Skip to main content

Functional Site-Directed Fluorometry

  • Chapter
  • First Online:
Novel Chemical Tools to Study Ion Channel Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 869))

Abstract

Initially developed in the mid-1990s to examine the conformational changes of the canonical Shaker voltage-gated potassium channel, functional site-directed fluorometry has since been expanded to numerous other voltage-gated and ligand-gated ion channels as well as transporters, pumps, and other integral membrane proteins. The power of functional site-directed fluorometry, also known as voltage-clamp fluorometry, lies in its ability to provide information on the conformational changes in a protein in response to changes in its environment with high temporal resolution while simultaneously monitoring the function of that protein. Over time, applications of site-directed fluorometry have expanded to examine the interactions of ion channels with modulators ranging from membrane potential to ligands to accessory protein subunits to lipids. In the future, the range of questions answerable by functional site-directed fluorometry and its interpretive power should continue to improve, making it an even more powerful technique for dissecting the conformational dynamics of ion channels and other membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderemane-Ali F, Es-Salah-Lamoureux Z, Delemotte L, Kasimova MA, Labro AJ, Snyders DJ, Fedida D, Tarek M, Baró I, Loussouarn G (2013) Dual effect of phosphatidylinositol (4,5)-bisphosphate PIP2 on Shaker K+ channels. J Biol Chem 288:10951–10951

    Article  PubMed Central  CAS  Google Scholar 

  • Arcisio-Miranda M, Muroi Y, Chowdhury S, Chanda B (2010) Molecular mechanism of allosteric modification of voltage-dependent sodium channels by local anesthetics. J Gen Physiol 136:541–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armstrong CM, Bezanilla F (1973) Currents related to movement of the gating particles of the sodium channels. Nature 242:459–461

    Google Scholar 

  • Asamoah OK, Wuskell JP, Loew LM, Bezanilla F (2003) A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37:85–98

    Article  CAS  PubMed  Google Scholar 

  • Bannister JPA, Chanda B, Bezanilla F, Papazian DM (2005) Optical detection of rate-determining ion-modulated conformational changes of the ether-à-go-go K+ channel voltage sensor. Proc Natl Acad Sci U S A 102:18718–18723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barro-Soria R, Rebolledo S, Liin SI, Perez ME, Sampson KJ, Kass RS, Larsson HP (2014) KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps. Nat Commun 5:3750

    Google Scholar 

  • Batulan Z, Haddad GA, Blunck R (2010) An Intersubunit Interaction between S4-S5 linker and S6 is responsible for the slow off-gating component in Shaker K+ channels. J Biol Chem 285:14005–14019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blunck R, Starace DM Correa AM, Bezanilla F (2004) Detecting rearrangements of Shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells. Biophys J 86:3966–3980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blunck R, Cordero-Morales JF, Cuello LG, Perozo E, Bezanilla F (2006) Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. J Gen Physiol 128:569–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blunck R, McGuire H, Hyde HC, Bezanilla F (2008) Fluorescence detection of the movement of single KcsA subunits reveals cooperativity. Proc Natl Acad Sci U S A 105:20263–20268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonifacio G, Lelli CIS, Kellenberger S (2014) Protonation controls ASIC1a activity via coordinated movements in multiple domains. J Gen Physiol 143:105–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borisenko V, Lougheed T, Hesse J, Füreder-Kitzmüller E, Fertig N, Behrends JC, Woolley GA, Schütz GJ (2003) Simultaneous optical and electrical recording of single gramicidin channels. Biophys J 84:612–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruening-Wright A, Larsson HP (2007) Slow conformational changes of the voltage sensor during the mode shift in hyperpolarization-activated cyclic-nucleotide-gated channels. J Neurosci 27:270–278

    Article  CAS  PubMed  Google Scholar 

  • Bruening-Wright A, Elinder F, Larsson HP (2007) Kinetic relationship between the voltage sensor and the activation gate in spHCN channels. J Gen Physiol 130:71–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butt HJ, Downing KH Hansma PK (1990) Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys J 58:1473–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campos FV, Chanda B, Beirão PSL, Bezanilla F (2007) β-scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel. J Gen Physiol 130:257–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campos FV, Chanda B, Beirão PSL, Bezanilla F (2008) α-scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels. J Gen Physiol 132:251–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cha A, Bezanilla F (1997) Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19:1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Cha A, Bezanilla F (1998) Structural implications of fluorescence quenching in the Shaker K+ channel. J Gen Physiol 112:391–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cha A, Zerangue N, Kavanaugh M, Bezanilla F (1998) [38] Fluorescence techniques for studying cloned channels and transporters expressed in Xenopus oocytes. In: Susan GA (ed) Methods in Enzymology. Academic, San Diego, pp 566–578

    Google Scholar 

  • Cha A, Ruben PC, George AL Jr, Fujimoto E, Bezanilla F (1999a) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22:73–87

    Article  CAS  PubMed  Google Scholar 

  • Cha A, Snyder GE, Selvin PR, Bezanilla F (1999b) Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402:809–813

    Article  CAS  PubMed  Google Scholar 

  • Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120:629–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chanda B, Asamoah OK, Bezanilla F (2004) Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J Gen Physiol 123:217–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chanda B, Asamoah OK, Blunck R, Roux B, Bezanilla F (2005) Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–856

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Weiss DS (2002) Site-specific fluorescence reveals distinct structural changes with GABA receptor activation and antagonism. Nat Neurosci 5:1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Choi KL, Aldrich RW, Yellen G (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A 88:5092–5095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corry B, Rigby P, Liu Z-W, Martinac B (2005) Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophys J 89:L49–L51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corry B, Hurst AC, Pal P, Nomura T, Rigby P, Martinac B (2010) An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J Gen Physiol 136:483–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahan DS, Dibas MI, Petersson EJ, Auyeung VC, Chanda B, Bezanilla F, Dougherty DA, Lester HA (2004) A fluorophore attached to nicotinic acetylcholine receptor βM2 detects productive binding of agonist to the αδ site. Proc Natl Acad Sci U S A 101:10195–10200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dekel N, Priest MF, Parnas H, Parnas I, Bezanilla F (2012) Depolarization induces a conformational change in the binding site region of the M2 muscarinic receptor. Proc Natl Acad Sci U S A 109:285–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Derrer C, Wittek A, Bamberg E, Carpaneto A, Dreyer I, Geiger D (2013) Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1. Plant Cell 25:3010–3021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunn SMJ, Blanchard SG, Raftery MA (1980) Kinetics of carbamylcholine binding to membrane-bound acetylcholine receptor monitored by fluorescence changes of a covalently bound probe. Biochemistry (Mosc.) 19:5645–5652

    Article  CAS  PubMed  Google Scholar 

  • Eaton MM, Lim YB, Covey DF, Akk G (2014) Modulation of the human ρ1 GABAA receptor by inhibitory steroids. Psychopharmacology (Berl.) 231:3467–3478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egenberger B, Gorboulev V, Keller T, Gorbunov D, Gottlieb N, Geiger D, Mueller TD, Koepsell H (2012) A substrate binding hinge domain is critical for transport-related structural changes of organic cation transporter 1. J Biol Chem 287:31561–31573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Es-Salah-Lamoureux Z, Fougere R, Xiong PY, Robertson GA, Fedida D (2010) Fluorescence-tracking of activation gating in human ERG channels reveals rapid S4 movement and slow pore opening. PLoS One 5:e10876

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Farahbakhsh ZT, Hideg K, Hubbell WL (1993) Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science 262:1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Fessenden JD, Mahalingam M (2013) Site-specific labeling of the type 1 ryanodine receptor using biarsenical fluorophores targeted to engineered tetracysteine motifs. PLoS One 8:e64686

    Article  PubMed Central  PubMed  Google Scholar 

  • Gandhi CS, Olcese R (2008) The voltage-clamp fluorometry technique. Methods Mol Biol. 491:213–231

    Google Scholar 

  • Gandhi CS, Loots E, Isacoff EY (2000) Reconstructing voltage sensor–pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 27:585–595

    Article  CAS  PubMed  Google Scholar 

  • Gandhi CS, Clark E, Loots E, Pralle A, Isacoff EY (2003) The orientation and molecular movement of a K+ channel voltage-sensing domain. Neuron 40:515–525

    Article  CAS  PubMed  Google Scholar 

  • Geibel S, Kaplan JH, Bamberg E, Friedrich T (2003) Conformational dynamics of the Na+/K+-ATPase probed by voltage clamp fluorometry. Proc Natl Acad Sci U S A 100:964–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gether U, Lin S, Kobilka BK (1995) Fluorescent labeling of purified β2 adrenergic receptor: evidence for ligand-specific conformational changes. J Biol Chem 270:28268–28275

    Article  CAS  PubMed  Google Scholar 

  • Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff EY (1999) Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402, 813–817

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez C, Koch HP, Drum BM, Larsson HP (2010) Strong cooperativity between subunits in voltage-gated proton channels. Nat Struct Mol Biol 17:51–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22:440–444

    Article  CAS  PubMed  Google Scholar 

  • Haddad GA, Blunck R (2011) Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain. J Gen Physiol 137:455–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han L, Talwar S, Wang Q, Shan Q, Lynch JW (2013) Phosphorylation of α3 glycine receptors induces a conformational change in the glycine-binding site. ACS Chem. Neurosci 4:1361–1370

    CAS  Google Scholar 

  • Harms GS, Orr G, Montal M, Thrall BD, Colson SD, Lu HP (2003) Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys J 85:1826–1838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horne AJ, Peters CJ, Claydon TW, Fedida D (2010) Fast and slow voltage sensor rearrangements during activation gating in Kv1.2 channels detected using tetramethylrhodamine fluorescence. J Gen Physiol 136:83–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7:547–556

    Article  CAS  PubMed  Google Scholar 

  • Hyde HC, Sandtner W, Vargas E, Dagcan AT, Robertson JL, Roux B, Correa AM, Bezanilla F (2012) Nano-positioning system for structural analysis of functional homomeric proteins in multiple conformations. Structure 20:1629–1640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalstrup T, Blunck R (2013) Dynamics of internal pore opening in K(V) channels probed by a fluorescent unnatural amino acid. Proc Natl Acad Sci U S A 110:8272–8277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khatri A, Sedelnikova A, Weiss DS (2009) Structural rearrangements in loop F of the GABA receptor signal ligand binding, not channel activation. Biophys J 96:45–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohout SC, Ulbrich MH, Bell SC, Isacoff EY (2008) Subunit organization and functional transitions in Ci-VSP. Nat Struct Mol Biol 15:106–108

    Article  CAS  PubMed  Google Scholar 

  • Labro AJ, Lacroix JJ, Villalba-Galea CA, Snyders DJ, Bezanilla F (2012) Molecular mechanism for depolarization-induced modulation of Kv channel closure. J Gen Physiol 140:481–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsson HP, Tzingounis AV, Koch HP, Kavanaugh MP (2004) Fluorometric measurements of conformational changes in glutamate transporters. Proc Natl Acad Sci U S A 101:3951–3956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li M, Lester HA (2002) Early fluorescence signals detect transitions at mammalian serotonin transporters. Biophys J 83:206–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li M, Farley RA, Lester HA (2000) An intermediate state of the γ-Aminobutyric acid transporter gat1 revealed by simultaneous voltage clamp and fluorescence. J Gen Physiol 115:491–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li P, Khatri A, Bracamontes J, Weiss DS, Steinbach JH, Akk G (2010) Site-specific fluorescence reveals distinct structural changes induced in the human ρ1 GABA receptor by inhibitory Neurosteroids. Mol Pharmacol 77:539–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Gao J, Lu Z, McFarland K, Shi J, Bock K, Cohen IS, Cui J (2013) Intracellular ATP binding is required to activate the slowly activating K+ channel IKs. Proc Natl Acad Sci U S A 110:18922–18927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loo DDF, Hirayama BA, Gallardo EM, Lam JT, Turk E, Wright EM (1998) Conformational changes couple Na+ and glucose transport. Proc Natl Acad Sci U S A 95:7789–7794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loots E, Isacoff EY (1998) Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J Gen Physiol 112:377–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loots E, Isacoff EY (2000) Molecular coupling of S4 to a K+ channel’s slow inactivation gate. J Gen Physiol 116:623–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lougheed T, Borisenko V, Hand CE, Woolley GA (2001) Fluorescent gramicidin derivatives for single-molecule fluorescence and ion channel measurements. Bioconjug Chem 12:594–602

    Article  CAS  PubMed  Google Scholar 

  • Mannuzzu LM, Isacoff EY (2000) Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J Gen Physiol 115:257–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mannuzzu LM, Moronne M Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216

    Article  CAS  PubMed  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1995) A critical role for transmembrane segment IVS6 of the sodium channel a subunit in fast inactivation. J Biol Chem 270:12025–12034

    Article  CAS  PubMed  Google Scholar 

  • McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1998) A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel α-subunit in fast inactivation. J Biol Chem 273:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Mourot A, Bamberg E, Rettinger J (2008) Agonist- and competitive antagonist-induced movement of loop 5 on the α subunit of the neuronal α4β4 nicotinic acetylcholine receptor. J Neurochem 105:413–424

    Article  CAS  PubMed  Google Scholar 

  • Müller DJ, Schabert FA, Büldt G, Engel A (1995) Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J 68:1681–1686

    Article  PubMed Central  PubMed  Google Scholar 

  • Muroi Y, Chanda B (2009) Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel. J Gen Physiol 133:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muroi Y, Czajkowski C, Jackson MB (2006) Local and global ligand-induced changes in the structure of the GABAA Receptor. Biochemistry (Mosc.) 45:7013–7022

    Article  CAS  PubMed  Google Scholar 

  • Muroi Y, Theusch CM, Czajkowski C, Jackson MB (2009) Distinct structural changes in the GABAA receptor elicited by pentobarbital and GABA. Biophys J 96:499–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muroi Y, Arcisio-Miranda M, Chowdhury S, Chanda B (2010) Molecular determinants of coupling between the domain III voltage sensor and pore of a sodium channel. Nat Struct Mol Biol 17:230–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osteen JD, Gonzalez C, Sampson KJ, Iyer V, Rebolledo S, Larsson HP, Kass RS (2010) KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate. Proc Natl Acad Sci U S A 107:22710–22715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osteen JD, Barro-Soria R, Robey S, Sampson KJ, Kass RS, Larsson HP (2012) Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels. Proc Natl Acad Sci U S A 109:7103–7108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pantazis A, Olcese R (2012) Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore–quencher pairing. J Gen Physiol 140:207–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pantazis A, Gudzenko V, Savalli N, Sigg D, Olcese R (2010) Operation of the voltage sensor of a human voltage- and Ca2+-activated K+ channel. Proc Natl Acad Sci U S A 107:4459–4464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passero CJ, Okumura S, Carattino MD (2009) Conformational changes associated with proton-dependent gating of ASIC1a. J Biol Chem 284:36473–36481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pathak M, Kurtz L, Tombola F, Isacoff E (2005) The cooperative voltage sensor motion that gates a potassium channel. J Gen Physiol 125:57–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pathak MM, Yarov-Yarovoy V, Agarwal G, Roux B, Barth P, Kohout S, Tombola F, Isacoff EY (2007) Closing In on the resting state of the Shaker K+ channel. Neuron 56:124–140

    Article  CAS  PubMed  Google Scholar 

  • Peters CJ, Vaid M, Horne AJ, Fedida D, Accili EA (2009) The molecular basis for the actions of KVβ1.2 on the opening and closing of the KV1.2 delayed rectifier channel. Channels 3:314–322

    Article  CAS  PubMed  Google Scholar 

  • Pless SA, Lynch JW (2009a) Ligand-specific conformational changes in the α1 glycine receptor ligand-binding domain. J Biol Chem 284:15847–15856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pless SA, Lynch JW (2009b) Magnitude of a conformational change in the glycine receptor β1–β2 loop is correlated with agonist efficacy. J Biol Chem 284:27370–27376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pless SA, Lynch JW (2009c) Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits. J Neurochem 108:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • Pless SA, Dibas MI, Lester HA, Lynch JW (2007) Conformational variability of the glycine receptor M2 domain in response to activation by different agonists. J Biol Chem 282:36057–36067

    Article  CAS  PubMed  Google Scholar 

  • Posson DJ, Ge P, Miller C, Bezanilla F, Selvin PR (2005) Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436:848–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puljung MC, Zagotta WN (2011) Labeling of Specific cysteines in proteins using reversible metal protection. Biophys J 100:2513–2521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu F, Rebolledo S, Gonzalez C, Larsson HP (2013) Subunit interactions during cooperative opening of voltage-gated proton channels. Neuron 77:288–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raghuraman H, Islam SM, Mukherjee S, Roux B, Perozo E (2014) Dynamics transitions at the outer vestibule of the KcsA potassium channel during gating. Proc Natl Acad Sci U S A 111:1831–1836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards R, Dempski RE (2011) Examining the conformational dynamics of membrane proteins in situ with site-directed fluorescence labeling. J Vis Exp 51:2627. doi:10.3791/2627

    Google Scholar 

  • Rudokas MW, Varga Z, Schubert AR, Asaro AB, Silva JR (2014) The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry. J Vis Exp 85. doi:10.3791/51040

    Google Scholar 

  • Ruscic KJ, Miceli F, Villalba-Galea CA, Dai H, Mishina Y, Bezanilla F, Goldstein SAN (2013) IKs channels open slowly because KCNE1 accessory subunits slow the movement of S4 voltage sensors in KCNQ1 pore-forming subunits. Proc Natl Acad Sci U S A 110:E559–E566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savalli N, Kondratiev A, Toro L, Olcese R (2006) Voltage-dependent conformational changes in human Ca2+- and voltage-activated K+ channel, revealed by voltage-clamp fluorometry. Proc Natl Acad Sci U S A 103:12619–12624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savalli N, Kondratiev A, Quintana SB de, Toro L, Olcese R (2007) Modes of operation of the BKCa channel β2 subunit. J Gen Physiol 130:117–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savalli N, Pantazis A, Yusifov T, Sigg D, Olcese R (2012) The contribution of RCK domains to human BK channel allosteric activation. J Biol Chem 287:21741–21750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schönherr R, Mannuzzu LM, Isacoff EY, Heinemann SH (2002) Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel. Neuron 35:935–949

    Article  PubMed  Google Scholar 

  • Semenova NP, Abarca-Heidemann K, Loranc E, Rothberg BS (2009) Bimane fluorescence scanning suggests secondary structure near the S3-S4 linker of BK channels. J Biol Chem 284:10684–10693

    Google Scholar 

  • Sesti F, Rajan S, Gonzalez-Colaso R, Nikolaeva N, Goldstein SAN (2003) Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel. Nat Neurosci 6:353–361

    Article  CAS  PubMed  Google Scholar 

  • Sheets MF, Kyle JW, Kallen RG, Hanck DA (1999). The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys J 77:747–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheets MF, Kyle JW, Hanck DA (2000) The role of the putative inactivation lid in sodium channel gating current immobilization. J Gen Physiol 115:609–620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi YP, Cheng YM, Slyke ACV, Claydon TW (2014) External protons destabilize the activated voltage sensor in hERG channels. Eur Biophys J 43:59–69

    Article  CAS  PubMed  Google Scholar 

  • Slatin SL, Qiu X-Q, Jakes KS, Finkelstein A (1994) Identification of a translocated protein segment in a voltage-dependent channel. Nature 371:158–161

    Article  CAS  PubMed  Google Scholar 

  • Smith PL, Yellen G (2002) Fast and slow voltage sensor movements in HERG potassium channels. J. Gen Physiol 119:275–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonar S, Lee C-P, Coleman M, Patel N, Liu X, Marti T, Khorana HG, RajBhandary UL, Rothschild KJ (1994) Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin. Nat Struct Mol Biol 1:512–517

    Article  CAS  Google Scholar 

  • Sørensen JB, Cha A, Latorre R, Rosenman E, Bezanilla F (2000) Deletion of the S3–S4 linker in the Shaker potassium channel reveals two quenching groups near the outside of S4. J Gen Physiol 115:209–222

    Article  PubMed Central  PubMed  Google Scholar 

  • Souvignier G, Gerwert K (1992) Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy. Biophys J 63:1393–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steinhoff HJ, Mollaaghababa R, Altenbach C, Hideg K, Krebs M, Khorana HG, Hubbell WL (1994) Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science 266:105–107

    Article  CAS  PubMed  Google Scholar 

  • Tan PS, Perry MD, Ng CA, Vandenberg JI, Hill AP (2012) Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels. J Gen Physiol 140:293–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thouta S, Sokolov S, Abe Y, Clark SJ, Cheng YM, Claydon TW (2014) Proline scan of the hERG channel S6 helix reveals the location of the intracellular pore gate. Biophys J 106:1057–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timpe LC, Schwarz TL, Tempel BL, Papazian DM, JanYN, Jan LY (1988) Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 331:143–145

    Article  CAS  PubMed  Google Scholar 

  • Tombola F, Pathak MM, Isacoff EY (2005) Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45:379–388

    Article  CAS  PubMed  Google Scholar 

  • Tombola F, Ulbrich MH, Kohout SC, Isacoff EY (2010) The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity. Nat Struct Mol Biol 17:44–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulens C, Spurny R, Thompson AJ, Alqazzaz M, Debaveye S, Han L, Price K, Villalgordo JM, Tresadern G, Lynch JW, Lummis SCR (2014) The prokaryote ligand-gated ion channel ELIC captured in a pore blocker-bound conformation by the Alzheimer's disease drug memantine. Structure 22:1399–1407

    Google Scholar 

  • Unger VM, Schertler GF (1995) Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys J 68:1776–1786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    Article  CAS  PubMed  Google Scholar 

  • Vaid M, Claydon TW, Rezazadeh S, Fedida D (2008) Voltage clamp fluorimetry reveals a novel outer pore instability in a mammalian voltage-gated potassium channel. J Gen Physiol 132:209–222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Villalba-Galea CA, Sandtner W, Starace DM, Bezanilla F (2008) S4-based voltage sensors have three major conformations. Proc Natl Acad Sci U S A 105:17600–17607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villalba-Galea CA, Miceli F, Taglialatela M, Bezanilla F (2009) Coupling between the voltage-sensing and phosphatase domains of Ci-VSP. J Gen Physiol 134:5–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Virkki LV, Murer H, Forster IC (2006) Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order. J Gen Physiol 127:539–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Lynch JW (2011) Activation and desensitization induce distinct conformational changes at the extracellular-transmembrane domain interface of the glycine receptor. J Biol Chem 286:38814–38824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Lynch JW (2012) A comparison of glycine- and ivermectin-mediated conformational changes in the glycine receptor ligand-binding domain. Int J Biochem Cell Biol 44:335–340

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Pless SA, Lynch JW (2010) Ligand- and subunit-specific conformational changes in the ligand-binding domain and the TM2-TM3 linker of α1 β2 γ2 GABAA receptors. J Biol Chem 285:40373–40386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Liu Y, Deberg HA, Nomura T, Hoffman MT, Rohde PR, Schulten K, Martinac B, Selvin PR (2014) Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 3:e01834

    PubMed Central  PubMed  Google Scholar 

  • West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A 89:10910–10914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang N, Horn R (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–218

    Article  CAS  PubMed  Google Scholar 

  • Yang N, George AL Jr, Horn R (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16:113–122

    Article  PubMed  Google Scholar 

  • Yang F, Cui Y, Wang K, Zheng J (2010) Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci U S A 107:7083–7088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang F, Ma L, Cao X, Wang K, Zheng J (2014) Divalent cations activate TRPV1 through promoting conformational change of the extracellular region. J Gen Physiol 143:91–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H, Larsson HP, Shi J, Cui J (2013) Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Natl Acad Sci U S A 110:13180–13185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Xue F, Chang Y (2009) Agonist- and antagonist-induced conformational changes of loop F and their contributions to the ρ1 GABA receptor function. J Physiol 587:139–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng J, Zagotta WN (2000) Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron 28:369–374

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Bezanilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Priest, M., Bezanilla, F. (2015). Functional Site-Directed Fluorometry. In: Ahern, C., Pless, S. (eds) Novel Chemical Tools to Study Ion Channel Biology. Advances in Experimental Medicine and Biology, vol 869. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2845-3_4

Download citation

Publish with us

Policies and ethics