Skip to main content

Infectious Diseases of the Skin

  • Chapter
  • First Online:
Precision Molecular Pathology of Dermatologic Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 9))

  • 741 Accesses

Abstract

Molecular techniques are gaining growing utility in the infectious dermatopathology laboratory. Although culture-based methods are still regarded as the gold standard for diagnosis of most of the infectious diseases of the skin, molecular tests have a great potential due to their high sensitivity and specificity. These methods do not require tissue cultures and can be applied to formalin-fixed paraffin-embedded (FFPE) tissues. Signal amplification methods (in situ hybridization, ISH) and target amplification methods (polymerase chain reaction, PCR) are among the most used molecular biology-based tests in the routine dermatopathology practice. In this chapter, we discussed the application of these methods in the diagnosis of common viral, bacterial, fungal, and parasitic infections of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierard GE, Arrese JE, De Doncker P, Pierard-Franchimont C. Present and potential diagnostic techniques in onychomycosis. J Am Acad Dermatol. 1996;34(2 Pt 1):273–7.

    CAS  PubMed  Google Scholar 

  2. Procop GW. Molecular diagnostics for the detection and characterization of microbial pathogens. Clin Infect Dis. 2007;45(Suppl 2):S99–S111.

    CAS  PubMed  Google Scholar 

  3. Payne DA, Van der Straten M, Carrasco D, Tyring SK. Molecular diagnosis of skin-associated infectious agents. Arch Dermatol. 2001;137(11):1497–502.

    CAS  PubMed  Google Scholar 

  4. Bravo F, Sanchez MR. New and re-emerging cutaneous infectious diseases in Latin America and other geographic areas. Dermatol Clin. 2003;21(4):655–68, viii.

    PubMed  Google Scholar 

  5. Arabatzis M, Bruijnesteijn van Coppenraet LE, Kuijper EJ, et al. Diagnosis of common dermatophyte infections by a novel multiplex real-time polymerase chain reaction detection/identification scheme. Br J Dermatol. 2007;157(4):681–9.

    CAS  PubMed  Google Scholar 

  6. Okeke CN, Tsuboi R, Kawai M, Hiruma M, Ogawa H. Isolation of an intron-containing partial sequence of the gene encoding dermatophyte actin (ACT) and detection of a fragment of the transcript by reverse transcription-nested PCR as a means of assessing the viability of dermatophytes in skin scales. J Clin Microbiol. 2001;39(1):101–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Beifuss B, Bezold G, Gottlober P, et al. Direct detection of five common dermatophyte species in clinical samples using a rapid and sensitive 24-h PCR-ELISA technique open to protocol transfer. Mycoses. 2011;54(2):137–45.

    CAS  PubMed  Google Scholar 

  8. Bergmans AM, van der Ent M, Klaassen A, Bohm N, Andriesse GI, Wintermans RG. Evaluation of a single-tube real-time PCR for detection and identification of 11 dermatophyte species in clinical material. Clin Microbiol Infect. 2010;16(6):704–10.

    CAS  PubMed  Google Scholar 

  9. Dalstein V, Merlin S, Bali C, Saunier M, Dachez R, Ronsin C. Analytical evaluation of the PapilloCheck test, a new commercial DNA chip for detection and genotyping of human papillomavirus. J Virol Methods. 2009;156(1–2):77–83.

    CAS  PubMed  Google Scholar 

  10. Lebwohl MG, Rosen T, Stockfleth E The role of human papillomavirus in common skin conditions: current viewpoints and therapeutic options. Cutis. 2010;86(5):suppl 1–11. quiz suppl 12.

    PubMed  Google Scholar 

  11. Ulrich C, Hackethal M, Meyer T, et al. Skin infections in organ transplant recipients. J Dtsch Dermatol Ges. 2008;6(2):98–105.

    PubMed  Google Scholar 

  12. Diamantis ML, Richmond HM, Rady PL, et al. Detection of human papillomavirus in multiple eccrine poromas in a patient with chronic graft-vs-host disease and immunosuppression. Arch Dermatol. 2011;147(1):120–2.

    PubMed  Google Scholar 

  13. Amortegui AJ, Meyer MP. In-situ hybridization for the diagnosis and typing of human papillomavirus. Clin Biochem. 1990;23(4):301–6.

    CAS  PubMed  Google Scholar 

  14. Michael KM, Forslund O, Bacevskij O, et al. Bead-based multiplex genotyping of 58 cutaneous human papillomavirus types. J Clin Microbiol. 2011;49(10):3560–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Resnick RM, Cornelissen MT, Wright DK, et al. Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J Natl Cancer Inst. 1990;82(18):1477–84.

    CAS  PubMed  Google Scholar 

  16. Brink AA, Lloveras B, Nindl I, et al. Development of a general-primer-PCR-reverse-line-blotting system for detection of beta and gamma cutaneous human papillomaviruses. J Clin Microbiol. 2005;43(11):5581–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Berkhout RJ, Tieben LM, Smits HL, Bavinck JN, Vermeer BJ, ter Schegget J. Nested PCR approach for detection and typing of epidermodysplasia verruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients. J Clin Microbiol. 1995;33(3):690–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hagiwara K, Uezato H, Arakaki H, et al. A genotype distribution of human papillomaviruses detected by polymerase chain reaction and direct sequencing analysis in a large sample of common warts in Japan. J Med Virol. 2005;77(1):107–12.

    CAS  PubMed  Google Scholar 

  19. Forslund O, Antonsson A, Nordin P, Stenquist B, Hansson BG. A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol. 1999;80(9):2437–43.

    CAS  PubMed  Google Scholar 

  20. Rubben A, Kalka K, Spelten B, Grussendorf-Conen EI. Clinical features and age distribution of patients with HPV 2/27/57-induced common warts. Arch Dermatol Res. 1997;289(6):337–40.

    CAS  PubMed  Google Scholar 

  21. Schmitt M, Bravo IG, Snijders PJ, Gissmann L, Pawlita M, Waterboer T. Bead-based multiplex genotyping of human papillomaviruses. J Clin Microbiol. 2006;44(2):504–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Gheit T, Billoud G, de Koning MN, et al. Development of a sensitive and specific multiplex PCR method combined with DNA microarray primer extension to detect Betapapillomavirus types. J Clin Microbiol. 2007;45(8):2537–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Sasagawa T, Mitsuishi T. Novel polymerase chain reaction method for detecting cutaneous human papillomavirus DNA. J Med Virol. 2012;84(1):138–44.

    PubMed  Google Scholar 

  24. de Koning MN, ter Schegget J, Eekhof JA, et al. Evaluation of a novel broad-spectrum PCR-multiplex genotyping assay for identification of cutaneous wart-associated human papillomavirus types. J Clin Microbiol. 2010;48(5):1706–11.

    PubMed Central  PubMed  Google Scholar 

  25. Dubina M, Goldenberg G. Viral-associated nonmelanoma skin cancers: a review. Am J Dermatopathol. 2009;31(6):561–73.

    PubMed  Google Scholar 

  26. Zaravinos A, Kanellou P, Spandidos DA. Viral DNA detection and RAS mutations in actinic keratosis and nonmelanoma skin cancers. Br J Dermatol. 2010;162(2):325–31.

    CAS  PubMed  Google Scholar 

  27. zur Hausen H. Papillomaviruses in the causation of human cancers—a brief historical account. Virology. 2009;384(2):260–5.

    CAS  PubMed  Google Scholar 

  28. Annunziato P, Lungu O, Gershon A, Silvers DN, LaRussa P, Silverstein SJ. In situ hybridization detection of varicella zoster virus in paraffin-embedded skin biopsy samples. Clin Diagn Virol. 1996;7(2):69–76.

    CAS  PubMed  Google Scholar 

  29. Lilie HM, Wassilew SW, Wolff MH. Early diagnosis of herpes zoster by polymerase chain reaction. J Eur Acad Dermatol Venereol. 2002;16(1):53–7.

    CAS  PubMed  Google Scholar 

  30. Boer A, Herder N, Blodorn-Schlicht N, Steinkraus V, Falk TM. Refining criteria for diagnosis of cutaneous infections caused by herpes viruses through correlation of morphology with molecular pathology. Indian J Dermatol Venereol Leprol. 2006;72(4):270–5.

    PubMed  Google Scholar 

  31. Bezold G, Lange M, Gethoffer K, Gall H, Peter RU. Detection of cutaneous herpes simplex virus infections by immunofluorescence vs. PCR. J Eur Acad Dermatol Venereol. 2003;17(4):430–3.

    CAS  PubMed  Google Scholar 

  32. Bezold G, Volkenandt M, Gottlober P, Peter RU. Detection of herpes simplex virus and varicella-zoster virus in clinical swabs: frequent inhibition of PCR as determined by internal controls. Mol Diagn. 2000;5(4):279–84.

    CAS  PubMed  Google Scholar 

  33. Rahaus M, Desloges N, Wolff MH. Development of a multiplex RT-PCR to detect transcription of varicella-zoster virus encoded genes. J Virol Methods. 2003;107(2):257–60.

    CAS  PubMed  Google Scholar 

  34. Yamamoto T, Yamada A, Tsuji K, Iwatsuki K. Tracing of the molecular remnants of herpes virus infections in necrotic skin tissue. Eur J Dermatol. 2008;18(5):499–503.

    CAS  PubMed  Google Scholar 

  35. Mendoza N, Diamantis M, Arora A, et al. Mucocutaneous manifestations of Epstein-Barr virus infection. Am J Clin Dermatol. 2008;9(5):295–305.

    PubMed  Google Scholar 

  36. Gulley ML, Tang W. Laboratory assays for Epstein-Barr virus-related disease. J Mol Diagn. 2008;10(4):279–92.

    PubMed Central  PubMed  Google Scholar 

  37. Gulley ML. Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn. 2001;3(1):1–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Gulley ML, Glaser SL, Craig FE, et al. Guidelines for interpreting EBER in situ hybridization and LMP1 immunohistochemical tests for detecting Epstein-Barr virus in Hodgkin lymphoma. Am J Clin Pathol. 2002;117(2):259–67.

    PubMed  Google Scholar 

  39. Gilligan K, Rajadurai P, Resnick L, Raab-Traub N. Epstein-Barr virus small nuclear RNAs are not expressed in permissively infected cells in AIDS-associated leukoplakia. Proc Natl Acad Sci U S A. 1990;87(22):8790–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Yamamoto T, Tsuji K, Suzuki D, Morizane S, Iwatsuki K. A novel, noninvasive diagnostic probe for hydroa vacciniforme and related disorders: detection of latency-associated Epstein-Barr virus transcripts in the crusts. J Microbiol Methods. 2007;68(2):403–407.

    CAS  PubMed  Google Scholar 

  41. Kubota N, Wada K, Ito Y, et al. One-step multiplex real-time PCR assay to analyse the latency patterns of Epstein-Barr virus infection. J Virol Methods. 2008;147(1):26–36.

    CAS  PubMed  Google Scholar 

  42. Ryan JL, Fan H, Glaser SL, Schichman SA, Raab-Traub N, Gulley ML. Epstein-Barr virus quantitation by real-time PCR targeting multiple gene segments: a novel approach to screen for the virus in paraffin-embedded tissue and plasma. J Mol Diagn. 2004;6(4):378–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell. 1986;47(6):883–9.

    CAS  PubMed  Google Scholar 

  44. Robin YM, Guillou L, Michels JJ, Coindre JM. Human herpesvirus 8 immunostaining: a sensitive and specific method for diagnosing Kaposi sarcoma in paraffin-embedded sections. Am J Clin Pathol. 2004;121(3):330–4.

    PubMed  Google Scholar 

  45. Patel RM, Goldblum JR, Hsi ED. Immunohistochemical detection of human herpes virus-8 latent nuclear antigen-1 is useful in the diagnosis of Kaposi sarcoma. Mod Pathol. 2004;17(4):456–60.

    PubMed  Google Scholar 

  46. Nuovo M, Nuovo G. Utility of HHV8 RNA detection for differentiating Kaposi’s sarcoma from its mimics. J Cutan Pathol. 2001;28(5):248–55.

    CAS  PubMed  Google Scholar 

  47. Tedeschi R, Dillner J, De Paoli P. Laboratory diagnosis of human herpesvirus 8 infection in humans. Eur J Clin Microbiol Infect Dis. 2002;21(12):831–44.

    CAS  PubMed  Google Scholar 

  48. Kazakov DV, Schmid M, Adams V, et al. HHV-8 DNA sequences in the peripheral blood and skin lesions of an HIV-negative patient with multiple eruptive dermatofibromas: implications for the detection of HHV-8 as a diagnostic marker for Kaposi’s sarcoma. Dermatology. 2003;206(3):217–21.

    CAS  PubMed  Google Scholar 

  49. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Duncavage EJ, Le BM, Wang D, Pfeifer JD. Merkel cell polyomavirus: a specific marker for Merkel cell carcinoma in histologically similar tumors. Am J Surg Pathol. 2009;33(12):1771–7.

    PubMed  Google Scholar 

  51. Schowalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe. 2010;7(6):509–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. van der Meijden E, Janssens RW, Lauber C, Bouwes Bavinck JN, Gorbalenya AE, Feltkamp MC. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog. 2010;6(7):e1001024.

    PubMed Central  PubMed  Google Scholar 

  53. Scuda N, Hofmann J, Calvignac-Spencer S, et al. A novel human polyomavirus closely related to the african green monkey-derived lymphotropic polyomavirus. J Virol. 2011;85(9):4586–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Busam KJ, Jungbluth AA, Rekthman N, et al. Merkel cell polyomavirus expression in merkel cell carcinomas and its absence in combined tumors and pulmonary neuroendocrine carcinomas. Am J Surg Pathol. 2009;33(9):1378–85.

    PubMed Central  PubMed  Google Scholar 

  55. Shuda M, Arora R, Kwun HJ, et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer. 2009;125(6):1243–9.

    CAS  PubMed  Google Scholar 

  56. Bhatia K, Goedert JJ, Modali R, Preiss L, Ayers LW. Immunological detection of viral large T antigen identifies a subset of Merkel cell carcinoma tumors with higher viral abundance and better clinical outcome. Int J Cancer. 2010;127(6):1493–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Shuda M, Kwun HJ, Feng H, Chang Y, Moore PS. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J Clin Invest. 2011;121(9):3623–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Loyo M, Guerrero-Preston R, Brait M, et al. Quantitative detection of Merkel cell virus in human tissues and possible mode of transmission. Int J Cancer. 2010;126(12):2991–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Foulongne V, Dereure O, Kluger N, Moles JP, Guillot B, Segondy M. Merkel cell polyomavirus DNA detection in lesional and nonlesional skin from patients with Merkel cell carcinoma or other skin diseases. Br J Dermatol. 2010;162(1):59–63.

    CAS  PubMed  Google Scholar 

  60. Amano M, Setoyama M, Grant A, Kerdel FA. Human T-lymphotropic virus 1 (HTLV-1) infection–dermatological implications. Int J Dermatol. 2011;50(8):915–20.

    PubMed  Google Scholar 

  61. Nobre V, Guedes AC, Martins ML, et al. Dermatological findings in 3 generations of a family with a high prevalence of human T cell lymphotropic virus type 1 infection in Brazil. Clin Infect Dis. 2006;43(10):1257–63.

    PubMed  Google Scholar 

  62. Torres-Cabala CA, Curry JL, Li Ning Tapia EM, et al. HTLV-1-associated infective dermatitis demonstrates low frequency of FOXP3-positive T-regulatory lymphocytes. J Dermatol Sci. 2015;77(3):150–5.

    CAS  PubMed  Google Scholar 

  63. Hanchard B, LaGrenade L, Carberry C, et al. Childhood infective dermatitis evolving into adult T-cell leukaemia after 17 years. Lancet. 1991;338(8782–8783):1593–94.

    CAS  PubMed  Google Scholar 

  64. Lee R, Schwartz RA. Human T-lymphotrophic virus type 1-associated infective dermatitis: a comprehensive review. J Am Acad Dermatol. 2011;64(1):152–60.

    PubMed  Google Scholar 

  65. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980;77(12):7415–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Shuh M, Beilke M. The human T-cell leukemia virus type 1 (HTLV-1): new insights into the clinical aspects and molecular pathogenesis of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM). Microsc Res Tech. 2005;68(3–4):176–96.

    CAS  PubMed  Google Scholar 

  67. Whittaker SJ, Ng YL, Rustin M, Levene G, McGibbon DH, Smith NP. HTLV-1-associated cutaneous disease: a clinicopathological and molecular study of patients from the U.K. Br J Dermatol. 1993;128(5):483–92.

    CAS  PubMed  Google Scholar 

  68. Li G, Vowels BR, Benoit BM, Rook AH, Lessin SR. Failure to detect human T-lymphotropic virus type-I proviral DNA in cell lines and tissues from patients with cutaneous T-cell lymphoma. J Invest Dermatol. 1996;107(3):308–13.

    CAS  PubMed  Google Scholar 

  69. Amano M, Kurokawa M, Ogata K, Itoh H, Kataoka H, Setoyama M. New entity, definition and diagnostic criteria of cutaneous adult T-cell leukemia/lymphoma: human T-lymphotropic virus type 1 proviral DNA load can distinguish between cutaneous and smoldering types. J Dermatol. 2008;35(5):270–5.

    CAS  PubMed  Google Scholar 

  70. Shimizu-Kohno K, Satou Y, Arakawa F, et al. Detection of HTLV-1 by means of HBZ gene in situ hybridization in formalin-fixed and paraffin-embedded tissues. Cancer Sci. 2011;102(7):1432–6.

    CAS  PubMed  Google Scholar 

  71. Arai E, Chow KC, Li CY, Tokunaga M, Katayama I. Differentiation between cutaneous form of adult T cell leukemia/lymphoma and cutaneous T cell lymphoma by in situ hybridization using a human T cell leukemia virus-1 DNA probe. Am J Pathol. 1994;144(1):15–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A. 2006;103(3):720–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Dinnes J, Deeks J, Kunst H, et al. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess. 2007;11(3):1–196.

    CAS  PubMed  Google Scholar 

  74. Osores F, Nolasco O, Verdonck K, et al. Clinical evaluation of a 16S ribosomal RNA polymerase chain reaction test for the diagnosis of lymph node tuberculosis. Clin Infect Dis. 2006;43(7):855–9.

    CAS  PubMed  Google Scholar 

  75. Cortez MV, Oliveira CM, Monte RL, et al. HIV-associated tuberculous lymphadenitis: the importance of polymerase chain reaction (PCR) as a complementary tool for the diagnosis of tuberculosis—a study of 104 patients. An Bras Dermatol. 2011;86(5):925–31.

    PubMed  Google Scholar 

  76. Kumar P, Sen MK, Chauhan DS, Katoch VM, Singh S, Prasad HK. Assessment of the N-PCR assay in diagnosis of pleural tuberculosis: detection of M. tuberculosis in pleural fluid and sputum collected in tandem. PLoS ONE. 2010;5(4):e10220.

    PubMed Central  PubMed  Google Scholar 

  77. Hasaneen NA, Zaki ME, Shalaby HM, El-Morsi AS. Polymerase chain reaction of pleural biopsy is a rapid and sensitive method for the diagnosis of tuberculous pleural effusion. Chest. 2003;124(6):2105–11.

    CAS  PubMed  Google Scholar 

  78. Abdalla CM, de Oliveira ZN, Sotto MN, Leite KR, Canavez FC, de Carvalho CM. Polymerase chain reaction compared to other laboratory findings and to clinical evaluation in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infection. Int J Dermatol. 2009;48(1):27–35.

    CAS  PubMed  Google Scholar 

  79. Hsiao PF, Tzen CY, Chen HC, Su HY. Polymerase chain reaction based detection of Mycobacterium tuberculosis in tissues showing granulomatous inflammation without demonstrable acid-fast bacilli. Int J Dermatol. 2003;42(4):281–6.

    CAS  PubMed  Google Scholar 

  80. Padmavathy L, Rao L, Veliath A. Utility of polymerase chain reaction as a diagnostic tool in cutaneous tuberculosis. Indian J Dermatol Venereol Leprol. 2003;69(3):214–6.

    CAS  PubMed  Google Scholar 

  81. Luo RF, Scahill MD, Banaei N. Comparison of single-copy and multicopy real-time PCR targets for detection of Mycobacterium tuberculosis in paraffin-embedded tissue. J Clin Microbiol. 2010;48(7):2569–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Baselga E, Margall N, Barnadas MA, Coll P, de Moragas JM. Detection of Mycobacterium tuberculosis DNA in lobular granulomatous panniculitis (erythema induratum-nodular vasculitis). Arch Dermatol. 1997;133(4):457–62.

    CAS  PubMed  Google Scholar 

  83. Bang PD, Suzuki K, Phuong le T, Chu TM, Ishii N, Khang TH. Evaluation of polymerase chain reaction-based detection of Mycobacterium leprae for the diagnosis of leprosy. J Dermatol. 2009;36(5):269–76.

    CAS  PubMed  Google Scholar 

  84. Plikaytis BB, Gelber RH, Shinnick TM. Rapid and sensitive detection of Mycobacterium leprae using a nested-primer gene amplification assay. J Clin Microbiol. 1990;28(9):1913–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. de Wit MY, Douglas JT, McFadden J, Klatser PR. Polymerase chain reaction for detection of Mycobacterium leprae in nasal swab specimens. J Clin Microbiol. 1993;31(3):502–6.

    PubMed Central  PubMed  Google Scholar 

  86. Kurabachew M, Wondimu A, Ryon JJ. Reverse transcription-PCR detection of Mycobacterium leprae in clinical specimens. J Clin Microbiol. 1998;36(5):1352–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Han XY, Seo YH, Sizer KC, et al. A new Mycobacterium species causing diffuse lepromatous leprosy. Am J Clin Pathol. 2008;130(6):856–64.

    CAS  PubMed  Google Scholar 

  88. Han XY, Sizer KC, Velarde-Felix JS, Frias-Castro LO, Vargas-Ocampo F. The leprosy agents Mycobacterium lepromatosis and Mycobacterium leprae in Mexico. Int J Dermatol. 2012;51(8):952–9.

    PubMed Central  PubMed  Google Scholar 

  89. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis. 2014;1–43.

    Google Scholar 

  90. Barber M. Methicillin-resistant staphylococci. J Clin Pathol. 1961;14(4):385-&.

    Google Scholar 

  91. Inglis B, Matthews PR, Stewart PR. The expression in Staphylococcus aureus of cloned DNA encoding methicillin resistance. J Gen Microbiol. 1988;134:1465–9.

    CAS  PubMed  Google Scholar 

  92. Tesch W, Strassle A, Bergerbachi B, Ohara D, Reynolds P, Kayser FH. Cloning and expression of methicillin resistance from Staphylococcus epidermidis in Staphylococcus carnosus. Antimicrob Agents Chemother. 1988;32(10):1494–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Votintseva AA, Fung R, Miller RR, et al. Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire. Bmc Microbiol. 2014;12:14.

    Google Scholar 

  94. Wolk DM, Picton E, Johnson D, et al. Multicenter evaluation of the Cepheid Xpert methicillin-resistant Staphylococcus aureus (MRSA) test as a rapid screening method for detection of MRSA in nares. J Clin Microbiol. 2009;47(3):758–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Dubouix-Bourandy A, de Ladoucette A, Pietri V, et al. Direct detection of Staphylococcus osteoarticular infections by use of Xpert MRSA/SA SSTI real-time PCR. J Clin Microbiol. 2011;49(12):4225–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Patton ME, Su JR, Nelson R, Weinstock H. Primary and secondary syphilis—United States, 2005–2013. Mmwr-Morb Mortal Wkly Rep. 2014;63(18):402–6.

    PubMed  Google Scholar 

  97. Jethwa HS, Schmitz JL, Dallabetta G, et al. Comparison of molecular and microscopic techniques for detection of Treponema pallidum in genital ulcers. J Clin Microbiol. 1995;33(1):180–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Romanowski B, Forsey E, Prasad E, Lukehart S, Tam M, Hook EW. Detection of Treponema pallidum by a fluorescent monoclonal-antibody test. Sex Transm Dis. 1987;14(3):156–9.

    CAS  PubMed  Google Scholar 

  99. Hunter EF, Greer PW, Swisher BL, et al. Immunofluorescent staining of treponema in tissues fixed with formalin. Arch Pathol Lab Med. 1984;108(11):878–80.

    CAS  PubMed  Google Scholar 

  100. Hoang MP, High WA, Molberg KH. Secondary syphilis: a histologic and immunohistochemical evaluation. J Cutan Pathol. 2004;31(9):595–9.

    PubMed  Google Scholar 

  101. Buffet M, Grange PA, Gerhardt P, et al. Diagnosing Treponema pallidum in secondary syphilis by PCR and immunohistochemistry. J Invest Dermatol. 2007;127(10):2345–50.

    CAS  PubMed  Google Scholar 

  102. Kouznetsov AV, Weisenseel P, Trommler P, Multhaup S, Prinz JC. Detection of the 47-kilodalton membrane immunogen gene of Treponema pallidum in various tissue sources of patients with syphilis. Diagn Microbiol Infect Dis. 2005;51(2):143–5.

    CAS  PubMed  Google Scholar 

  103. Deka RK, Machius M, Norgard MV, Tomchick DR. Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem. 2002;277(44):41857–64.

    CAS  PubMed  Google Scholar 

  104. Daniel RC. Onychomycosis: burden of disease and the role of topical antifungal treatment. J Drugs Dermatol. Nov 2013;12(11):1263–6.

    PubMed  Google Scholar 

  105. Dalal AE-SM, Mimouni D, Ray S, Days W, Hodak E, Leibovici L, Paul M. Interventions for the prevention of recurrent erysipelas and cellulitis (Protocol). Cochrane Database of Systematic Reviews. 2012;(4):1–13.

    Google Scholar 

  106. Hamer EC, Moore CB, Denning DW. Comparison of two fluorescent whiteners, Calcofluor and Blankophor, for the detection of fungal elements in clinical specimens in the diagnostic laboratory. Clin Microb Infect. 2006;12(2):181–4.

    CAS  Google Scholar 

  107. Haldane DJM, Robart E. A comparison of calcofluor white, potassium hydroxide, and culture for the laboratory diagnosis of superficial fungal infection. Diagn Microbiol Infect Dis. 1990;13(4):337–9.

    CAS  PubMed  Google Scholar 

  108. Mcnall EG, Sternberg TH, Newcomer VD, Sorensen LJ. Chemical and immunological studies on dermatophyte cell wall polysaccharides. J Invest Dermatol. 1961;36(2):155–7.

    CAS  PubMed  Google Scholar 

  109. Weinberg JM, Koestenblatt EK, Tutrone WD, Tishler HR, Najarian L. Comparison of diagnostic methods in the evaluation of onychomycosis. J Am Acad Dermatol. 2003;49(2):193–7.

    PubMed  Google Scholar 

  110. Luna VA, Stewart BK, Bergeron DL, Clausen CR, Plorde JJ, Fritsche TR. Use of the fluorochrome calcofluor white in the screening of stool specimens for spores of microsporidia. Am J Clin Pathol. 1995;103(5):656–9.

    CAS  PubMed  Google Scholar 

  111. Gupta AK, Zaman M, Singh J. Diagnosis of Trichophyton rubrum from onychomycotic nail samples using polymerase chain reaction and calcofluor white microscopy. J Am Podiatr Med Assoc. 2008;98(3):224–8.

    PubMed  Google Scholar 

  112. Elewski BE. Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev. 1998;11(3):415–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(Suppl 4):2–15. 2009;52(1):95.

    PubMed  Google Scholar 

  114. Jensen RH, Arendrup MC. Molecular diagnosis of dermatophyte infections. Curr Opin Infect Dis. 2012;25(2):126–34.

    CAS  PubMed  Google Scholar 

  115. Brillowska-Dabrowska A, Saunte DM, Arendrup MC. Five hour diagnosis of dermatophyte nail infections with specific detection of Trichophton rubrum. J Clin Microbiol. 2007;45(4):1200–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Kardjeva RS V, Kantardjiev T, Devliotou-Panagiotdou D, Sotiriou E, Graser Y. Forty-eight hour diagnosis of onychomycosis with subtyping of Trichophyton rubrum strains. J Clin Microbiol. 2006;44(4):1419–27.

    Google Scholar 

  117. Kondori N, Abrahamsson AL, Ataollahy N, Wenneras C. Comparison of a new commercial test, Dermatophyte-PCR kit, with conventional methods for rapid detection and identification of Trichophyton rubrum in nail specimens. Med Mycol. 2010;48(7):1005–8.

    CAS  PubMed  Google Scholar 

  118. Baskova L, Buchta V. Laboratory diagnostics of invasive fungal infections: an overview with emphasis on molecular approach. Folia Microbiol. 2012;57(5):421–30.

    CAS  Google Scholar 

  119. Person AK, Kontoyiannis DP, Alexander BD. Fungal infections in transplant and oncology patients. Hematol Oncol Clin North Am. 2011;25(1):193-+.

    Google Scholar 

  120. Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW, Suscep ECA. EUCAST technical note on aspergillus and amphotericin B, itraconazole, and posaconazole. Clin Microbiol Infec. 2012;18(7):E248–E250.

    CAS  Google Scholar 

  121. Olano JP, Walker DH. Diagnosing emerging and reemerging infectious diseases the pivotal role of the pathologist. Arch Pathol Lab Med. 2011;135(1):83–91.

    PubMed  Google Scholar 

  122. Preuner S, Lion T. Towards molecular diagnostics of invasive fungal infections. Expert Rev Mol Diagn. 2009;9(5):397–401.

    PubMed  Google Scholar 

  123. Babady NE, Miranda E, Gilhuley KA. Evaluation of luminex xTAG fungal analyte-specific reagents for rapid identification of clinically relevant fungi. J Clin Microbiol. 2011;49(11):3777–82.

    PubMed Central  PubMed  Google Scholar 

  124. Halliday CL, Kidd SE, Sorrell TC, Chen SC. Molecular diagnostic methods for invasive fungal disease: the horizon draws nearer. Pathology. 2015;3:257–69.

    Google Scholar 

  125. Schulthess B, Ledermann R, Mouttet F, et al. Use of the Bruker MALDI biotyper for identification of molds in the clinical mycology laboratory. J Clin Microbiol. 2014;52(8):2797–803.

    PubMed Central  PubMed  Google Scholar 

  126. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51(3):828–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. De Carolis EVA, Florio AR. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for capsofungin susceptibility testing of candida and aspergillus species. J Clin Microbiol. 2012;2012(50):2479–83.

    Google Scholar 

  128. Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002;30(9):1911–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Montone KT, Guarner J. In situ hybridization for rRNA sequences in anatomic pathology specimens, applications for fungal pathogen detection: a review. Adv Anat Pathol. 2013;20(3):168–74.

    CAS  PubMed  Google Scholar 

  130. Lo Cascio ML G, Maccacaro L, Fontana R. Utility of molecular identification in opportunistic mycotic infections: a case of cutaneous Alternaria infectoria infection in a cardiac transplant recipient. J Clin Microbiol. 2004;42(11):5334–6.

    Google Scholar 

  131. Daglar D, Akman-Karakas A, Ozhak-Baysan B, Gunseren F, Ciftcioglu MA, Buitrago MJ, Rodriguez-Tudela JL. Cutaneous Alternaria infectoria infection diagnosed by molecular techniques in a renal transplant patient. Clin Lab Publ. 2014;60:1569–72.

    Google Scholar 

  132. Williams C, Layton AM, Kerr K, Kibbler C, Barton RC. Cutaneous infection with an Alternaria sp. in an immunocompetent host. Clin Exp Dermatol. Jul 2008;33(4):440–2.

    CAS  PubMed  Google Scholar 

  133. Gerdsen R, Uerlich M, De Hoog GS, Bieber T, Horre R. Sporotrichoid phaeohyphomycosis due to Alternaria infectoria. Br J Dermatol. 2001;145(3):484–6.

    CAS  PubMed  Google Scholar 

  134. Robert T, Talarmin JP, Leterrier M, et al. Phaeohyphomycosis due to Alternaria infectoria: a single-center experience with utility of PCR for diagnosis and species identification. Med Mycol. 2012;50(6):594–600.

    CAS  PubMed  Google Scholar 

  135. Reithinger R, Dujardin JC. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol. 2007;45(1):21–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Goto H, Lindoso JA. Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Rev Anti Infect Ther. 2010;8(4):419–33.

    PubMed  Google Scholar 

  137. Andrade RV, Massone C, Lucena MN, et al. The use of polymerase chain reaction to confirm diagnosis in skin biopsies consistent with American tegumentary leishmaniasis at histopathology: a study of 90 cases. An Bras Dermatol. 2011;86(5):892–6.

    PubMed  Google Scholar 

  138. Espinosa D, Boggild AK, Deborggraeve S, et al. Leishmania OligoC-TesT as a simple, rapid, and standardized tool for molecular diagnosis of cutaneous leishmaniasis in Peru. J Clin Microbiol. 2009;47(8):2560–3.

    PubMed Central  PubMed  Google Scholar 

  139. Deborggraeve S, Laurent T, Espinosa D, et al. A simplified and standardized polymerase chain reaction format for the diagnosis of leishmaniasis. J Infect Dis. 2008;198(10):1565–72.

    CAS  PubMed  Google Scholar 

  140. Boggild AK, Valencia BM, Veland N, et al. Non-invasive cytology brush PCR diagnostic testing in mucosal leishmaniasis: superior performance to conventional biopsy with histopathology. PLoS ONE. 2011;6(10):e26395.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Boggild AK, Ramos AP, Valencia BM, et al. Diagnostic performance of filter paper lesion impression PCR for secondarily infected ulcers and nonulcerative lesions caused by cutaneous leishmaniasis. J Clin Microbiol. 2011;49(3):1097–100.

    PubMed Central  PubMed  Google Scholar 

  142. Kumar R, Bumb RA, Salotra P. Correlation of parasitic load with interleukin-4 response in patients with cutaneous leishmaniasis due to Leishmania tropica. FEMS Immunol Med Microbiol. 2009;57(3):239–46.

    CAS  PubMed  Google Scholar 

  143. Schonian G, Kuhls K, Mauricio IL. Molecular approaches for a better understanding of the epidemiology and population genetics of Leishmania. Parasitology. 2011;138(4):405–25.

    CAS  PubMed  Google Scholar 

  144. Arevalo J, Ramirez L, Adaui V, et al. Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis. 2007;195(12):1846–51.

    CAS  PubMed  Google Scholar 

  145. Alvarez P, Salinas C, Bravo F. Calcified bodies in New World cutaneous leishmaniasis. Am J Dermatopathol. 2011;33(8):827–30.

    PubMed  Google Scholar 

  146. Global Programme to eliminate lymphatic filariasis. Progress report on mass drug administration, 2010. Wkly Epidemiol Rec. 2011;86(35):377–88.

    Google Scholar 

  147. Bryceson AD, Warrell DA, Pope HM. Dangerous reactions to treatment of onchocerciasis with diethylcarbamazine. Br Med J. 1977;1(6063):742–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Walther M, Muller R. Diagnosis of human filariases—(Except onchocerciasis). Adv Parasit. 2003;53:149–93.

    Google Scholar 

  149. Harnett W, Bradley JE, Garate T. Molecular and immunodiagnosis of human filarial nematode infections. Parasitology. 1998;117:S59–S71.

    PubMed  Google Scholar 

  150. Shelley AJ, Coscaron S. Simuliid blackflies (Diptera: Simuliidae) and ceratopogonid midges (Diptera: Ceratopogonidae) as vectors of Mansonella ozzardi (Nematoda: Onchocercidae) in northern Argentina. Memorias do Instituto Oswaldo Cruz. 2001;96(4):451–8.

    CAS  PubMed  Google Scholar 

  151. Morales-Hojas R, Post RJ, Shelley AJ, Maia-Herzog M, Coscaron S, Cheke RA. Characterisation of nuclear ribosomal DNA sequences from Onchocerca volvulus and Mansonella ozzardi (Nematoda: Filarioidea) and development of a PCR-based method for their detection in skin biopsies (vol 31, pg 169, 2001). Int J Parasitol. 2001;31(8):850–1.

    CAS  Google Scholar 

  152. Tang TH, Lopez-Velez R, Lanza M, Shelley AJ, Rubio JM, Luz SL. Nested PCR to detect and distinguish the sympatric filarial species Onchocerca volvulus, Mansonella ozzardi and Mansonella perstans in the Amazon Region. Memorias do Instituto Oswaldo Cruz. 2010;105(6):823–8.

    CAS  PubMed  Google Scholar 

  153. Leroy S, Duperray C, Morand S. Flow cytometry for parasite nematode genome size measurement. Mol Biochem Parasitol. 2003;128(1):91–3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Torres-Cabala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Torres-Cabala, C., Mutyambizi, K., Bravo, F. (2015). Infectious Diseases of the Skin. In: Prieto, V. (eds) Precision Molecular Pathology of Dermatologic Diseases. Molecular Pathology Library, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2861-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2861-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2860-6

  • Online ISBN: 978-1-4939-2861-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics