Skip to main content

Molecular Pathology of Cutaneous Adnexal Tumors

  • Chapter
  • First Online:
Precision Molecular Pathology of Dermatologic Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 9))

  • 769 Accesses

Abstract

Cutaneous adnexal neoplasms are relatively rare neoplasms that may occur sporadic or associated with inherited syndromes and visceral neoplasms. Early and correct recognition of these lesions is of outmost importance for patient’s follow-up, prognosis, and therapeutic options, especially since cutaneous lesions may sometimes be the first manifestation of the disease. In certain instances, the presence of usually multiple, specific cutaneous adnexal neoplasms is considered patognomonic for a syndrome. The cutaneous neoplasms are usually benign in nature, often share similar histopathologic features with their sporadic counterparts, and sometimes may provide histologic clues that suggest an associated syndrome.

Well-characterized genetic alterations implicated in these syndromes pathogenesis are currently described. The autosomal dominant pattern of inheritance is the most common mode of transmission of these conditions and is frequently characterized by a single gene locus alteration, usually involving tumor suppressor genes. The chapter provides a detailed description of these genetic alterations, current recommendations for patient’s genetic testing, and potential strategies for targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan P, White SW, Pierson DL, Rodman OG. Trichilemmoma. J Dermatol Surg Oncol. 1979;5(1):58–9.

    CAS  PubMed  Google Scholar 

  2. Hidayat AA, Font RL. Trichilemmoma of eyelid and eyebrow: a clinicopathologic study of 31 cases. Arch Ophthalmol. 1980;98(5):844–7.

    CAS  PubMed  Google Scholar 

  3. Lloyd KM 2nd, Dennis M. Cowden’s disease. A possible new symptom complex with multiple system involvement. Ann Intern Med. 1963;58:136–42.

    PubMed  Google Scholar 

  4. Eng C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J Med Genet. 2000;37(11):828–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Salem OS, Steck WD. Cowden’s disease (multiple hamartoma and neoplasia syndrome): a case report and review of the English literature. J Am Acad Dermatol. 1983;8(5):686–96.

    CAS  PubMed  Google Scholar 

  6. Starink TM, Meijer CJ, Brownstein MH. The cutaneous pathology of Cowden’s disease: new findings. J Cutan Pathol. 1985;12(2):83–93.

    CAS  PubMed  Google Scholar 

  7. Starink TM, Hausman R. The cutaneous pathology of facial lesions in Cowden’s disease. J Cutan Pathol. 1984;11(5):331–37

    CAS  PubMed  Google Scholar 

  8. Brownstein MH, Mehregan AH, Bikowski JB, Lupulescu A, Patterson JC. The dermatopathology of Cowden’s syndrome. Br J Dermatol. 1979;100(6):667–73.

    CAS  PubMed  Google Scholar 

  9. Starink TM, van der Veen JP, Arwert F, et al. The Cowden syndrome: a clinical and genetic study in 21 patients. Clin Genet. 1986;29(3):222–33.

    CAS  PubMed  Google Scholar 

  10. Harach HR, Soubeyran I, Brown A, Bonneau D, Longy M. Thyroid pathologic findings in patients with Cowden disease. Ann Diagn Pathol. 1999;3:331–40.

    CAS  PubMed  Google Scholar 

  11. Schrager CA, Schneider D, Gruener AC, Tsou HC, Peacocke M. Clinical and pathological features of breast disease in Cowden’s syndrome: an underrecognized syndrome with an increased risk of breast cancer. Hum Pathol. 1998;29:47–53.

    CAS  PubMed  Google Scholar 

  12. Brownstein MH, Wolf M, Bikowski JB. Cowden’s disease: a cutaneous marker of breast cancer. Cancer. 1978;41(6):2393–8.

    CAS  PubMed  Google Scholar 

  13. Tan WH, Baris HN, Burrows PE, et al. The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet. 2007;44:594–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Fistarol SK, Anliker MD, Itin PH. Cowden disease or multiple hamartoma syndrome—cutaneous clue to internal malignancy. Eur J Dermatol. 2002;12(5):411–21.

    PubMed  Google Scholar 

  15. Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Nusbaum R, Vogel KJ, Ready K. Susceptibility to breast cancer: hereditary syndromes and low penetrance genes. Breast Dis. 2006;27:21–50.

    PubMed  Google Scholar 

  17. Blumenthal GM, Dennis PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet. 2008;16(11):1289–300.

    CAS  PubMed  Google Scholar 

  18. Nelen MR, Padberg GW, Peeters EA, et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet. 1996;13(1):114–6.

    CAS  PubMed  Google Scholar 

  19. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    CAS  PubMed  Google Scholar 

  20. Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7.

    CAS  PubMed  Google Scholar 

  21. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22(3):183–98.

    CAS  PubMed  Google Scholar 

  22. Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11(10):687–94.

    CAS  PubMed  Google Scholar 

  23. Zhou XP, Waite KA, Pilarski R, et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan–Riley–Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol–3–kinase/Akt pathway. Am J Hum Genet. 2003;73(2):404–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Marsh DJ, Coulon V, Lunetta KL, et al. Mutation spectrum and genotype–phenotype analyses in Cowden disease and Bannayan–Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet. 1998;7(3):507–15.

    CAS  PubMed  Google Scholar 

  25. Trotman LC, Wang X, Alimonti A, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell. 2007;128(1):141–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Orloff MS, He X, Peterson C, et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet. 2013;92(1):76–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Cho YJ, Liang P. Killin is a p53-regulated nuclear inhibitor of DNA synthesis. Proc Natl Acad Sci U S A. 2008;105(14):5396–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Bennett KL, Mester J, Eng C. Germline epigenetic regulation of KILLIN in Cowden and Cowden-like syndrome. JAMA. 2010;304(24):2724–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Al-Zaid T, Ditelberg JS, Prieto VG, et al. Trichilemmomas show loss of PTEN in Cowden syndrome but only rarely in sporadic tumors. J Cutan Pathol. 2012;39(5):493–9.

    PubMed  Google Scholar 

  30. Julian CG, Bowers PW. A clinical review of 209 pilomatricomas. J Am Acad Dermatol. 1998;39(2, pt 1):191–95.

    CAS  PubMed  Google Scholar 

  31. Lan MY, Lan MC, Ho CY, Li WY, Lin CZ. Pilomatricoma of the head and neck: a retrospective review of 179 cases. Arch Otolaryngol Head Neck Surg. 2003;129(12):1327–30.

    PubMed  Google Scholar 

  32. Marrogi AJ, Wick MR, Dehner LP. Pilomatrical neoplasms in children and young adults. Am J Dermatopathol. 1992;14(2):87–94.

    CAS  PubMed  Google Scholar 

  33. O’Connor N, Patel M, Umar T, Macpherson DW, Ethunandan M. Head and neck pilomatricoma: an analysis of 201 cases. Br J Oral Maxillofac Surg. 2011;49(5):354–8.

    PubMed  Google Scholar 

  34. Berberian BJ, Colonna TM, Battaglia M, Sulica VI. Multiple pilomatricomas in association with myotonic dystrophy and a family history of melanoma. J Am Acad Dermatol. 1997;37(2, pt 1):268–69.

    CAS  PubMed  Google Scholar 

  35. Cambiaghi S, Ermacora E, Brusasco A, Canzi L, Caputo R. Multiple pilomatricomas in Rubinstein–Taybi syndrome: a case report. Pediatr Dermatol. 1994;11(1):21–5.

    CAS  PubMed  Google Scholar 

  36. Cooper PH, Fechner RE. Pilomatricoma-like changes in the epidermal cysts of Gardner’s syndrome. J Am Acad Dermatol. 1983;8(5):639–44.

    CAS  PubMed  Google Scholar 

  37. Wood S, Nguyen D, Hutton K, Dickson W. Pilomatricomas in Turner syndrome. Pediatr Dermatol. 2008;25(4):449–51.

    PubMed  Google Scholar 

  38. Chan EF, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet. 1999;21(4):410–3.

    CAS  PubMed  Google Scholar 

  39. Kajino Y, Yamaguchi A, Hashimoto N, Matsuura A, Sato N, Kikuchi K. beta-Catenin gene mutation in human hair follicle-related tumors. Pathol Int. 2001;51(7):543–8.

    CAS  PubMed  Google Scholar 

  40. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5(9):691–701.

    CAS  PubMed  Google Scholar 

  41. van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev. 2003;13(1):28–33.

    PubMed  Google Scholar 

  42. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.

    CAS  PubMed  Google Scholar 

  43. Moreno-Bueno G, Gamallo C, Perez-Gallego L, Contreras F, Palacios J. beta-catenin expression in pilomatrixomas: relationship with beta-catenin gene mutations and comparison with beta-catenin expression in normal hair follicles. Br J Dermatol. 2001;145(4):576–81.

    CAS  PubMed  Google Scholar 

  44. Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–42.

    CAS  PubMed  Google Scholar 

  45. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Farrier S, Morgan M. bcl-2 expression in pilomatricoma. Am J Dermatopathol. 1997;19(3):254–7.

    CAS  PubMed  Google Scholar 

  47. Toro JR, Wei M-H, Glenn GM, et al. BHD mutations, clinical and molecular genetic investigations of Birt–Hogg–Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet. 2008;45(6):321–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Toro JR, Glenn G, Duray P, Darling T, Weirich G, Zbar B, Linehan M, Turner ML. Birt–Hogg–Dubé syndrome: a novel marker of kidney neoplasia. Arch Dermatol. 1999;135(10):1195–202.

    CAS  PubMed  Google Scholar 

  49. Birt AR, Hogg GR, Dube WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol. 1977;113(12):1674–7.

    CAS  PubMed  Google Scholar 

  50. Gijezen LM, Vernooij M, Martens H, et al. Topical rapamycin as a treatment for fibrofolliculomas in Birt–Hogg–Dubé syndrome: a double-blind placebo-controlled randomized split-face trial. PLoS ONE. 2014;9(6):e99071.

    PubMed Central  PubMed  Google Scholar 

  51. Schmidt LS, Warren MB, Nickerson ML, et al. Birt–Hogg–Dubé syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet. 2001;69:876–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Fujita WH, Barr RJ, Headley JL. Multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol. 1981;117:32–5.

    CAS  PubMed  Google Scholar 

  53. Misago N, Kimura T, Narisawa Y. Fibrofolliculoma/trichodiscoma and fibrous papule (perifollicular fibroma/angiofibroma): a revaluation of the histopathological and immunohistochemical features. J Cutan Pathol. 2009;36(9):943–51.

    PubMed  Google Scholar 

  54. Murakami Y, Wataya-Kaneda M, Tanaka M, et al. Two Japanese cases of Birt–Hogg–Dubé syndrome with pulmonary cysts, fibrofolliculomas, and renal cell carcinomas. Case Rep Dermatol. 2014;6(1):20–8.

    PubMed Central  PubMed  Google Scholar 

  55. Zbar B, Alvord WG, Glenn G, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt–Hogg–Dube syndrome. Cancer Epidemiol Biomarkers Prev. 2002;11:393–400.

    PubMed  Google Scholar 

  56. Khoo SK, Bradley M, Wong FK, et al. Birt–Hogg–Dube syndrome: mapping of a novel hereditary neoplasia gene to chromosome 17p12–q11.2. Oncogene. 2001;20:5239–42.

    CAS  PubMed  Google Scholar 

  57. Schmidt LS, Nickerson ML, Warren MB, et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt–Hogg–Dubé syndrome. Am J Hum Genet. 2005;76(6):1023–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Nickerson ML, Warren MB, Toro JR, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dubé syndrome. Cancer Cell. 2002;2(2):157–64.

    CAS  PubMed  Google Scholar 

  59. Vocke CD, Yang Y, Pavlovich CP, et al. High frequency of somatic frameshift BHD gene mutations in Birt–Hogg–Dubé-associated renal tumors. J Natl Cancer Inst. 2005;97(12):931–5.

    CAS  PubMed  Google Scholar 

  60. van Steensel MA, Verstraeten VL, Frank J, et al. Novel mutations in the BHD gene and absence of loss of heterozygosity in fibrofolliculomas of Birt–Hogg–Dubé patients. J Invest Dermatol. 2007;127(3):588–93.

    PubMed  Google Scholar 

  61. Baba M, Hong SB, Sharma N, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci U S A. 2006;103(42):15552–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hasumi H, Baba M, Hong SB, et al. Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene. 2008;415(1–2):60–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Hong SB, Oh H, Valera VA, et al. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS ONE. 2010;5(12):e15793.

    PubMed Central  PubMed  Google Scholar 

  64. Singh SR, Zhen W, Zheng Z, et al. The Drosophila homolog of the human tumor suppressor gene BHD interacts with the JAK-STAT and Dpp signaling pathways in regulating male germline stem cell maintenance. Oncogene. 2006;25(44):5933–41.

    CAS  PubMed  Google Scholar 

  65. Lim DH, Rehal PK, Nahorski MS, et al. A new locus-specific database (LSDB) for mutations in the folliculin (FLCN) gene. Hum Mutat. 2010;31(1):E1043–51.

    PubMed  Google Scholar 

  66. Wei MH, Blake PW, Shevchenko J, et al. The folliculin mutation database: an online database of mutations associated with Birt–Hogg–Dubé syndrome. Hum Mutat. 2009;30(9):E880–90.

    PubMed Central  PubMed  Google Scholar 

  67. Menko FH, van Steensel MA, Giraud S, et al. Birt–Hogg–Dubé syndrome: diagnosis and management. Lancet Oncol. 2009;10(12):1199–206.

    CAS  PubMed  Google Scholar 

  68. Lee DA, Grossman ME, Schneiderman P, et al. Genetics of skin appendage neoplasms and related syndromes. J Med Genet. 2005;42(11):811–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Welch J, Wells R, Kerr C. Ancell–Spiegler Cylindromas (turban tumors) and Brooke–Fordyce Trichoepitheliomas: evidence for a single genetic entity. J Med Genet. 1968;5:29–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Ancell H. History of a remarkable case of tumours developed on the head and face; accompanied with a similar disease in the abdomen. Med Chir Trans. 1842;25:227–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Spiegler E. Ueber Endoteliome der Haut. AMA Arch Dermatol Syphilis. 1899;50:163–76.

    Google Scholar 

  72. Brooke H. Epithelioma adenoides cysticum. Br J Dermatol Syphilis. 1892;4:286–96.

    Google Scholar 

  73. Fordyce J. Multiple benign cystic epithelioma of the skin. J Cutan Dis. 1892;10:459–73.

    Google Scholar 

  74. Gottschalk HR. Proceedings: dermal eccrine cylindroma, epithelioma adenoides cysticum of Brooke, and eccrine spiradenoma. Arch Dermatol. 1974;110:473–4.

    CAS  PubMed  Google Scholar 

  75. Bumgardner AC, Hsu S, Nunez-Gussman JK, Schwartz MR. Trichoepitheliomas and eccrine spiradenomas with spiradenoma/cylindroma overlap. Int J Dermatol. 2005;44(5):415–7.

    PubMed  Google Scholar 

  76. Burrows NP, Jones RR, Smith NP. The clinicopathological features of familial cylindromas and trichoepitheliomas (Brooke-Spiegler syndrome): a report of two families. Clin Exp Dermatol. 1992;17:332–6.

    CAS  PubMed  Google Scholar 

  77. Kazakov DV, Zelger B, Rutten A, et al. Morphologic diversity of malignant neoplasms arising in preexisting spiradenoma, cylindroma, and spiradenocylindroma based on the study of 24 cases, sporadic or occurring in the setting of Brooke-Spiegler syndrome. Am J Surg Pathol. 2009;33(5):705–19.

    PubMed  Google Scholar 

  78. Harada H, Hashimoto K, Ko MS. The gene for multiple familial trichoepithelioma maps to chromosome 9p21. J Invest Dermatol. 1996;107:41–3.

    CAS  PubMed  Google Scholar 

  79. Uede K, Yamamoto Y, Furukawa F. Brooke-Spiegler syndrome associated with cylindroma, trichoepithelioma, spiradenoma, and syringoma. J Dermatol. 2004;31(1):32–8.

    PubMed  Google Scholar 

  80. Lian F, Cockerell CJ. Cutaneous appendage tumors: familial cylindromatosis and associated tumors update. Adv Dermatol. 2005;21:217–34.

    PubMed  Google Scholar 

  81. Alsaad KO, Obaidat NA, Ghazarian D. Skin adnexal neoplasms—part 1: an approach to tumours of the pilosebaceous unit. J Clin Pathol. 2007;60(2):129–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Obaidat NA, Alsaad KO, Ghazarian D. Skin adnexal neoplasms—part 2: an approach to tumours of cutaneous sweat glands. J Clin Pathol. 2007;60(2):145–59.

    PubMed Central  PubMed  Google Scholar 

  83. Biggs PJ, Wooster R, Ford D, Chapman P, Mangion J, Quirk Y, Easton DF, Burn J, Stratton MR. Familial cylindromatosis (turban tumour syndrome) gene localised to chromosome 16q12–q13: evidence for its role as a tumour suppressor gene. Nat Genet. 1995;11:441–3.

    CAS  PubMed  Google Scholar 

  84. Takahashi M, Rapley E, Biggs PJ, Lakhani SR, Cooke D, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Vloten WA, Breuning MH, van den Ouweland A, Halley D, Delpech B, Cleveland M, Leigh I, Chapman P, Burn J, Hohl D, Gorog JP, Seal S, Mangion J. Linkage and LOH studies in 19 cylindromatosis families show no evidence of genetic heterogeneity and refine the CYLD locus on chromosome 16q12–q13. Hum Genet. 2000;106:58–65.

    CAS  PubMed  Google Scholar 

  85. Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander- Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet. 2000;25:160–5.

    CAS  PubMed  Google Scholar 

  86. Black PW, Toro JR. Update of cylindromatosis gene (CYLD) mutations in Brooke–Spiegler syndrome: novel insights into the role of deubiquitination in cell signaling. Hum Mutat. 2009;30(7):1025–36.

    Google Scholar 

  87. Karin M, Cao Y, Greten FR, Li ZW. NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.

    CAS  PubMed  Google Scholar 

  88. Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.

    CAS  PubMed  Google Scholar 

  89. Hacker H, Karin M Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006;2006:re13.

    PubMed  Google Scholar 

  90. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature. 2003;424:797–801.

    CAS  PubMed  Google Scholar 

  91. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature. 2003;424:801–5.

    CAS  PubMed  Google Scholar 

  92. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature. 2003;424:793–6.

    CAS  PubMed  Google Scholar 

  93. Reiley WW, Jin W, Lee AJ, Wright A, Wu X, Tewalt EF, Leonard TO, Norbury CC, Fitzpatrick L, Zhang M, Sun SC. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J Exp Med. 2007;204:1475–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J. Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem. 2008;283:6783–9.

    CAS  PubMed  Google Scholar 

  95. Regamey A, Hohl D, Liu JW, Roger T, Kogerman P, Toftgard R, Huber M. The tumor suppressor CYLD interacts with TRIP and regulates negatively nuclear factor κB activation by tumor necrosis factor. J Exp Med. 2003;198:1959–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Reiley W, Zhang M, Sun SC. Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem. 2004;279:55161–7.

    CAS  PubMed  Google Scholar 

  97. Xue L, Igaki T, Kuranaga E, Kanda H, Miura M, Xu T. Tumor suppressor CYLD regulates JNK-induced cell death in drosophila. Dev Cell. 2007;13:446–54.

    CAS  PubMed  Google Scholar 

  98. Koga T, Lim JH, Jono H, Ha UH, Xu H, Ishinaga H, Morino S, Xu X, Yan C, Kai H, Li JD. Tumor suppressor cylindromatosis acts as a negative regulator for streptococcus pneumoniae-induced NFAT signaling. J Biol Chem. 2008;283:12546–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Friedman CS, O’Donnell MA, Legarda-Addison D, Ng A, Cardenas WB, Yount JS, Moran TM, Basler CF, Komuro A, Horvath CM, Xavier R, Ting AT. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 2008;9:930–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Zhang M, Wu X, Lee AJ, Jin W, Chang M, Wright A, Imaizumi T, Sun SC. Regulation of IκB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem. 2008;283:18621–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ. The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci U S A. 2007;104:8869–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Wickström SA, Masoumi KC, Khochbin S, Fässler R, Massoumi R. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J. 2010;29(1):131–44.

    PubMed Central  PubMed  Google Scholar 

  103. Gao J, Huo L, Sun X, Liu M, Li D, Dong JT, Zhou J. The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration. J Biol Chem. 2008;283:8802–9.

    CAS  PubMed  Google Scholar 

  104. Stokes A, Wakano C, Koblan-Huberson M, Adra CN, Fleig A, Turner H. TRPA1 is a substrate for de- ubiquitination by the tumor suppressor CYLD. Cell Signal. 2006;18:1584–94.

    CAS  PubMed  Google Scholar 

  105. Leonard N, Chaggar R, Jones C, Takahashi M, Nikitopoulou A, Lakhani SR. Loss of heterozygosity at cylindromatosis gene locus, CYLD, in sporadic skin adnexal tumours. J Clin Pathol. 2001;54:689–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Thomson SA, Rasmussen SA, Zhang J, Wallace MR. A new hereditary cylindromatosis family associated with CYLD1 on chromosome 16. Hum Genet. 1999;105:171–3.

    CAS  PubMed  Google Scholar 

  107. Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R. Cyld inhibits tumor cell proliferation by blocking bcl-3-dependent NF-kappaB signaling. Cell. 2006;125(4):665–77.

    CAS  PubMed  Google Scholar 

  108. Behboudi A, Winnes M, Gorunova L, et al. Clear cell hidradenoma of the skin—a third tumor type with a t(11;19)-associated TORC1-MAML2 gene fusion. Genes Chromosomes Cancer. 2005;43(2):202–5.

    CAS  PubMed  Google Scholar 

  109. Rulon DB, Helwig EB. Cutaneous sebaceous neoplasms. Cancer. 1974;33:82–102.

    CAS  PubMed  Google Scholar 

  110. Misago N, Mihara I, Ansai S, Narisawa Y. Sebaceoma and related neoplasms with sebaceous differentiation: a clinicopathologic study of 30 cases. Am J Dermatopathol. 2002;24:294–304.

    PubMed  Google Scholar 

  111. Song A, Carter KD, Syed NA, Song J, Nerad JA. Sebaceous cell carcinoma of the ocular adnexa: clinical presentations, histopathology, and outcomes. Ophthal Plast Reconstr Surg. 2008;24:194–200.

    PubMed  Google Scholar 

  112. Nelson BR, Hamlet KR, Gillard BAM, et al. Sebaceous carcinoma. J Am Acad Dermatology. 1995;33:1.

    CAS  Google Scholar 

  113. Graham RM, McKee H, McGibbon D. Sebaceous carcinoma, Clin Exp Dermatol 1984;9:466.

    CAS  PubMed  Google Scholar 

  114. Pricolo VE, Rodil JV, Vezeridis MP. Extraorbital sebaceous carcinoma. J Am Acad Dermatol. 1995;33:1.

    Google Scholar 

  115. Wick MR, Goellner JR, Wolfe JT, Su WPD. Adnexal carcinomas of the skin. II. Extraocular sebaceous carcinomas. Cancer. 1985;56:1163.

    CAS  PubMed  Google Scholar 

  116. Singh RS, Grayson W, Redston M, et al. Site and tumor type predicts DNA mismatch repair status in cutaneous sebaceous neoplasia. Am J Surg Pathol. 2008;32:936–42.

    PubMed  Google Scholar 

  117. Harvey JT, Anderson RL. The management of meibomian gland carcinoma. Ophthalmic Surg. 1982;13(1):56.

    CAS  PubMed  Google Scholar 

  118. Rao NA, McLean IW, Zimmerman LE. Sebaceous carcinoma of the eyelid and caruncle: correlation of the clinical pathologic features with prognosis. In: Jakobiec FA, editor. Ocular and adnexal tumors. Birmingham: Aesculapius; 1978, p. 461.

    Google Scholar 

  119. Wolfe JT 3rd, Yeatts RP, Wick MR, Campbell RJ, Waller RR. Sebaceous carcinoma of the eyelid. Errors in clinical and pathologic diagnosis. Am J Surg Pathol. 1984;8(8):597.

    PubMed  Google Scholar 

  120. Shields JA, Demirci H, Marr BP, Eagle RC Jr, Shields CL. Sebaceous carcinoma of the eyelids: personal experience with 60 cases. Ophthalmology. 2004;111(12):2151.

    PubMed  Google Scholar 

  121. Rao NA, Hidayat AA, McLean IW, Zimmerman LE. Sebaceous carcinomas of the ocular adnexa: a clinicopathologic study of 104 cases, with five-year follow-up data. Hum Pathol. 1982;13:113.

    CAS  PubMed  Google Scholar 

  122. Hernandez-Perez E, Banos E. Sebaceous carcinoma: report of two cases with metastasis. Dermatologica. 1978;156:184.

    CAS  PubMed  Google Scholar 

  123. Moreno C, Jacyk WK, Judd MJ, et al. Highly aggressive extraocular sebaceous carcinoma. Am J Dermatopathol. 2001;23:450.

    CAS  PubMed  Google Scholar 

  124. Abdel-Rahman WM, Peltomaki P. Lynch syndrome and related familial colorectal cancers. Crit Rev Oncog. 2008;14:1–22. Discussion 23–31.

    PubMed  Google Scholar 

  125. Lynch HT1, Smyrk T. Hereditary nonpolyposis colorectal cancer (Lynch syndrome). An updated review. Cancer. 1996;78(6):1149–67.

    PubMed  Google Scholar 

  126. Yuen ST, Chan TL, Ho JW, et al. Germline, somatic and epigenetic events underlying mismatch repair deficiency in colorectal and HNPCC-related cancers. Oncogene. 2002;21:7585–92.

    CAS  PubMed  Google Scholar 

  127. Shalin SC, Lyle S, Calonje E, Lazar AJL. Sebaceous neoplasia and the Muir–Torre syndrome: important connections with clinical implications. Histopathology. 2010;56(1):133–47.

    PubMed Central  PubMed  Google Scholar 

  128. Dores GM, Curtis RE, Toro JR, Devesa SS, Fraumeni JF Jr. Incidence of cutaneous sebaceous carcinoma and risk of associated neoplasms: insight into Muir–Torre syndrome. Cancer. 2008;113:3372–81.

    PubMed Central  PubMed  Google Scholar 

  129. Schwartz RA, Torre DP. The Muir–Torre syndrome: a 25-year retrospect. J Am Acad Dermatol. 1995;33:90–104.

    CAS  PubMed  Google Scholar 

  130. Cohen PR, Kohn SR, Davis DA, Kurzrock R. Muir–Torre syndrome. Dermatol Clin. 1995;13:79–89.

    CAS  PubMed  Google Scholar 

  131. Entius MM, Keller JJ, Drillenburg P, Kuypers KC, Giardiello FM, Offerhaus GJ. Microsatellite instability and expression of hMLH-1 and hMSH-2 in sebaceous gland carcinomas as markers for Muir–Torre syndrome. Clin Cancer Res. 2000;6(5):1784–9.

    CAS  PubMed  Google Scholar 

  132. Mathiak M, Rutten A, Mangold E, et al. Loss of DNA mismatch repair proteins in skin tumors from patients with Muir–Torre syndrome and MSH2 or MLH1 germline mutations: establishment of immunohistochemical analysis as a screening test. Am J Surg Pathol. 2002;26(3):338–43.

    PubMed  Google Scholar 

  133. Kruse R, Ruzicka T. DNA mismatch repair and the significance of a sebaceous skin tumor for visceral cancer prevention. Trends Mol Med. 2004;10:136–41.

    CAS  PubMed  Google Scholar 

  134. Mangold E, Pagenstecher C, Leister M, et al. A genotype–phenotype correlation in HNPCC: strong predominance of msh2 mutations in 41 patients with Muir–Torre syndrome. J Med Genet. 2004;41:567–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Chhibber V, Dresser K, Mahalingam M. MSH-6: extending the reliability of immunohistochemistry as a screening tool in Muir–Torre syndrome. Mod Pathol. 2008;21:159–64.

    CAS  PubMed  Google Scholar 

  136. Kiyosaki K, Nakada C, Hijiya N, et al. Analysis of p53 mutations and the expression of p53 and p21WAF1/CIP1 protein in 15 cases of sebaceous carcinoma of the eyelid. Invest Ophthalmol Vis Sci. 2010;51(1):7–11.

    PubMed  Google Scholar 

  137. Gonzalez-Fernandez F, Kaltreider SA, Patnaik BD, et al. Sebaceous carcinoma. Tumor progression through mutational inactivation of p53. Ophthalmology. 1998;105:497–506.

    CAS  PubMed  Google Scholar 

  138. McBride SR, Leonard N, Reynolds NJ. Loss of p21(WAF1) compartmentalisation in sebaceous carcinoma compared with sebaceous hyperplasia and sebaceous adenoma. J Clin Pathol. 2002;55(10):763–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Niemann C, Owens DM, Hulsken J, Birchmeier W, Watt FM. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development. 2002;129:95–109.

    CAS  PubMed  Google Scholar 

  140. Niemann C, Owens DM, Schettina P, Watt FM. Dual role of inactivating Lef1 mutations in epidermis: tumor promotion and specification of tumor type. Cancer Res. 2007;67:2916–21.

    CAS  PubMed  Google Scholar 

  141. Takeda H, Lyle S, Lazar AJ, Zouboulis CC, Smyth I, Watt FM. Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med. 2006;12:395–7.

    CAS  PubMed  Google Scholar 

  142. Zanesi N, Croce CM. Fragile histidine triad gene and skin cancer. Eur J Dermatol. 2001;11:401–4.

    CAS  PubMed  Google Scholar 

  143. Jones B, Oh C, Mangold E, Egan CA. Muir–Torre syndrome: diagnostic and screening guidelines. Australas J Dermatol. 2006;47:266–9.

    PubMed  Google Scholar 

  144. Orta L, Klimstra DS, Qin J, et al. Towards identification of hereditary DNA mismatch repair deficiency: sebaceous neoplasm warrants routine immunohistochemical screening regardless of patient’s age or other clinical characteristics. Am J Surg Pathol. 2009;33:934–44.

    PubMed  Google Scholar 

  145. Abbas O, Mahalingam M. Cutaneous sebaceous neoplasms as markers of Muir–Torre syndrome: a diagnostic algorithm. J Cutan Pathol. 2009;36:613–9.

    PubMed  Google Scholar 

  146. Marcus VA, Madlensky L, Gryfe R, et al. Immunohistochemistry for hMLH1 and hMSH2: a practical test for DNA mismatch repair-deficient tumors. Am J Surg Pathol. 1999;23:1248–55.

    CAS  PubMed  Google Scholar 

  147. Rutten A, Burgdorf W, Hugel H, et al. Cystic sebaceous tumors as marker lesions for the Muir–Torre syndrome: a histopathologic and molecular genetic study. Am J Dermatopathol. 1999;21:405–13.

    CAS  PubMed  Google Scholar 

  148. Abbott JJ, Hernandez-Rios P, Amirkhan RH, Hoang MP. Cystic sebaceous neoplasms in Muir–Torre syndrome. Arch Pathol Lab Med. 2003;127:614–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Ivan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ivan, D., Aung, P. (2015). Molecular Pathology of Cutaneous Adnexal Tumors. In: Prieto, V. (eds) Precision Molecular Pathology of Dermatologic Diseases. Molecular Pathology Library, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2861-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2861-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2860-6

  • Online ISBN: 978-1-4939-2861-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics