Skip to main content

Molecular Basis of Breast Cancer Imaging

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

  • 1641 Accesses

Abstract

Over the past decade, annually for women 50 years of age or older, the breast cancer incidence rate in the United States has ranged from 400 to 500 per 100 000 women and the breast cancer mortality rate has ranged from 60 to 80 per 100 000 women. Though there has been a decline in the breast cancer mortality in the past decade it continues to be the second leading cause of death after lung cancer in women over 40 years of age. Breast cancer continues to be a major health issue among women in the United States. Screening mammogram has significantly contributed to the reduction in mortality. However, screening mammogram has its own limitations. Its sensitivity is 80 % in fatty breasts but is substantially lower in dense breasts. On average nearly 30 % of women reporting for mammograms have dense breasts and 1 in 2 cancers in dense breasts are missed on mammograms due to the masking effect caused by overlapping tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clinic. 2014;64(1):52–62.

    Article  Google Scholar 

  2. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E. Breast density as a predictor of mammographic detection: comparison of interval and screen detected cancers. J Natl Cancer Inst. 2000;92(13):1081–7.

    Article  CAS  PubMed  Google Scholar 

  3. Drukteinis JS, Mooney BP, Floers CI, Gatenby RA. Beyond mammography: new frontiers in breast cancer screening. American J Med. 2013;126(6):472–9.

    Article  Google Scholar 

  4. Niklason LT, Christian BT, Niklason LE, Kopans DB, Castleberry DE, OpsahlOng BH, Landberg CE, Slanetz PJ, Giardino AA, Moore R, Albagli D, DeJule MC, Fitzgerald PF, Fobare DF, Giambattista BW, Kwasnick RF, Liu JQ, Lubowski SJ, Possin GE, Richotte JF, Wei CY, Wirth RF. Digital tomosynthesis in breast imaging. Radiology. 1997;205(2):399–406.

    Article  CAS  PubMed  Google Scholar 

  5. Herranz M, Ruibal A. Optical imaging in breast cancer diagnosis: the next evolution. J Oncol. 2012;2012:863747.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hruska CB, O’Connor MK. Nuclear imaging of the breast: translating achievements in instrumentation into clinical use. Med Phys. 2013;40(5):050901–23.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rhodes DJ, Hruska CB, Phillips SW, Whaley DH, O’Connor MK. Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology. 2011;258(1):106–18.

    Article  PubMed  Google Scholar 

  8. Weigert JM, Bertrand ML, Lanzkowsky L, Stern LH, Kieper DA. Results of a multicenter patient registry to determine the clinic impact of breast specific gamma imaging, a molecular breast imaging technique. AJR. 2012;198:W69–75.

    Article  PubMed  Google Scholar 

  9. O’Connor MK, Philips SW, Hruska CB, Rhodes DJ, Collins DA. Molecular breast imaging: advantages and limitations of a scintimammographic technique in patients with small breast tumors. Breast J. 2007;13(1):3–11.

    Article  PubMed  Google Scholar 

  10. Hendrick RE. Radiation doses and cancer risks from breast imaging studies. Radiology. 2010;257(1):246–53.

    Article  PubMed  Google Scholar 

  11. Miller AB, Wall C, Baines CJ, Sun P, To T, Narod SA. Twenty five year follow up for breast cancer incidence and mortality of the Canadian national breast screening study: randomized screening trail. BMJ. 2014;348:g366.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR. 2012;198:W292–5.

    Article  PubMed  Google Scholar 

  13. Buist DS, Porter PL, Lehman C, Taplin SH, White E. Factors contributing to mammography failure in women aged 40–49 years. J Natl Cancer Inst. 2004;96(19):1432–40.

    Article  PubMed  Google Scholar 

  14. Ciatto S, Houssami N, Bernardi D, Caumo F, Pellegrini M, Brunelli S, Tuttobene P, Bricolo P, Fanto C, Valentini M, Montemezzi S, Macaskill P. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol. 2013;14(7):583–9.

    Article  PubMed  Google Scholar 

  15. Giuliano V, Giuliano C. Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts. Clin Imaging. 2013;37(3):480–6.

    Article  PubMed  Google Scholar 

  16. Hruska CB, Phillips SW, Whaley DH, Rhodes DJ, O’Connor MK. Molecular breast imaging: use of a dual-head dedicated gamma camera to detect small breast tumors. AJR. 2008;191:1805–15.

    Article  PubMed  Google Scholar 

  17. Brem RF, Rapelyea JA, Zisman G, Mohtashemi K, Raub J, Teal CB, Majewski S, Welch BL. Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology. 2005;237:274–80.

    Article  PubMed  Google Scholar 

  18. Brem RF, Floerke AC, Rapelyea JA, Teal C, Kelly T, Mathur V. Breast specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology. 2008;247:651–7.

    Article  PubMed  Google Scholar 

  19. Kalles V, Zografos GC, Provatopoulou X, Koulocheri D, Gounaris A. The current status of positron emission mammography in breast cancer diagnosis. Breast Cancer. 2013;20:123–30.

    Article  PubMed  Google Scholar 

  20. Narayanan D, Madsen KS, Kalinyak JE, Berg WA. Interpretation of positron emission mammograpghy and MRI by experienced breast imaging radiologists: performance and observer reproducibility. AJR. 2011;196:971–81.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kalinyak JE, Schilling K, Berg WA, Narayanan D, Mayberry JP, Rai R, Dupree EB, Shusterman DK, Gittleman MA, Luo W, Matthews CG. PET guided breast biopsy. Breast J. 2011;17(2):143–51.

    Article  PubMed  Google Scholar 

  22. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano EA, Larsen LH, Narayanan D, Ozonoff A, Miller JP, Kalinyak JE. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258:59–72.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, Narayanan D, Kalinyak JE. Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR. 2012;198:219–32.

    Article  PubMed  Google Scholar 

  24. Centers for Disease. C. Inappropriate use of transillumination for breast cancer screening–Wisconsin, 1990. MMWR. Morb Mortal Wkly Rep. 1991;40(18):293–6.

    Google Scholar 

  25. Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R, Tromberg BJ. Noninvasive functional optical spectroscopy of human breast tissue. Proc Nat Acad Sci. 2001;98(8):4420–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gonzalez J, Decerce J, Erickson SJ, Martinez SL, Nunez A, Roman M, Traub B, Flores CA, Roberts SM, Hernandez E, Aguirre W, Kiszonas R, Godavarty A. Hand-held optical imager (Gen-2): improved instrumentation and target detectability. J Biomed Opt. 2012;17(8):081402–1.

    Article  PubMed Central  PubMed  Google Scholar 

  27. McBride TO, Pogue BW, Jiang S, Osterberg UL, Paulsen KD. A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo. Rev Sci Instrum. 2001;72(3):1817–24.

    Article  CAS  Google Scholar 

  28. Culver JP, Choe R, Holboke MJ, Zubkov L, Durduran T, Slemp A, Ntziachristos V, Chance B, Yodh AG. Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys. 2003;30(2):235–47.

    Article  CAS  PubMed  Google Scholar 

  29. Poplack SP, Tosteson TD, Wells WA, Pogue BW, Meaney PM, Hartov A, Kogel CA, Soho SK, Gibson JJ, Paulsen KD. Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms. Radiology. 2007;243(2):350–9.

    Article  PubMed  Google Scholar 

  30. Boverman G, Fang Q, Carp SA, Miller EL, Brooks DH, Selb J, Moore RH, Kopans DB, Boas DA. Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography. Phys Med Biol. 2007;52(12):3619–41.

    Article  CAS  PubMed  Google Scholar 

  31. Krishnaswamy V, Michaelsen KE, Pogue BW, Poplack SP, Shaw I, Defrietas K, Brooks K, Paulsen KD. A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging. Opt Express. 2012;20(17):19125–36.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Vedantham S, Shi L, Karellas A, Michaelsen KE, Krishnaswamy V, Pogue BW, Paulsen KD. Semi-automated segmentation and classification of digital breast tomosynthesis reconstructed images. In: Conference Proceeding of IEEE Engineering in Medicine and Biology Society, EMBC, 2011. p. 6188–6191.

    Google Scholar 

  33. Fang Q, Selb J, Carp SA, Boverman G, Miller EL, Brooks DH, Moore RH, Kopans DB, Boas DA. Combined optical and X-ray tomosynthesis breast imaging. Radiology. 2011;258(1):89–97.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Zhu Q, Cronin EB, Currier AA, Vine HS, Huang M, Chen N, Xu C. Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction. Radiology. 2005;237(1):57–66.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ntziachristos V, Yodh AG, Schnall MD, Chance B. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia. 2002;4(4):347–54.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Brooksby B, Jiang S, Dehghani H, Pogue BW, Paulsen KD, Kogel C, Doyley M, Weaver JB, Poplack SP. Magnetic resonance-guided near-infrared tomography of the breast. Rev Sci Instrum. 2004;75(12):5262–70.

    Article  CAS  Google Scholar 

  37. O’Sullivan TD, Leproux A, Chen JH, Bahri S, Matlock A, Roblyer D, McLaren CE, Chen WP, Cerussi AE, Su MY, Tromberg BJ. Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy. Breast Cancer Res. 2013;15(1):R14.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Laughney AM, Krishnaswamy V, Rice TB, Cuccia DJ, Barth RJ, Tromberg BJ, Paulsen KD, Pogue BW, Wells WA. System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues. J Biomed Opt. 2013;18(3):036012.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Dhar S, Lo JY, Palmer GM, Brooke MA, Nichols BS, Yu B, Ramanujam N, Jokerst NM. A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays. Biomedical optics express. 2012;3(12):3211–22.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Jacobs L. Positive margins: the challenge continues for breast surgeons. Ann Surg Oncol. 2008;15(5):1271–2.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Patel R, Khan A, Wirth D, Kamionek M, Kandil D, Quinlan R, Yaroslavsky AN. Multimodal optical imaging for detecting breast cancer. J Biomed Optics. 2012;17(6):066008.

    Article  Google Scholar 

  42. Patel R, Khan A, Wirth D, Kamionek M, Kandil D, Quinlan R, Yaroslavsky AN. Delineating breast ductal carcinoma using combined dye-enhanced wide-field polarization imaging and optical coherence tomography. Biophoton. 2013;6(9):679–86.

    Article  Google Scholar 

  43. Patel R, Khan A, Quinlan R, Yaroslavsky AN. Polarization sensitive multimodal imaging for detecting breast cancer. Cancer Res. 2014;74(17):4685–93.

    Article  CAS  PubMed  Google Scholar 

  44. Azu M, Abrahamse P, Katz SJ, Jagsi R, Morrow M. What is an adequate margin for breast-conserving surgery? Surgeon attitudes and correlates. Ann Surg Oncol. 2010;17:558–63.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Backman V, Wallace MB, Perelman LT, Arendt JT, Gurjar R, Müller MG, Zhang Q, Zonios G, Kline E, McGilligan JA, Shapshay S, Valdez T, Badizadegan K, Crawford JM, Fitzmaurice M, Kabani S, Levin HS, Seiler M, Dasari RR, Itzkan I, Van Dam J, Feld MS. Nature. 2000;406(6791):35–6.

    Article  CAS  PubMed  Google Scholar 

  46. Brown JQ, Vishwanath K, Palmer GM, Ramanujam N. Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer. Curr Opin Biotechnol. 2009;20(1):119–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Brown JQ, Bydlon TM, Kennedy SA, Caldwell ML, Gallagher JE, Junker M, Wilke LG, Barry WT, Geradts J, Ramanujam N. Optical spectral surveillance of breast tissue landscapes for detection of residual disease in breast tumor margins. PLoS ONE. 2013;8(7):e69906.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fitzgerald AJ, Wallace VP, Jimenez-Linan M, Bobrow L, Pye RJ, Purushotham AD, Arnone DD. Terahertz pulsed imaging of human breast tumors. Radiology. 2006;239(2):533–40.

    Article  PubMed  Google Scholar 

  49. Fitzgerald AJ, Pinder S, Purushotham AD, O’Kelly P, Ashworth PC, Wallace VP. Classification of terahertz-pulsed imaging data from excised breast tissue. J Biomed Opt. 2012;17(1):016005.

    Article  PubMed  Google Scholar 

  50. Fitzgerald AJ, Pickwell-MacPherson E, Wallace VP. Use of finite difference time domain simulations and debye theory for modelling the terahertz reflection response of normal and tumour breast tissue. PLoS ONE. 2014;9(7):e99291.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Yngvesson SK, St Peter B, Siqueira P, Kelly P, Glick S, Karellas A, Khan A. Feasibility demonstration of frequency domain terahertz imaging in breast cancer margin determination. In: Proceedings of society of photo-optical instrumentation engineers 2012. Optical interactions with tissue and cells XXIII; vol. 8221, 82210N.

    Google Scholar 

  52. St Peter B, Yngvesson S, Siqueira P, Kelly P, Khan A, Glick S, Karellas A. Development and testing of a single frequency terahertz imaging system for breast cancer detection. IEEE J Biomed Health Inform. 2013;17(4):785–797.

    Google Scholar 

  53. Ajito K, Ueno Y. Thz chemical imaging for biological applications. IEEE Trans Thz Sci Techn. 2011;1(1):293–300.

    Article  CAS  Google Scholar 

  54. Ashworth PC, Pickwell-MacPherson E, Provenzano E, Pinder SE, Purushotham AD, Pepper M, Wallace VP. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt Express. 2009;17(15):12444–54.

    Article  CAS  PubMed  Google Scholar 

  55. Savastru D, Chang EW, Miclos S, Pitman MB, Patel A, Iftimia N. Detection of breast surgical margins with optical coherence tomography imaging: a concept evaluation study. J Biomed Opt. 2014;19(5):056001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vijayaraghavan, G.R., Vedantham, S., Khan, A., Karellas, A. (2015). Molecular Basis of Breast Cancer Imaging. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics