443–51.

    CAS  PubMed  Google Scholar 

  47. Chan YJ, Chen BF, Chang CL, Yang TL, Fan CC. Expression of p53 protein and Ki-67 antigen in phyllodes tumor of the breast. J Chin Med Assoc. 2004;67(1):3–8.

    PubMed  Google Scholar 

  48. Kuenen-Boumeester V, Henzen-Logmans SC, Timmermans MM, van Staveren IL, van Geel A, Peeterse HJ, Bonnema J, Berns EM. Altered expression of p53 and its regulated proteins in phyllodes tumours of the breast. J Pathol. 1999;189(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  49. Tse GM, Putti TC, Kung FY, Scolyer RA, Law BK, Lau TS, Lee CS. Increased p53 protein expression in malignant mammary phyllodes tumors. Mod Pathol. 2002;15(7):734–40.

    Article  PubMed  Google Scholar 

  50. Yonemori K, Hasegawa T, Shimizu C, Shibata T, Matsumoto K, Kouno T, Ando M, Katsumata N, Fujiwara Y. Correlation of p53 and MIB-1 expression with both the systemic recurrence and survival in cases of phyllodes tumors of the breast. Pathol Res Pract. 2006;202(10):705–12.

    Article  CAS  PubMed  Google Scholar 

  51. Zamecnik M, Kinkor Z, Chlumska A. CD10+ stromal cells in fibroadenomas and phyllodes tumors of the breast. Virchows Arch. 2006;448(6):871–2.

    Article  CAS  PubMed  Google Scholar 

  52. Tse GM, Tsang AK, Putti TC, Scolyer RA, Lui PC, Law BK, Karim RZ, Lee CS. Stromal CD10 expression in mammary fibroadenomas and phyllodes tumours. J Clin Pathol. 2005;58(2):185–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Tsai WC, Jin JS, Yu JC, Sheu LF. CD10, actin, and vimentin expression in breast phyllodes tumors correlates with tumor grades of the WHO grading system. Int J Surg Pathol. 2006;14(2):127–31.

    Article  CAS  PubMed  Google Scholar 

  54. Ibrahim WS. Comparison of stromal CD10 expression in benign, borderline, and malignant phyllodes tumors among Egyptian female patients. Indian J Pathol Microbiol. 2011;54(4):741–4.

    PubMed  Google Scholar 

  55. Moritani S, Kushima R, Sugihara H, Bamba M, Kobayashi TK, Hattori T. Availability of CD10 immunohistochemistry as a marker of breast myoepithelial cells on paraffin sections. Mod Pathol. 2002;15(4):397–405.

    Article  PubMed  Google Scholar 

  56. Chia Y, Thike AA, Cheok PY, Yong-Zheng Chong L, Man-Kit Tse G, Tan PH. Stromal keratin expression in phyllodes tumours of the breast: a comparison with other spindle cell breast lesions. J Clin Pathol. 2012;65(4);339–347.

    Google Scholar 

  57. Dunne B, Lee AH, Pinder SE, Bell JA, Ellis IO. An immunohistochemical study of metaplastic spindle cell carcinoma, phyllodes tumor and fibromatosis of the breast. Hum Pathol. 2003;34(10):1009–15.

    Article  CAS  PubMed  Google Scholar 

  58. Auger M, Hanna W, Kahn HJ. Cystosarcoma phylloides of the breast and its mimics. An immunohistochemical and ultrastructural study. Arch Pathol Lab Med. 1989;113(11):1231–5.

    CAS  PubMed  Google Scholar 

  59. Lacroix-Triki M, Geyer FC, Lambros MB, Savage K, Ellis IO, Lee AH, Reis-Filho JS. Beta-catenin/Wnt signalling pathway in fibromatosis, metaplastic carcinomas and phyllodes tumours of the breast. Mod Pathol. 2010;23(11):1438–48.

    Article  CAS  PubMed  Google Scholar 

  60. Tse GM, Lui PC, Vong JS, Lau KM, Putti TC, Karim R, Scolyer RA, Lee CS, Yu AM, Ng DC, et al. Increased epidermal growth factor receptor (EGFR) expression in malignant mammary phyllodes tumors. Breast Cancer Res Treat. 2009;114(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  61. Karim RZ, Gerega SK, Yang YH, Spillane A, Carmalt H, Scolyer RA, Lee CS. p16 and pRb immunohistochemical expression increases with increasing tumour grade in mammary phyllodes tumours. Histopathology. 2010;56(7):868–75.

    Article  PubMed  Google Scholar 

  62. Kuijper A, de Vos RA, Lagendijk JH, van der Wall E, van Diest PJ. Progressive deregulation of the cell cycle with higher tumor grade in the stroma of breast phyllodes tumors. Am J Clin Pathol. 2005;123(5):690–8.

    Article  PubMed  Google Scholar 

  63. Esposito NN, Mohan D, Brufsky A, Lin Y, Kapali M, Dabbs DJ. Phyllodes tumor: a clinicopathologic and immunohistochemical study of 30 cases. Arch Pathol Lab Med. 2006;130(10):1516–21.

    PubMed  Google Scholar 

  64. Cimino-Mathews A, Hicks JL, Sharma R, Vang R, Illei PB, De Marzo A, Emens LA, Argani P. A subset of malignant phyllodes tumors harbors alterations in the Rb/p16 pathway. Hum Pathol. 2013;44(11):2494–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kwon JE, Jung WH, Koo JS. Molecules involved in epithelial-mesenchymal transition and epithelial-stromal interaction in phyllodes tumors: implications for histologic grade and prognosis. Tumour Biol. 2012;33(3):787–98.

    Article  PubMed  Google Scholar 

  66. Gort EH, Suijkerbuijk KP, Roothaan SM, Raman V, Vooijs M, van der Wall E, van Diest PJ. Methylation of the TWIST1 promoter, TWIST1 mRNA levels, and immunohistochemical expression of TWIST1 in breast cancer. Cancer Epidemiol Biomark Prev. 2008;17(12):3325–30.

    Article  CAS  Google Scholar 

  67. Kim S, Kim do H, Jung WH, Koo JS. The expression of redox proteins in phyllodes tumor. Breast Cancer Res Treat. 2013;141(3):365–74.

    Article  CAS  PubMed  Google Scholar 

  68. Kim SK, Jung WH, Koo JS. Expression of autophagy-related proteins in phyllodes tumor. Int J Clin Exp Pathol. 2013;6(10):2145–56.

    PubMed Central  PubMed  Google Scholar 

  69. Ang MK, Ooi AS, Thike AA, Tan P, Zhang Z, Dykema K, Furge K, Teh BT, Tan PH. Molecular classification of breast phyllodes tumors: validation of the histologic grading scheme and insights into malignant progression. Breast Cancer Res Treat. 2011;129(2):319–29.

    Article  PubMed  Google Scholar 

  70. Bellezza G, Cavaliere A, Sidoni A. IMP3 expression in non-small cell lung cancer. Hum Pathol. 2009;40(8):1205–6.

    Article  PubMed  Google Scholar 

  71. Jiang Z, Chu PG, Woda BA, Rock KL, Liu Q, Hsieh CC, Li C, Chen W, Duan HO, McDougal S, et al. Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol. 2006;7(7):556–64.

    Article  CAS  PubMed  Google Scholar 

  72. Schaeffer DF, Owen DR, Lim HJ, Buczkowski AK, Chung SW, Scudamore CH, Huntsman DG, Ng SS, Owen DA. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival. BMC Cancer. 2010;10:59.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Slosar M, Vohra P, Prasad M, Fischer A, Quinlan R, Khan A. Insulin-like growth factor mRNA binding protein 3 (IMP3) is differentially expressed in benign and malignant follicular patterned thyroid tumors. Endocr Pathol. 2009;20(3):149–57.

    Article  CAS  PubMed  Google Scholar 

  74. Shi M, Fraire AE, Chu P, Cornejo K, Woda BA, Dresser K, Rock KL, Jiang Z. Oncofetal protein IMP3, a new diagnostic biomarker to distinguish malignant mesothelioma from reactive mesothelial proliferation. Am J Surg Pathol. 2011;35(6):878–82.

    Article  PubMed  Google Scholar 

  75. Vranic S, Gurjeva O, Frkovic-Grazio S, Palazzo J, Tawfik O, Gatalica Z. IMP3, a proposed novel basal phenotype marker, is commonly overexpressed in adenoid cystic carcinomas but not in apocrine carcinomas of the breast. Appl Immunohistochem Mol Morphol. 2011;19(5):413–6.

    Article  CAS  PubMed  Google Scholar 

  76. Lae M, Vincent-Salomon A, Savignoni A, Huon I, Freneaux P, Sigal-Zafrani B, Aurias A, Sastre-Garau X, Couturier J. Phyllodes tumors of the breast segregate in two groups according to genetic criteria. Mod Pathol. 2007;20(4):435–44.

    Article  CAS  PubMed  Google Scholar 

  77. Yang X, Kandil D, Cosar EF, Khan A. Fibroepithelial tumors of the breast: pathologic and immunohistochemical features and molecular mechanisms. Arch Pathol Lab Med. 2014;138(1):25–36.

    Article  PubMed  Google Scholar 

  78. Huang KT, Dobrovic A, Yan M, Karim RZ, Lee CS, Lakhani SR, Fox SB. DNA methylation profiling of phyllodes and fibroadenoma tumours of the breast. Breast Cancer Res Treat. 2010;124(2):555–65.

    Article  CAS  PubMed  Google Scholar 

  79. Kim JH, Choi YD, Lee JS, Lee JH, Nam JH, Choi C, Park MH, Yoon JH. Borderline and malignant phyllodes tumors display similar promoter methylation profiles. Virchows Arch. 2009;455(6):469–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, M., Kandil, D., Khan, A. (2015). Molecular Pathology of Fibroepithelial Neoplasms of the Breast. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics