Skip to main content

Bioreactive Tethers

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 869)

Abstract

Ion channel complexes are challenging to study by traditional biochemical methods due to their membranous lipid environment and large size. Bioreactive tethers are specialized chemical probes that have been used in electrophysiological experiments to provide unique insight into ion channel structure and function. Because bioreactive tethers are small molecular probes, they can be used to manipulate ion channel function in heterologous expression systems, native cells and animal models. This chapter covers three classes of tethers: photoswitchable, molecular rulers, and chemically reactive. The modular nature of bioreactive tethers enables the facile synthesis of next generation reagents with enhanced functionalities to interrogate and control ion channels in novel and multifarious ways.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andresen BM, Du Bois J (2009) De novo synthesis of modified saxitoxins for sodium ion channel study. J Am Chem Soc 131(35):12524–12525. doi:10.1021/ja904179f [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386. doi:nn1356 [pii] 10.1038/nn1356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banghart MR, Mourot A, Fortin DL, Yao JZ, Kramer RH, Trauner D (2009) Photochromic blockers of voltage-gated potassium channels. Angew Chem Int Ed Engl 48(48):9097–9101. doi:10.1002/anie.200904504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartels E, Wassermann NH, Erlanger BF (1971) Photochromic activators of the acetylcholine receptor. Proc Natl Acad Sci U S A 68(8):1820–1823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1):23–33. doi:S0896-6273(06)00176-0 [pii] 10.1016/j.neuron.2006.02.026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blaustein RO, Cole PA, Williams C, Miller C (2000) Tethered blockers as molecular ‘tape measures’ for a voltage-gated K+ channel. Nat Struct Biol 7(4):309–311. doi:10.1038/74076

    Article  CAS  PubMed  Google Scholar 

  • Bosmans F (2013) New rule(r)s for FRET. Biophys J 105(12):2619–2620. doi:S0006-3495(13)01239-3 [pii] 10.1016/j.bpj.2013.11.011 [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335(6067):436–441. doi:335/6067/436 [pii] 10.1126/science.1213808 [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brohawn SG, Campbell EB, MacKinnon R (2013) Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Proc Natl Acad Sci U S A 110(6):2129–2134. doi:1218950110 [pii] 10.1073/pnas.1218950110 [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown RL, Gerber WV, Karpen JW (1993) Specific labeling and permanent activation of the retinal rod cGMP-activated channel by the photoaffinity analog 8-p-azidophenacylthio-cGMP. Proc Natl Acad Sci U S A 90(11):5369–5373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caporale N, Kolstad KD, Lee T, Tochitsky I, Dalkara D, Trauner D, Kramer R, Dan Y, Isacoff EY, Flannery JG (2011) LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther 19(7):1212–1219. doi:mt2011103 [pii] 10.1038/mt.2011.103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carter-Dawson LD, LaVail MM, Sidman RL (1978) Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 17(6):489–498

    CAS  PubMed  Google Scholar 

  • Chabala LD, Lester HA (1986) Activation of acetylcholine receptor channels by covalently bound agonists in cultured rat myoballs. J Physiol 379:83–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chambers JJ, Banghart MR, Trauner D, Kramer RH (2006) Light-induced depolarization of neurons using a modified Shaker K(+) channel and a molecular photoswitch. J Neurophysiol 96(5):2792–2796. doi:00318.2006 [pii] 10.1152/jn.00318.2006

    Article  CAS  PubMed  Google Scholar 

  • Chanda B, Asamoah OK, Blunck R, Roux B, Bezanilla F (2005) Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436(7052):852–856. doi:nature03888 [pii] 10.1038/nature03888 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar KD, Bas T, Kobertz WR (2006) KCNE1 subunits require co-assembly with K+ channels for efficient trafficking and cell surface expression. J Biol Chem 281(52):40015–40023. doi:M604398200 [pii] 10.1074/jbc.M604398200

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Kim LA, Rajan S, Xu S, Goldstein SA (2003) Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex. Neuron 40(1):15–23. doi:S0896627303005701 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408. doi:10.1146/annurev-biochem-060713-035737 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Demselben (1834) Ueber das Stickstoffbenzid. Annalen der Pharmacie 12(2–3):311–314. doi:10.1002/jlac.18340120282

    Article  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  CAS  PubMed  Google Scholar 

  • Fortin DL, Banghart MR, Dunn TW, Borges K, Wagenaar DA, Gaudry Q, Karakossian MH, Otis TS, Kristan WB, Trauner D, Kramer RH (2008) Photochemical control of endogenous ion channels and cellular excitability. Nat Methods 5(4):331–338. doi:nmeth.1187 [pii] 10.1038/nmeth.1187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gomez-Posada JC, Aivar P, Alberdi A, Alaimo A, Etxeberria A, Fernandez-Orth J, Zamalloa T, Roura-Ferrer M, Villace P, Areso P, Casis O, Villarroel A (2011) Kv7 channels can function without constitutive calmodulin tethering. PLoS One 6(9):e25508. doi:10.1371/journal.pone.0025508 PONE-D-11-09476 [pii]

    Google Scholar 

  • Gorostiza P, Isacoff E (2007) Optical switches and triggers for the manipulation of ion channels and pores. Mol Biosyst 3(10):686–704. doi:10.1039/b710287a

    Article  CAS  PubMed  Google Scholar 

  • Gorostiza P, Volgraf M, Numano R, Szobota S, Trauner D, Isacoff EY (2007) Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc Natl Acad Sci U S A 104(26):10865–10870. doi:0701274104 [pii] 10.1073/pnas.0701274104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartley G (1937) The Cis-form of Azobenzene. Nature 140:281. doi:10.1038/140281a0

    Article  CAS  Google Scholar 

  • He Y, Karpen JW (2001) Probing the interactions between cAMP and cGMP in cyclic nucleotide-gated channels using covalently tethered ligands. Biochemistry 40(1):286–295. doi:bi002014n [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Kobertz WR (2013) Chemical derivatization and purification of peptide-toxins for probing ion channel complexes. Methods Mol Biol 995:19–30. doi:10.1007/978-1-62703-345-92

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Lvov A, Morin TJ, Kobertz WR (2011) Chemical control of metabolically-engineered voltage-gated K+ channels. Bioorg Med Chem Lett 21(17):5021–5024. doi:S0960-894X (11)00569-5 [pii] 10.1016/j.bmcl.2011.04.099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ibanez-Tallon I, Nitabach MN (2012) Tethering toxins and peptide ligands for modulation of neuronal function. Curr Opin Neurobiol 22(1):72–78. doi:S0959-4388(11)00193-0 [pii] 10.1016/j.conb.2011.11.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jarecki BW, Zheng S, Zhang L, Li X, Zhou X, Cui Q, Tang W, Chanda B (2013) Tethered spectroscopic probes estimate dynamic distances with subnanometer resolution in voltage-dependent potassium channels. Biophys J 105(12):2724–2732. doi:S0006-3495(13)01238-1 [pii] 10.1016/j.bpj.2013.11.010 [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE (2012) Mechanism of voltage gating in potassium channels. Science 336 6078):229–233. doi:336/6078/229 [pii] 10.1126/science.1216533

    Article  CAS  PubMed  Google Scholar 

  • Karpen JW, Brown RL (1996) Covalent activation of retinal rod cGMP-gated channels reveals a functional heterogeneity in the ligand binding sites. J Gen Physiol 107(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Kienzler MA, Reiner A, Trautman E, Yoo S, Trauner D, Isacoff EY (2013) A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J Am Chem Soc 135(47):17683–17686. doi:10.1021/ja408104w [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kramer RH, Karpen JW (1998) Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395(6703):710–713. doi:10.1038/27227

    Article  CAS  PubMed  Google Scholar 

  • Kramer RH, Chambers JJ, Trauner D (2005) Photochemical tools for remote control of ion channels in excitable cells. Nat Chem Biol 1(7):360–365

    Article  CAS  PubMed  Google Scholar 

  • Kramer RH, Mourot A, Adesnik H (2013) Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16(7):816–823. doi:nn.3424 [pii] 10.1038/nn.3424

    Article  PubMed  Google Scholar 

  • Lee SY, Lee A, Chen J, MacKinnon R (2005) Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A 102(43):15441–15446. doi:0507651102 [pii] 10.1073/pnas.0507651102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF (1979) Light-activated drug confirms a mechanism of ion channel blockade. Nature 280(5722):509–510

    Article  CAS  PubMed  Google Scholar 

  • Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF (1980) A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at electrophorus electroplaques. J Gen Physiol 75(2):207–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, Hoagland A, Schoppik D, Kane B, Stawski P, Schier AF, Trauner D, Isacoff EY (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16(4):507–516. doi:nn.3346 [pii] 10.1038/nn.3346 [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2(10):790–802. doi:10.1038/nrd1197 nrd1197 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A 105(41):16009–16014. doi:0806114105 [pii] 10.1073/pnas.0806114105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903. doi:1116269 [pii] 10.1126/science.1116269

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450(7168):376–382. doi:nature06265 [pii] 10.1038/nature06265 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Hua Z, Kobertz WR, Deutsch C (2011) Nascent peptide side chains induce rearrangements in distinct locations of the ribosomal tunnel. J Mol Biol 411(2):499–510. doi:S0022-2836(11)00601-2 [pii] 10.1016/j.jmb.2011.05.038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350(6315):232–235. doi:10.1038/350232a0

    Article  CAS  PubMed  Google Scholar 

  • Maduke M, Williams C, Miller C (1998) Formation of CLC-0 chloride channels from separated transmembrane and cytoplasmic domains. Biochemistry 37(5):1315–1321. doi:10.1021/bi972418o bi972418o [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276(5315):1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Marsal J, Tigyi G, Miledi R (1995) Incorporation of acetylcholine receptors and Cl- channels in xenopus oocytes injected with Torpedo electroplaque membranes. Proc Natl Acad Sci U S A 92(11):5224–5228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335(6067):432–436. doi:335/6067/432 [pii] 10.1126/science.1213274 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Morin TJ, Kobertz WR (2007) A derivatized scorpion toxin reveals the functional output of heteromeric KCNQ1-KCNE K+ channel complexes. ACS Chem Biol 2(7):469–473. doi:10.1021/cb700089s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morin TJ, Kobertz WR (2008a) Counting membrane-embedded KCNE beta-subunits in functioning K+ channel complexes. Proc Natl Acad Sci U S A 105(5):1478–1482. doi:0710366105 [pii] 10.1073/pnas.0710366105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morin TJ, Kobertz WR (2008b) Tethering chemistry and K + channels. J Biol Chem 283(37):25105–25109. doi:R800033200 [pii] 10.1074/jbc.R800033200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mruk K, Shandilya SM, Blaustein RO, Schiffer CA, Kobertz WR (2012) Structural insights into neuronal K+ channel-calmodulin complexes. Proc Natl Acad Sci U S A 109(34):13579–13583. doi:1207606109 [pii] 10.1073/pnas.1207606109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mruk K, Farley BM, Ritacco AW, Kobertz WR (2014) Calmodulation meta-analysis: predicting calmodulin binding via canonical motif clustering. J Gen Physiol 144(1):105–114. doi:jgp.201311140 [pii] 10.1085/jgp.201311140

    Google Scholar 

  • Nakajo K, Ulbrich MH, Kubo Y, Isacoff EY (2010) Stoichiometry of the KCNQ1 - KCNE1 ion channel complex. Proc Natl Acad Sci U S A 107(44):18862–18867. doi:1010354107 [pii] 10.1073/pnas.1010354107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nowak MW, Gallivan JP, Silverman SK, Labarca CG, Dougherty DA, Lester HA (1998) In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. Methods Enzymol 293:504–529. doi:S0076-6879(98)93031-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ondrus AE, Lee HL, Iwanaga S, Parsons WH, Andresen BM, Moerner WE, Du Bois J (2012) Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit. Chem Biol 19(7):902–912. doi:S1074-5521(12)00202-5 [pii] 10.1016/j.chembiol.2012.05.021 [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parsons WH, Du Bois J (2013) Maleimide conjugates of saxitoxin as covalent inhibitors of voltage-gated sodium channels. J Am Chem Soc 135(29):10582–10585. doi:10.1021/ja4019644

    Article  CAS  PubMed  Google Scholar 

  • Plant LD, Xiong D, Dai H, Goldstein SA (2014) Individual IKs channels at the surface of mammalian cells contain two KCNE1 accessory subunits. Proc Natl Acad Sci U S A 111(14):E1438–1446. doi:1323548111 [pii] 10.1073/pnas.1323548111 [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polosukhina A, Litt J, Tochitsky I, Nemargut J, Sychev Y, De Kouchkovsky I, Huang T, Borges K, Trauner D, Van Gelder RN, Kramer RH (2012) Photochemical restoration of visual responses in blind mice. Neuron 75(2):271–282. doi:S0896-6273(12)00488-6 [pii] 10.1016/j.neuron.2012.05.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Posson DJ, Ge P, Miller C, Bezanilla F, Selvin PR (2005) Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436(7052):848–851. doi:nature03819 [pii] 10.1038/nature03819 [doi]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandoz G, Levitz J, Kramer RH, Isacoff EY (2012) Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling. Neuron 74(6):1005–1014. doi:S0896-6273(12)00423-0 [pii] 10.1016/j.neuron.2012.04.026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santacruz-Toloza L, Huang Y, John SA, Papazian DM (1994) Glycosylation of Shaker potassium channel protein in insect cell culture and in Xenopus oocytes. Biochemistry 33(18):5607–5613

    Article  CAS  PubMed  Google Scholar 

  • Shimony E, Sun T, Kolmakova-Partensky L, Miller C (1994) Engineering a uniquely reactive thiol into a cysteine-rich peptide. Protein Eng 7(4):503–507

    Article  CAS  PubMed  Google Scholar 

  • Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54(4):535–545. doi:S0896-6273(07)00344-3 [pii] 0.1016/j.neuron.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  • Tochitsky I, Banghart MR, Mourot A, Yao JZ, Gaub B, Kramer RH, Trauner D (2012) Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat Chem 4(2):105–111. doi:nchem.1234 [pii] 10.1038/nchem.1234 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Tomita H, Sugano E, Yawo H, Ishizuka T, Isago H, Narikawa S, Kugler S, Tamai M (2007) Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest Ophthalmol Vis Sci 48(8):3821–3826. doi:48/8/3821 [pii] 10.1167/iovs.06–1501

    Article  PubMed  Google Scholar 

  • Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52. doi:nchembio756 [pii] 10.1038/nchembio756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vytla D, Combs-Bachmann RE, Hussey AM, Hafez I, Chambers JJ (2011) Silent, fluorescent labeling of native neuronal receptors. Org Biomol Chem 9(20):7151–7161. doi:10.1039/c1ob05963g

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Szobota S, Wang Y, Volgraf M, Liu Z, Sun C, Trauner D, Isacoff EY, Zhang X (2007) All optical interface for parallel, remote, and spatiotemporal control of neuronal activity. Nano Lett 7(12):3859–3863. doi:10.1021/nl072783t

    Article  CAS  PubMed  Google Scholar 

  • Wyart C, Del Bene F, Warp E, Scott EK, Trauner D, Baier H, Isacoff EY (2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461(7262):407–410. doi:nature08323 [pii] 10.1038/nature08323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang F, Wang LP, Boyden ES, Deisseroth K (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3(10):785–792. doi:nmeth936 [pii] 10.1038/nmeth936

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ivanova E, Bi A, Pan ZH (2009) Ectopic expression of multiple microbial rhodopsins restores on and off light responses in retinas with photoreceptor degeneration. J Neurosci 29(29):9186–9196. doi:29/29/9186 [pii] 10.1523/JNEUROSCI.0184-09.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Kobertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mruk, K., Kobertz, W. (2015). Bioreactive Tethers. In: Ahern, C., Pless, S. (eds) Novel Chemical Tools to Study Ion Channel Biology. Advances in Experimental Medicine and Biology, vol 869. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2845-3_5

Download citation

Publish with us

Policies and ethics